
CSE 571: Robotics

Motion Planning

Tapomayukh Bhattacharjee
28th January 2019

1

Many slides courtesy of Maxim Likhachev, Howie Choset, Siddhartha Srinivasa, 
and Seth Teller 



2

Motion Planning in Robotics

Planning: Process of thinking about and organizing the 
activities required to achieve a desired goal

Motion Planning: Convert high-level task specification to 
low-level descriptions of how to move



3

Specification

Motion Planning Problem
Model of the Robot (states and actions)
Model of the world
Current state of the robot
Current state of the world
Cost function (Optional)
Desired state(s) of the robot

Solution
Plan that prescribes a sequence of actions
Plan terminates at the desired state
Optionally minimizes the cost of executing the actions



4

Omnidirectional Robot

Motion Planning Problem
States and Actions?
World specification?
Current state of the robot
Current state of the world
Possible cost functions?
Desired state(s) of the robot

Examples?



5

Drones

Motion Planning Problem
States and Actions?
World specification?
Current state of the robot
Current state of the world
Possible cost functions?
Desired state(s) of the robot



6

Drones



7

Autonomous Driving

Urban Challenge Race, CMU Team, Planning with Anytime D* (A* with Replan)



8

Manipulation

Food Manipulation: Pick up fork using planning with LRA* (Lazy variant of A*)



9

Where does Planning fit?



10

Planning and Learning

Deterministic vs. Under Uncertainty



11

Planning and Control



12

What space to plan in?

θ2
θ1

θ1

θ2

Configuration Space

12

Each point defines the complete configuration 
of the robot



13

Configuration Space

A configuration is legal if 
- it is not in collision
- is valid (within limits)

A configuration space is the set of legal configurations

What is the dimensionality of the 
configuration space of the base?



14

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)
- 3D if the robot is non-circular (asymmetric) Why?



15

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)



16

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)



17

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

Is this a correct transformation?



18

Configuration Space

Mathematical Representation (See Notes)

Motion Planning: Piano Movers’ Problem (See Notes)

Notes courtesy of Siddhartha Srinivasa

Piano Movers’ problem



19

Minkowsky Sum



20

Computation of C-Obstacle: 
Minkowsky Difference



21

Computation of C-Obstacle: 
Minkowsky Difference



22

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

Is it necessary to build c-space obstacles?



23

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 3D if the robot is asymmetric

Difficult to build in real-time! What do we do?



24

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 3D if the robot is asymmetric

Difficult to build in real-time! What do we do?

- Is it necessary to reason about 
c-space obstacles?

- Collision checking independent 
of setup of planner

Earlier methods like potential fields



25

Configuration Space: Manipulator

What is the C-Space?



26

Configuration Space: Manipulator



27

Configuration Space: Manipulator



28

Configuration Space: Manipulator



29

Configuration Space: Manipulator



30

Configuration Space

A configuration is legal if 
- it is not in collision
- is valid (within limits)

A configuration space is the set of legal configurations

Each point in the space -> configuration

Obstacle representation is non-trivial - legality of 
configuration is determined when necessary



31

θ2
θ1

θ1

θ2

Configuration Space

31

How do we plan in this continuous space?



3232

Motion Planning Algorithms

Graph-Based Methods Sampling-Based Methods Trajectory Optimization



θ2
θ1

Planning in continuous space

33

θ1

θ2

θ1

θ2



θ2
θ1

Planning as Graph Search

34

θ1

θ2



Graph Representations

35

θ1

θ2

Skeletonization
1. Visibility Graphs
2. Voronoi Diagrams
3. Probabilistic Roadmaps

Cell Decomposition
1. X-Connected Grid
2. Lattice-Based Graphs

Properties of a good graph?

Coverage
Connectivity

What other characteristics define a good graph?



Graph Representations

36

θ1

θ2

Skeletonization

3. Probabilistic Roadmaps

1. What is the sampling strategy?
2. How do we connect vertices?
3. Pros and Cons?
4. Explicit or Implicit? – See Notes



Graph Representations

37

θ1

θ2
Cell Decomposition
1. X-Connected Grid

1. What should X be?
2. What are the pros and cons?
3. Explicit or Implicit?



Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph 
for a least-cost path 

from sstart to sgoal



Graph Representations

39

θ1

θ2
Cell Decomposition

2. Lattice-Based Graphs

1. How are motion primitives defined?
2. How are cost of edges determined?
3. Explicit or Implicit?



Search for Least-Cost Path

40

Why?



Search for Least-Cost Path

41



A* Search

42



Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance



A* Search

44



ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=
h=2

g= 
h=1

g= 
h=02

S4 S3
3

g= 
h=2

g= 
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Computes optimal g-values for relevant states



CLOSED = {}
OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=
h=2

g= 
h=1

g= 
h=02

S4 S3
3

g= 
h=2

g= 
h=1

1
Sstart

1

1

g=0
h=3

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



CLOSED = {sstart}
OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= 
h=1

g= 
h=02

S4 S3
3

g= 
h=2

g= 
h=1

1
Sstart

1

1

g=0
h=3

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 
h=02

S4 S3
3

g= 2
h=2

g= 
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2}

OPEN = {s1,s4}
next state to expand: s1

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}
next state to expand: s4

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}
next state to expand: sgoal

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}
done

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Computes optimal g-values for relevant states



Is guaranteed to return an optimal path (in fact, for 
every expanded state) – optimal in terms of the solution

Performs provably minimal number of state expansions 
required to guarantee optimality – optimal in terms of 
the computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search



Is guaranteed to return an optimal path (in fact, for 
every expanded state) – optimal in terms of the solution

Performs provably minimal number of state expansions 
required to guarantee optimality – optimal in terms of 
the computations

A* Search

helps with robot deviating off its path
if we search with A* 

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3



A* Search: More interesting example (Try in 
Class)

56

1

2

2

0.1

0.5

1

0.10.5



A* Search

57

1.Correctness
2.Completeness
3.Optimality



Role of Heuristic

58



Role of Heuristic

59



Effect of the Heuristic Function

sgoal

sstart

A* Search: expands states in the order of f = g+h values



Effect of the Heuristic Function

sgoal

sstart

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly 
running out of memory (memory: O(n))



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)



Effect of the Heuristic Function



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 1026 states 

planning with ARA* (anytime version of weighted A*)



Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)

• heuristic is Euclidean distance from the center of the body to the goal location

• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza



66

Another example of A* in Action



67

Did we solve motion planning?


