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Given:

⬜ The robot’s controls

⬜ Observations of nearby features

Estimate:

⬜ Map of features

⬜ Path of the robot

The SLAM Problem

A robot is exploring an 
unknown, static environment.
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SLAM Applications

Indoors

Space

Undersea

Underground



Illustration of SLAM 
without Landmarks

With only dead reckoning, 
vehicle pose uncertainty grows 
without bound
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Mapping with Raw Odometry



Repeat, with Measurements of 
Landmarks

◻ First position: two features 
observed



Illustration of SLAM with 
Landmarks

◻ Second position: two new features 
observed



Illustration of SLAM with 
Landmarks

◻ Re-observation of first two 
features results in improved 
estimates for both vehicle and 
feature



Illustration of SLAM with 
Landmarks

◻ Third position: two additional 
features added to map



Illustration of SLAM with 
Landmarks

◻ Re-observation of first four features 
results in improved location 
estimates for vehicle and all 
features



Illustration of SLAM with 
Landmarks

◻ Process continues as the vehicle 
moves through the environment



What is SLAM?
Localization: Estimate current pose, given map, 
controls, and observations

Mapping: Build map given poses and 
observations

Simultaneous Mapping and Localization (SLAM):

Find poses and map given controls and 
observations



Simultaneous Localization and 
Mapping (SLAM)

◻ Building a map and locating the robot in the 
map at the same time

◻ Chicken-and-egg problem

map

localize



Why is SLAM a hard problem?

SLAM: robot path and map are both unknown 

Robot path error correlates errors in the map



Why is SLAM a hard problem?

• In the real world, the mapping between 
observations and landmarks is unknown

• Picking wrong data associations can have 
catastrophic consequences

• Pose error correlates data associations

Robot pose
uncertainty
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SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

• Online SLAM:

Integrations typically done one at a time 
Estimates most recent pose and map!

Estimates entire path and map!
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Graphical Model of Online SLAM: 
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Graphical Model of Full SLAM: 



Three Main Paradigms

Kalman 
filter

Particle 
filter

Graph-
based



Bayes Filter

◻ Recursive filter with prediction and correction 
step

◻ Prediction

◻ Correction

Courtesy: Cyrill 
Stachniss



EKF for Online SLAM

◻ We consider here the Kalman filter as a 
solution to the online SLAM problem

Courtesy: Thrun, Burgard, Fox



Extended Kalman Filter Algorithm

Courtesy: Cyrill 
Stachniss



EKF SLAM

◻ Application of the EKF to SLAM

◻ Estimate robot’s pose and locations of 
landmarks in the environment

◻ Assumption: known correspondences

◻ State space (for the 2D plane) is

Courtesy: Cyrill 
Stachniss



Literature

EKF SLAM

◻ Thrun et al.: “Probabilistic Robotics”, Chapter 
10

◻ Smith, Self, & Cheeseman: “Estimating 
Uncertain Spatial Relationships in Robotics”

◻ Dissanayake et al.: “A Solution to the 
Simultaneous Localization and Map Building 
(SLAM) Problem”

◻ Durrant-Whyte & Bailey: “SLAM Part 1” and 
“SLAM Part 2” tutorials



Three Main Paradigms

Kalman 
filter

Particle 
filter

Graph-
based



Graph-SLAM

• Full SLAM technique

• Generates probabilistic links

• Computes map only occasionally

• Based on Information Filter form



Graph-SLAM Inference (1)



Graph-SLAM Inference (2)



Graph-SLAM Summary

• Adresses full SLAM problem

• Constructs link graph between poses and 
poses/landmarks

• Graph is sparse: number of edges linear in number 
of nodes

• Inference performed by building information 
matrix and vector (linearized form)

• Map recovered by reduction to robot poses, 
followed by conversion to moment representation, 
followed by estimation of landmark positions 

• ML estimate by minimization of JGraphSLAM
• Data association by iterative greedy search



Three Main Paradigms

Kalman 
filter

Particle 
filter

Graph-
based



Particle Filters

¨ Represent belief by random samples

¨ Sampling Importance Resampling (SIR) principle
¤ Draw the new generation of particles
¤ Assign an importance weight to each particle
¤ Resampling 

¨ Applications are localization, tracking, …



Particle Filter Algorithm

1. Sample the particles from the proposal distribution

2. Compute the importance weights

1. Resampling: Draw sample    with probability      
and repeat      times

Courtesy: C. Stachniss



Particle Filters for SLAM

¨ Localization: state space is 

¨ SLAM: state space is 
¤ For grid maps:
¤ For feature maps: 

¨ Problem: The number of particles needed to 
represent a posterior grows exponentially with the 
dimension of the state space!

