CSE 571: Robotics

Motion Planning

Tapomayukh Bhattacharjee
28th January 2019

Many slides courtesy of Maxim Likhachev, Howie Choset, Siddhartha Srinivasa,
and Segh Teller

Motion Planning in Robotics

Planning: Process of thinking about and organizing the
activities required to achieve a desired goal

Motion Planning: Convert high-level task specification to
low-level descriptions of how to move

Specification

Motion Planning Problem

Model of the Robot (states and actions)
Model of the world

Current state of the robot

Current state of the world

Cost function (Optional)

Desired state(s) of the robot

Solution
Plan that prescribes a sequence of actions
Plan terminates at the desired state
Optionally minimizes the cost of executing the actions

Omnidirectional Robot

Motion Planning Problem

States and Actions?

World specification?
Current state of the robot
Current state of the world
Possible cost functions?
Desired state(s) of the robot

Examples?

0 20 40 60 80 100

Drones

Motion Planning Problem

States and Actions?

World specification?
Current state of the robot
Current state of the world
Possible cost functions?
Desired state(s) of the robot

Autonomous Driving

Urban Challenge Race, CMU Team, Planning with Anytime D* (A* with Replan)
7

Manipulation

Food Manipulation: Pick up fork using planning with LRA* (Lazy variant of A*)
8

Where does Planning fit?

A 4

Planning
What do I do next?

plan

A

Y

Plan Execution/Controller

How do I do the next action?

A

Perception

commands

What do I see?

feedback
from sensors

Localization
Where am I?

A

feedback
from actuators

Planning and Learning

Model-based approach

models MR, M"
and cost function C

Model-free approach

Deterministic vs. Under Uncertainty

10

Planning and Control

: global planning ~=3==le == o 7 | *
loca.l planning ' e 1 | m
(trajectory following) —
controller B

0 2 4 B 8 10 12 14 16 18 20

11

What space to plan in”?

Configuration Space

K

92 Each point defines the complete configuration
of the robot

01
|

’.

01

12

Configuration Space

A configuration is legal if

- it is not in collision
- is valid (within limits)

A configuration space is the set of legal configurations

Legal configurations for the base of the robot:

What is the dimensionality of the
configuration space of the base?

13

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:

- 2D if the robot is circular (symmetric in all directions) Why?
- 3D if the robot is non-circular (asymmetric) ye

14

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

A

15

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

C-Space
Transform

-
>

©A

16

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

C-Space R
Transform

©A

|s this a correct transformation?

17

Configuration Space

Mathematical Representation (See Notes)

Motion Planning: Piano Movers’ Problem (See Notes)

4* ‘Immovable 4

r4T VA

A

Start

Configuration Goal Configuration

Piano Movers’ problem

Notes courtesy of Siddhartha Srinivasa
18

Minkowsky Sum

« Given two sets A,B € R9, their Minkowski sum,
denoted A@ B,istheset{a+b | a€A beB}

— Result of adding each element of A to each element of B
» If A& B convex, just add vertices & find convex hull:

19

Computation of C-Obstacle:
Minkowsky Difference

* Inputs: robot polygon R and obstacle polygon S
» Qutput: c-space obstacle c-obstacle(S, R)

.ro »0 obstacle obstacle

X
Y 1

[c-obstacle

20

Computation of C-Obstacle:

Minkowsky Difference

1. Reflect robot R about its origin to produce R’
2. Compute Minkowski sum of R’ and obstacle S

Y

 J]
R[S R
obstacle
X 2%

$ \ 1
R R

c-obstacle

N

21

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 2D if the robot is circular (symmetric in all directions)

expansion
of obstacles

Is it necessary to build c-space obstacles?

22

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:

- 3D if the robot is asymmetric

C-Space

i@O"

Transform :

Difficult to build in real-time! What do we do?

