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Abstract
RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel
depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor
environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence.
We present RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining
visual features and shape-based alignment. Visual and depth information are also combined for view-based loop-closure
detection, followed by pose optimization to achieve globally consistent maps. We evaluate RGB-D Mapping on two large
indoor environments, and show that it effectively combines the visual and shape information available from RGB-D
cameras.

Keywords
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1. Introduction

Building rich 3D maps of environments is an important
task for mobile robotics, with applications in navigation,
manipulation, semantic mapping, and telepresence. Most
3D mapping systems contain three main components: first,
the spatial alignment of consecutive data frames; second,
the detection of loop closures; and third, the globally con-
sistent alignment of the complete data sequence. While
3D point clouds are well suited for frame-to-frame align-
ment and for dense 3D reconstruction, they ignore valuable
information contained in images. Color cameras, on the
other hand, capture rich visual information and are becom-
ing more and more the sensor of choice for loop-closure
detection (Snavely et al. 2006; Konolige and Agrawal 2008;
Newman et al. 2009). However, it is extremely hard to
extract dense depth from camera data alone, especially in
indoor environments with very dark or sparsely textured
areas.

RGB-D cameras are sensing systems that capture RGB
(visual) images along with per-pixel depth information.
RGB-D cameras rely on either active stereo1 (Konolige
2010a) or time-of-flight sensing2 to generate depth esti-
mates at a large number of pixels. While sensor systems
with these capabilities have been custom-built for years,
only now are they being packaged in form factors that make

them attractive for research outside specialized computer
vision groups. In fact, the key drivers for the most recent
RGB-D camera systems are computer gaming and home
entertainment applications.1

RGB-D cameras allow the capture of reasonably accu-
rate mid-resolution depth and appearance information at
high data rates. In our work we use a camera developed by
PrimeSense,3 which captures 640 × 480 registered image
and depth points at 30 frames per second. This camera
is equivalent to the sensor underlying the commercially
available Microsoft Kinect gaming system (Shotton et al.
2011).4 Figure 1 shows an example frame observed with
this RGB-D camera. As can be seen, the sensor provides
dense depth estimates. However, RGB-D cameras have
some important drawbacks with respect to 3D mapping:
they provide depth only up to a limited distance (typically
less than 5 m), their depth estimates are noisy (∼3 cm at
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Fig. 1. (Left) RGB image and (right) depth information captured by an RGB-D camera. Recent systems can capture images at a
resolution of up to 640 × 480 pixels at 30 frames per second. White pixels in the right image have no depth value, mostly due to
occlusion, distance, relative surface angle, or surface material.

3 m depth),3 and their field of view (∼60◦) is far more
constrained than that of the specialized cameras and laser
scanners commonly used for 3D mapping (∼180◦).

In this paper we introduce RGB-D Mapping, a frame-
work for using RGB-D cameras to generate dense 3D
models of indoor environments. RGB-D Mapping exploits
the integration of shape and appearance information pro-
vided by these systems. Alignment between frames is com-
puted by jointly optimizing over both appearance and shape
matches. Visual appearance is incorporated by extracting
sparse feature points from the RGB images and match-
ing them via a random sample consensus (RANSAC) (Fis-
chler and Bolles 1981) procedure. The resulting feature
matches are then combined with dense Iterative Clos-
est Point (ICP) matching to determine the best alignment
between the frames. Our approach detects loop closures by
matching data frames against a subset of previously col-
lected frames. We show that globally consistent alignments
can be achieved either via highly efficient pose graph opti-
mization such as TORO (Lu and Milios 1997; Konolige
2004; Thrun et al. 2005; Grisetti et al. 2007a) or via sparse
bundle adjustment (Lourakis and Argyros 2009; Konolige
2010b). The overall system can accurately align and map
large indoor environments in near-real-time and is capa-
ble of handling situations such as featureless corridors and
completely dark rooms.

RGB-D Mapping builds a global model using small pla-
nar colored surface patches called surfels (Pfister et al.
2000). This representation enables the approach to esti-
mate the appropriate location, surface orientation, and color
extracted for each part of the environment, and to provide
good visualizations of the resulting model. Furthermore,
surfels automatically adapt the resolution of the represen-
tation to the resolution of data available for each patch.