9 

!  A particle filter can be used to solve both problems 

!  Localization: state space < x, y, θ>"

!  SLAM: state space < x, y, θ, map>  
!  for landmark maps = < l1, l2, …, lm> 
!  for grid maps = < c11, c12, …, c1n, c21, …, cnm>"

!  Problem: The number of particles needed to 
represent a posterior grows exponentially with  
the dimension of the state space! 

Localization vs. SLAM 
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Dependencies

¨ Is there a dependency between the dimensions of 
the state space?

¨ If so, can we use the dependency to solve the 
problem more efficiently?

¨ In the SLAM context
¤ The map depends on the poses of the robot.
¤ We know how to build a map given the position of the 

sensor is known.



Can We Exploit Dependencies Between 
the Different Dimensions of the State 

Space?

!":$	, '



If We Know the Poses of the Robot, 
Mapping is Easy!

!":$	, '



Key Idea

If we use the particle set only to model the robot’s path, 
each sample is a path hypothesis. For each particle, we 
can compute an individual map using it’s path.

!":$	, '



Rao-Blackwellization

¨ Factorization to exploit dependencies between 
variables:

¨ If                can be computed efficiently, represent 
only           with samples and compute                for 
every sample

Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

Courtesy: C. Stachniss
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances 
in Neural Information Processing Systems, 1999

poses map observations & controls

!(#$:&, (	|	+$:&, ,$:&) =



Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Courtesy: C. Stachniss

First introduced for SLAM by Murphy in 1999
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances 
in Neural Information Processing Systems, 1999

path posterior map posterior

poses map observations & controls

!(#$:&, (	|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (	 	#$:&, +$:&)



Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Grid cells are conditionally 
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss
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Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

Grid cells are conditionally 
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss

!(#$:&, (	|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (	 	#$:&, +$:&)
				!(#$:&	 +$:&, ,$:& 	∏01$
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Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First exploited in FastSLAM by Montemerlo et al., 2002
Courtesy: C. Stachniss

!(#$:&, (	|	+$:&, ,$:&) =
					!(#$:&	 +$:&, ,$:& 	! (	 	#$:&, +$:&)
				!(#$:&	 +$:&, ,$:& 	∏01$

2 ! (0	 	#$:&, +$:&)

particle filter for localization occupancy grid mapping



Modeling the Robot’s Path

¨ Sample-based representation for

¨ Each sample is a path hypothesis

¨ Past poses of a sample are not revised
¨ No need to maintain past poses in the sample set

starting location,
typically (0,0,0)

pose hypothesis
at time t=2

Courtesy: C. Stachniss

!(#$:&	 ($:&, *$:&

#$ #+ #,



FastSLAM
¨ Proposed by Montemerlo et al. in 2002 (for 

landmark based SLAM)
¨ Each particle has a pose and a map

Occupancy grid map
Particle
1

Particle
2

Particle
N

…

Occupancy grid map

Occupancy grid map



FastSLAM – Particle representation
476 13 The FastSLAM Algorithm

Figure 13.17 Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Hähnel, University of Freiburg.



FastSLAM Algorithm478 13 The FastSLAM Algorithm

1: Algorithm FastSLAM_occupancy_grids(Xt−1, ut, zt):

2: X̄t = Xt = ∅
3: for k = 1 to M do

4: x[k]
t = sample_motion_model(ut, x

[k]
t−1)

5: w[k]
t = measurement_model_map(zt, x

[k]
t ,m[k]

t−1)

5: m[k]
t = updated_occupancy_grid(zt, x

[k]
t ,m[k]

t−1)

6: X̄t = X̄t + ⟨x[k]
t ,m[k]

t , w[k]
t ⟩

7: endfor

8: for k = 1 to M do

9: draw i with probability ∝ w[i]
t

10: add ⟨x[i]
t ,m[i]

t ⟩ to Xt

11: endfor

12: return Xt

Table 13.4 The FastSLAM algorithm for learning occupancy grid maps.

lution of the map is 10cm. To learn this map, as few as 500 particles were
used. During the overall process the robot encountered two loops. A map
calculated from pure odometry data is shown in Figure 13.18, illustrating the
amount of error in the robot’s odometry.