23

Configuration Space: 2D base robot

Configuration space for a robot base in 2D world is:
- 3D if the robot is asymmetric

Earlier methods like potential fields

- Is it necessary to reason about
c-space obstacles?

O =10°
C-Space . L
> - Collision checking independent

Transform of setup of planner

Difficult to build in real-time! What do we do?

24

Configuration Space: Manipulator

What is the C-Space?

360

[]
270 + 9a

180 T

45 90 135 180

25

Configuration Space: Manipulator

Where do we put . ?

.CIA

360

270 1

180 T

90 T

.q]31

45 90 135 180

26

Configuration Space: Manipulator

. _ How do we get from A to B ?
Reference configuration

360

270 T

180 T

90

45 90 135 180

27

Configuration Space: Manipulator

28

Configuration Space: Manipulator

workspace C-space
29

Configuration Space

A configuration is legal if

- it is not in collision
- is valid (within limits)

A configuration space is the set of legal configurations
Each point in the space -> configuration

Obstacle representation is non-trivial - legality of
configuration is determined when necessary

30

How do we plan in this continuous space?

Configuration Space

01
=)

r

02

01

3

Motion Planning Algorithms

I R

Graph-Based Methods

Sampling-Based Methods

Trajectory Optimization

Planning in continuous space

02

33

01

Planning as Graph Search

02

34

O+

Graph Representations

Skeletonization

1. Visibility Graphs

2. Voronoi Diagrams

3. Probabilistic Roadmaps

Cell Decomposition

1. X-Connected Grid
2. Lattice-Based Graphs

02

Properties of a good graph?

Connectivity
Coverage
What other characteristics define a good graph?

35

01

Graph Representations

Skeletonization

3. Probabilistic Roadmaps

02

1. What is the sampling strategy?
2. How do we connect vertices?

3. Pros and Cons?

4. Explicit or Implicit? — See Notes

36

O+

Graph Representations

Cell Decomposition

1. X-Connected Grid B2

1. What should X be?
2. What are the pros and cons?
3. Explicit or Implicit?

O+

37

Planning via Cell Decomposition

» Approximate Cell Decomposition:
- construct a graph and search 1t for a least-cost path

discretize

froms. .tos

start goal

Graph Representations

Cell Decomposition o

2. Lattice-Based Graphs
1. How are motion primitives defined?

2. How are cost of edges determined?
3. Explicit or Implicit?

39

01

Search for Least-Cost Path

Many searches work by computing optimal g-values for
relevant states

— g(s) — an estimate of the cost of a least-cost path from s . to s

start

— optimal values satisfy: g(s) =ming.._) &(s”) +¢(s’’,s) Why?

the cost (51,8 go0) Of

an edge from s 10 S,

40

Search for Least-Cost Path
Least-cost path 1s a greedy path computed by backtracking:

— start with s, , and from any state s move to the predecessor state
s’ such that - - " "
s'=argmin .0 (g(s") +c(s",5))

41

A* Search

« Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost

of a shortest path from s 10 Sy,

the cost of a shortest path
from s, . to s found so far

h(s) -

Start

42

A* Search
Computes optimal g-values for relevant states

at any point of time:

heuristic function

he)

o
‘&
y T “ ° [] \

B

one popular heuristic function — Euclidean distance

A* Search

minimal cost from s to S0l

« Heuristic function must be:
— admissible: for every state s, i(s) < c*(s,54,,)
— consistent (satisfy triangle inequality).
h(s » h(s) Zc(s,succ(s)) + h(succ(s))
— admissibility provably follows from consistency and often (not
always) consistency follows from admissibility