After discussing related work, we introduce RGB-D
Mapping in Section 3. Experiments are presented in Sec-
tion 4, followed by a discussion.

This paper is an extension of our previous work presented
at the International Symposium on Experimental Robotics
(Henry et al. 2010). The major additions are:

• we utilize re-projection error for frame-to-frame align-
ment RANSAC and demonstrate that it performs better
than the Euclidean-space RANSAC used in Henry et al.
(2010);

• we use FAST features and Calonder descriptors instead
of scale-invariant feature transform (SIFT);

• we improve the efficiency of loop closure detection
through place recognition;

• we improve global optimization by using sparse bundle
adjustment (SBA) and compare it with TORO;

• we show how to incorporate ICP constraints into SBA,
a crucial component in featureless areas.

2. Related work

The robotics and computer vision communities have devel-
oped many techniques for 3D mapping using range scans
(Thrun et al. 2000; Triebel and Burgard 2005; May et al.
2009; Newman et al. 2009), stereo cameras (Nister et al.
2004; Akbarzadeh et al. 2006; Konolige and Agrawal
2008), monocular cameras (Clemente et al. 2007), and
even unsorted collections of photos (Snavely et al. 2006;
Furukawa et al. 2009). Most mapping systems require the
spatial alignment of consecutive data frames, the detection
of loop closures, and the globally consistent alignment of
all data frames.

The solution to the frame alignment problem strongly
depends on the data being used. For 3D laser data, the
ICP algorithm and variants thereof are popular techniques
(Besl and McKay 1992; Thrun et al. 2000; May et al. 2009;
Rusinkiewicz and Levoy 2001). The ICP algorithm iterates
between associating each point in one time frame to the
closest point in the other frame and computing the rigid
transformation that minimizes distance between the point
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pairs. The robustness of ICP in 3D has been improved
by incorporating ideas such as point-to-plane associations
or point reflectance values (Chen and Medioni 1992; May
et al. 2009; Segal et al. 2009).

Passive stereo systems can extract depth information for
only a subset of feature points in each stereo pair. The SIFT
features of Lowe (2004) are commonly used as well as
fast descriptors based on random trees from Calonder et al.
(2008), which can be computed for any desired keypoints,
such as the FAST keypoints described by Rosten and Drum-
mond (2006). Sparse feature points can then be aligned over
consecutive frames minimizing distance between matched
points, with the additional advantage that appearance infor-
mation can be used to solve the data association problem
more robustly, typically via RANSAC (Fischler and Bolles
1981) as in Akbarzadeh et al. (2006) and Konolige and
Agrawal (2008). Monocular simultaneous localization and
mapping (SLAM) and mapping based on unsorted image
sets are similar to stereo SLAM in that sparse features are
extracted from images to solve the correspondence prob-
lem. Projective geometry is used to define the spatial rela-
tionship between features (Nister 2004; Snavely et al. 2006;
Clemente et al. 2007).

For the loop-closure problem, most recent approaches
to 3D mapping rely on fast image matching techniques
(Snavely et al. 2006; Clemente et al. 2007; Konolige and
Agrawal 2008; Newman et al. 2009). Once a loop clo-
sure is detected, the new correspondence between data
frames can be used as an additional constraint in the graph
describing the spatial relationship between frames. Opti-
mization of this pose graph results in a globally aligned
set of frames (Grisetti et al. 2007a). More generally, bun-
dle adjustment (Triggs et al. 2000) simultaneously opti-
mizes the poses and a map consisting of sparse features.
Mature algorithms and libraries have been developed for
bundle adjustment (Lourakis and Argyros 2009), with effi-
cient versions exploiting sparse connections between poses
(Konolige 2010b).

While RGB-D Mapping follows the overall structure
of recent 3D mapping techniques, it differs from existing
approaches in the way it performs frame-to-frame match-
ing. While pure laser-based ICP is extremely robust for the
3D point clouds collected by 3D laser scanning systems
such as panning SICK scanners or 3D Velodyne scanners
(Newman et al. 2009; Segal et al. 2009), RGB-D cameras
provide depth and color information for a small field of
view (60◦ in contrast to 180◦) and with less depth preci-
sion (≈3 cm at 3 m depth).3 The limited field of view can
cause problems due to a lack of spatial structure needed to
constrain ICP alignments.

