CSE-571 Robotics

Mapping

Some slides adapted from Dieter Fox, Cyrill Stachniss, and probabilistic-robotics.org

Fiducials: AR Tags

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions
 - Occupancy of individual cells is independent

$$Bel(m_t) = P(m_t | u_1, z_2 \Box, u_{t-1}, z_t)$$
$$= \prod_{x, y} Bel(m_t^{[xy]})$$

Robot positions are known!

Using Bayes:

Log odds representation:

$$l_{t,i} = \log\left(\frac{p(m_i|z_{1:t}, x_{1:t})}{1 - p(m_i|z_{1:t}, x_{1:t})}\right)$$
$$l_{t,i} = l_{t-1,i} + \log\left(\frac{p(m_i|z_t, x_t)}{1 - p(m_i|z_t, x_t)}\right) - \log\left(\frac{p(m_i)}{1 - p(m_i)}\right)$$

Incremental Updating of Occupancy Grids (Example)

Z	+		+		+	$\langle \mathbf{X} \rangle$		
	+		+	<u>(</u>)	+	<u>()</u>		
	+		+		+	<u>.</u>		
	+		+	.2)	+	2)		
	+	(ک	+	2)	+	<u>.</u>		
	+	2)	+	2)	+	2	\rightarrow	

Resulting Map Obtained with Ultrasound Sensors

Occupancy Grids: From scans to maps

Tech Museum, San Jose

occupancy grid map

3D Map Requirements

- Full 3D Model
 - Volumetric representation
 - Free-space
 - Unknown areas (e.g. for exploration)
- Updatable
 - Probabilistic model (sensor noise, changes in the environment)
 - Update of previously recorded maps
- Flexible
 - Map is dynamically expanded
 - Multi-resolution map queries
- Compact
 - Memory efficient
 - Map files for storage and exchange

Pointclouds

- Pro:
 - No discretization of data
 - Mapped area not limited

Contra:

- Unbounded memory usage
- No direct representation of free or unknown space

3D voxel grids

Pro:

- Probabilistic update
- Constant access time

Contra:

- Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory

2.5D Maps

- 2D grid
- Height value(s) in each cell

Pro:

- Memory efficient
- Contra:
 - Not completely probabilistic
 - No distinction between free and unknown space

Octrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes allocated as needed
- Multi-resolution

Octrees

Pro:

- Full 3D model
- Probabilistic
- Flexible, multi-resolution
- Memory efficient
- Contra:
 - Implementation can be tricky

OctoMap Framework

- Based on octrees
- Probabilistic representation of occupancy including unknown
- Supports multi-resolution map queries
- Lossless compression

 Open source implementation as C++ library available at http://octomap.sf.net

Examples

Cluttered office environment

Map resolution: 2 cm

Examples: Office Building

Freiburg, building 079

Examples: Large Outdoor Areas

- Freiburg computer science campus
 - (292 x 167 x 28 m³, 20 cm resolution)

OctoMap Implementation

- Open source C++ library
- Fully documented
- Can be easily adapted to your projects
- ROS integration
- Includes OpenGL viewer
- Already used by several other researchers

http://octomap.sf.net