) = 0 and for every s#s

goal S goa goa

44

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

g=o0 g= oo
h=2) h=1
g=0 -, .
_ h=3 1 @ 2 g
CLOSED = {}
OPEN = {501 1 Sios

next state to expand: s, 3 /

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;
for every successor s~ of s such that s " not in CLOSED

i) > + ’

lf g(S ,) g(S) C(S’S ,) g(Sy > g(Sstarl) T C(Sstart’sy
o(s”) = g(s) +cls.s); Vs
insert s~ into OPEN;

g=x §= X
1

CLOSED = {) 2 h=0
OPEN — {Sstan} 1 /Sgoa
next state to expand: s, 3 @

g= X g= X
h=2 h=1

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

N~
ey
Il

CLOSED = {s., }
OPEN = {3}

next state to expand: s, @ 3 @/

Py
L O
. ®
[\ 9
[\®)

‘ [\)
=

I

< 8

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

T

N~

CLOSED = {Sstart’SZ}
OPEN = {s,s,}

next state to expand: s, @ 3 @/

Py
L O
.0
[\
[\®)

‘ [\)
=

I

< 8

T
|

AN
i
~ 8

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;

for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

CLOSED = {Sstart’SZ’S]}
OPEN = {8 4S 4001/
next state to expand.: s,

Py
L O
.0
.)
[\®)
‘ [\)
T
I
S o

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;

for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

g=1 g=3
h=2 h=1
g=0 1 @ 2 g=35
CLOSED = {5y101052:5 154} =0
OPEN = {SS’SgOaL} 1 Sgoa
next state to expand: s

/
.

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

=3 1)7 , 870
CLOSED={Sstart,s2,sj,s4,sg0al} } h=0

OPEN = {3}

done 3
5

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;

for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

_ 2
h=3 h=0
S ’1

for every expanded state g(s) is optimal /1'
for every other state g(s) is an upper bound @ 3 @

we can now compute a least-cost path

A* Search

Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded)

remove s with the smallest [/f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED,;

for every successor s~ of s such that s " not in CLOSED
ifg(s’) > gls) +clss’)
g(s’) =g(s) +c(s,s);
insert s~ into OPEN;

h=3 1 2 h=0
S }1

for every expanded state g(s) is optimal /1'
for every other state g(s) is an upper bound @ 3 @

we can now compute a least-cost path

A* Search

|s guaranteed to return an optimal path (in fact, for
every expanded state) — optimal in terms of the solution

Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of

the computations o1 =3
h=2 h=1
g

’ g
8/ : % h=0
S !

A* Search

|s guaranteed to return an optlmal path (in fact, for

every expanded state) — onti arms of the solution

elps with robot deviating off its pat
if we search with A*
backwards (from goal to start)

Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of

the computations o1 =3
h=2 , h=1

g=0 = =5

8/@ % %FO

@ I | Sgoa

A* Search: More interesting example (Try in
Class)

56

A* Search

1.Correctness
2.Completeness
3.Optimality

* Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

* Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the

computations

57

Role of Heuristic

« A* Search: expands states in the order of /' = g+4 values
* Dyjkstra’s: expands states in the order of f = g values

* Weighted A*: expands states in the order of f = g+¢h
values, ¢ > I = bias towards states that are closer to goal

an (under) estimate of the cost
of a shortest path from s 10 54,

g(s)

the cost of a shortest path |—"" h(s) -~
from sg,,, to s found so far
@

%,4 U

58

Role of Heuristic

f f= g values

S goal

59

Effect of the Heuristic Function

A* Search: expands states in the order of f = g+h values

goal

Effect of the Heuristic Function

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

goal

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+¢h
values, € > 71 = bias towards states that are closer to goal

solution is always e-suboptimal:
ost(solution) < g-cost(optimal solution

Sgoal

Effect of the Heuristic Function

e=1.5 e = 1.0 (optimal search)

Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+¢h
values, € > 1 = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)

Effect of the Heuristic Function

« planning in 8D (<x,y> for each foothold)
* heuristic is Euclidean distance from the center of the body to the goal locatior
« cost of edges based on kinematic stability of the robot and quality of footholds

w
L

lh ”l"'”lf
° 4l "13
=T

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin
Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Another example of A* in Action

66

Did we solve motion planning?

67