There has been relatively little attention devoted to the
problem of combining shape and visual information for
scan alignment. Ramos et al. (2007) use conditional ran-
dom fields for matching 2D laser scans together with visual

information, which is computationally expensive and does
not scale to large 3D clouds. Prusak et al. (2008) combine a
time-of-flight (ToF) camera with a CCD camera for robot
self-localization. May et al. (2009) use laser reflectance
values from ToF cameras to improve ICP but do not take
full advantage of the improved data association provided
by sparse visual features. The related work of Droeschel
et al. (2009) uses sparse features (SIFT) only and focuses
on 2D motions on a robot platform. Andreasson and Lilien-
thal (2010) also use SIFT features, with depth interpolated
from a laser scanner, to estimate full 6D registration. In con-
trast to these existing works, we use the visual channels
to locate point features, constrain their correspondences,
and incorporate them into scan matching to build dense 3D
maps.

A common addition to ICP is to augment each point
in the two point clouds with additional attributes. The
correspondence selection step acts in this higher-
dimensional space. This approach has been applied to
point color (Johnson and Kang 1997), geometric descrip-
tors (Sharp et al. 2002), and point-wise reflectance values
(May et al. 2009). In comparison, our algorithm uses
rich visual features along with RANSAC verification to
add fixed data associations into the ICP optimization. In
addition, the RANSAC associations act as an initialization
for ICP, which is a local optimizer.

Our objective is not only registration, but also building
3D models with both shape and appearance information.
Cui et al. (2010) combine super-resolution and expectation–
maximization (EM)-based non-rigid registration to scan 3D
objects with a ToF camera. Strobl et al. (2009) combine a
ToF camera with a stereo camera to build 3D object models
in real-time. Kim et al. (2009) used a set of time-of-flight
cameras in a fixed calibrated configuration and with no
temporal alignment of sensor streams. Se and Jasiobedzki
(2008) use a stereo camera combined with SIFT features
to create 3D models of environments, but make no pro-
vision for loop closure or global consistency. Newcombe
and Davison (2010) developed an impressive system that
does real-time dense 3D reconstruction with a monocu-
lar camera, although their system is still limited to small
feature-rich scenes. In contrast, we use a single freely mov-
ing camera to build dense models at near-real-time for large
indoor environments.

In the vision and graphics communities, there has been
a large amount of work on dense reconstruction from
videos (e.g. Pollefeys et al. 2008) and photos (e.g. Debevec
et al. 1996; Furukawa and Ponce 2010),5 mostly on objects
or outdoor scenes. One interesting line of work (Furukawa
et al. 2009) attacks the arguably harder problem of indoor
reconstruction, using a Manhattan-world assumption to fit
simple geometric models for visualization purposes. Such
approaches are computationally demanding and not very
robust in feature-sparse environments.
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Fig. 2. Overview of RGB-D Mapping. The algorithm uses both
sparse visual features and dense point clouds for frame-to-
frame alignment and loop-closure detection, which run in parallel
threads.

3. RGB-D Mapping

This section describes the different components of RGB-D
mapping. A flow chart of the overall system is shown in
Figure 2.

To align the current frame to the previous frame, the
alignment step uses RGB-D ICP, our enhanced ICP algo-
rithm that takes advantage of the combination of RGB and
depth information. After this alignment step, the new frame
is added to the dense 3D model. A parallel loop-closure
detection thread uses the sparse feature points to match the
current frame against previous observations, taking spatial
considerations into account. If a loop closure is detected, a
constraint is added to the pose graph and a global alignment
process is triggered. A surfel map is used to faithfully incor-
porate input data in an efficient representation once camera
poses are determined.

3.1. RGB-D ICP

In the ICP algorithm (Besl and McKay 1992), points in a
source cloud Ps are matched with their nearest neighbor-
ing points in a target cloud Pt and a rigid transformation
is found by minimizing the sum of squared spatial error
between associated points. This transformation may change
the nearest neighbors for points in Ps, so the two steps of
association and optimization are alternated until conver-
gence. ICP has been shown to be effective when the two
clouds are already nearly aligned. Otherwise, the unknown
data association between Ps and Pt can lead to convergence
at an incorrect local minimum.