The importance of using multiple particles becomes evident in Fig-
ure 13.20, which visualizes the trajectories of the samples shortly before and
after closing a loop. As the left image illustrates, the robot is quite uncertain
about its position relative to the starting position, hence the wide spread of
particles at the time of loop closure. However, a few resampling steps after
the robot re-enters known terrain suffice to reduce the uncertainty drastically
(right image).



Pure odometry

476 13 The FastSLAM Algorithm

Figure 13.17 Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Hähnel, University of Freiburg.



FastSLAM – Best particle
13.10 Grid-based FastSLAM 477

Figure 13.19 Occupancy grid map corresponding to the particle with the highest
accumulated importance weight obtained by the algorithm listed in Table 13.4 from
the data depicted in Figure 13.18. The number of particles to create this experiment
was 500. Also depicted in this image is the path represented by the particle with the
maximum accumulated importance weight.

(a) (b)

Figure 13.20 Trajectories of all samples shortly before (left) and after (right) closing
the outer loop of the environment depicted in Figure 13.19. Images courtesy of Dirk
Hähnel, University of Freiburg.



Weakness of FastSLAM 1.0

¨ Proposal Distribution ¨ Importance weighting



FastSLAM 1.0 to FastSLAM 2.0

¨ FastSLAM 1.0 uses the motion model as the 
proposal distribution

¨ FastSLAM 2.0 considers also the measurements 
during sampling

¨ Especially useful if an accurate sensor is used 
(compared to the motion noise)

[Montemerlo et al., 2003] Courtesy: C. Stachniss



FastSLAM 2.0 (Informally)

¨ FastSLAM 2.0 samples from

)

¨ Results in a more peaked proposal distribution
¨ Less particles are required
¨ More robust and accurate
¨ But more complex…

[Montemerlo et al., 2003] Courtesy: C. Stachniss



Generating better proposals

¨ Use scan-matching to compute highly accurate 
odometry measurements from consecutive range 
scans. 

¨ Use the improved odometry in the prediction step to 
get highly accurate proposal distributions.



Motion Model for Scan 
Matching

a'

b'

d'

final pose
a

d

measured pose
b

initial pose

path

Raw Odometry
Scan Matching



Rao-Blackwellized Mapping with Scan-
Matching
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Loop Closure

¨ Loop closure involves 
¤ Recognizing when the robot has returned to a 

previously mapped region 
¤ Using this information to reduce the uncertainty in the 

map estimate

¨ Without loop closure, the uncertainty can grow 
without bounds



Loop Closure in FastSLAM

¨ Each particle has it’s own map

¨ Maps which agree to closing the loop are weighed 
higher than others

¨ These maps are more likely to be resampled

¨ Key: Need diversity of paths/particles/maps



Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles



Rao-Blackwellized Mapping with Scan-
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Example (Intel Lab)
§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map

Work by Grisetti et al.



Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

Work by Grisetti et al.

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map



FastSLAM Summary

¨ Particle filter-based SLAM
¨ Rao-Blackwellization: model the robot’s path by 

sampling and compute the landmarks given the 
poses

¨ Allow for per-particle data association
¨ FastSLAM 1.0 and 2.0 differ in the proposal 

distribution
¨ Complexity 

Courtesy: C. Stachniss



Literature

FastSLAM

¨ Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-
13.3 + 13.8 (see errata!)

¨ Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A 
Factored Solution to the Simultaneous Localization 
and Mapping Problem, 2002

¨ Montemerlo and Thrun: Simultaneous Localization and 
Mapping with Unknown Data Association Using 
FastSLAM, 2003

Courtesy: C. Stachniss



RGBD SLAM





Resulting Map
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