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1 LQR recap

In the last lecture, we derived the Kalman gain and Value matrix for LQR

ut = Kx = (R+BTVt+1B)−1(BTVt+1A)x

Vt = Q+KTRK + (A+BK)TVt+1(A+BK)
(1)

2 Affine case and tracking

Imagine we have an excellent pilot flying a RC helicopter, and we record his control inputs and the
helicopter states along the way. Then we want to replay the controls on the helicopter and make
it do crazy tricks too. Ideally, we could simply play back these controls to get the same states and
the problem is solved. However, this absolutely never happens due to random perturbations.

We want the LQR to handle problems that has a nominal x∗ and u∗ trajectory, thus making the
process model affine and cost function having linear terms. We can borrow the Homogeneous
coordinates from vision and graphics people to do the transformation so that we don’t need to
rederive LQR again.
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]
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]
+ B̂û, (2)

where xoff is the offset from nominal, and u∗ is the nominal control. Let

Â =

[
A xoff +Bu∗t
0 1

]
B̂ =

[
B
0

]
ût = ∆ut = ut − u∗t

(3)

If we expand the equation out, we get

xt+1 = Axt + xoff +Bu∗t +But −Bu∗t , (4)

which is the linear process with an x offset.

We define the cost function as

C = (xt − x∗t )
TQ(xt − x∗t ) + (ut − u∗t )

TR(ut − u∗t ). (5)
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Let

q = x∗Tt Q

Q̂ =

[
Q q
q α

]
(6)

where α doesn’t really matter. In practice, α is chosen to be some big number that makes Q̂
positive semi definite. Then we can rewrite the cost function as

C = x̂T Q̂x̂+ ûTRû (7)

3 iLQR

Given a target trajectory, and a non linear system, we want to solve the tracking problem. The idea
is to compute Â, B̂, Q̂, R̂, and call LQR solver to get a optimal policy, execute it, use the resulting
states as new linearization points and repeat the process until converge. In most cases, Q̂ and R̂
are constant, so we only need to compute Â and B̂.

The outline for iLQR looks like:

• 1. Propose trajectory

• 2. Linearize f about trajectory

• 3.“Quadratisize” cost function C (compute the second order Taylor expansion of C)

• 4. Π = LQR(Â, B̂, Q̂, R̂)

• 5. Execute Π, and returns a new trajectory

• 6. Repeat from 1 until converge

During every iteration of iLQR, the new trajectory is used as the linearization points for the next
iteration. x∗ and u∗ are used as the initial linearization points.

This looks a lot like Newton’s Method, but it isn’t the same, and is in fact better. This algorithm
is logically optimal, but it’s possible that there could be issues with linearization. If Q or R is
indefinite, this becomes bad. It’s also possible that they could be negative definite, which would be
extremely bad. One fix is to compute a Q̃ = λI+Q. Another is to do an eigenvalue decomposition
and simply set the negative eigenvalues to zero. Another problem with the algorithm is that it
could orbit the optimal point; as a fix, we could somehow limit the step size. Usually, smaller steps
are needed at the beginning.
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