Alignment of images, by contrast, is typically done using
sparse feature-point matching. A key advantage of visual
features is that they can provide alignments without requir-
ing initialization. For example, one widely used feature
detector and descriptor is SIFT (Lowe 2004). Although fea-
ture descriptors are very distinctive, they must be matched
heuristically and false matches may be selected. The
RANSAC algorithm (Fischler and Bolles 1981) is often
used to determine a subset of feature pairs corresponding to
a consistent rigid transformation. However, in the monoc-
ular case this problem is not fully constrained due to scale
indeterminacy.

input : source RGB-D frame Ps, target RGB-D frame
Pt, previous transformation Tp

output: Optimized relative transformation T∗

Fs← Extract_RGB_Point_Features (Ps);1

Ft← Extract_RGB_Point_Features (Pt);2

( T∗, Af )← Perform_RANSAC_Alignment3

(Fs, Ft);
if |Af | < γ then4

T∗ = Tp;5

Af = ∅;6

end7

repeat8

Ad ← Compute_Closest_Points9

(T∗, Ps, Pt);
T∗ ← Optimize_Alignment (T∗, Af , Ad);10

until (Change ( T∗)≤ θ ) or ( Iterations >11

MaxIterations) ;
return T∗;12

Algorithm 1: RGB-D ICP algorithm for matching two
RGB-D frames.

Since RGB-D cameras provide both color and depth, we
can fuse these two approaches to exploit the advantages of
each. Briefly, our RGB-D ICP algorithm uses visual fea-
tures and their associated depth values to obtain an initial
alignment, and then jointly optimizes over the sparse feature
matches and dense point cloud alignment. The RGB-D ICP
algorithm is described in Algorithm 1.

3.1.1. RANSAC RGB-D ICP takes as input a source RGB-
D frame, Ps, and a target frame, Pt. It also has access to
the previous relative transformation Tp, which is initialized
to the identity. For readability, we use the notation T( p) to
mean the application of rigid transformation T ∈ SE(3) to
the point p. In other words, if T consists of rotation matrix
R and translation component t, then T( p)= Rp + t. The
final output is the optimized relative transform T∗.

Steps 1 and 2 extract sparse visual features from the two
frames and associate them with their corresponding depth
values to generate feature points in 3D. These steps can
be implemented with arbitrary visual features. In the con-
ference version of this paper (Henry et al. 2010), we used
SIFT features computed with SIFTGPU (Wu 2007). We
have since found that the FAST feature detector (Rosten
and Drummond 2006) combined with the Calonder fea-
ture descriptor (Calonder et al. 2008) as implemented in
OpenCV (Bradski 2000) provide faster and more reliable
visual keypoints in our system. See Figure 3 for an example
of these features.

The function Perform_RANSAC_Alignment in Step
3 uses RANSAC to find the best rigid transformation, T∗,
between these two feature sets. The error metric used to find
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Fig. 3. Example frame for RGB-D frame alignment. Left: the locations of FAST features in the image. Right: the same features shown
in their 3D positions in the point cloud.

the optimal alignment depends on how the RGB-D camera
determines depth values. For cameras that use time-of-flight
to measure depth,2 the point-to-point squared distance error
often used to align 2D laser scans and 3D point clouds is
well suited:

T∗ = argmin
T

⎛
⎝ 1

|Af |
∑
i∈Af

wi

∣∣T( f i
s )−f i

t

∣∣2

⎞
⎠ . (1)

Here, Af contains the associations between feature points
in the two sets, and each term in the summation measures
the squared distance between a feature point f i

t in the target
frame and the transformed pose of the associated feature
point f i

s in the source frame. The weight wi can be used to
control the contribution of the particular association to the
overall error considering factors such as distance from the
sensor, reflectance values in the case of laser scans, or color
difference in the case of colored 3D point clouds.

Alternatively, for active stereo RGB-D cameras such
as those used in Kinect, a standard stereo-vision-based
re-projection error measure is more appropriate:

T∗ = argmin
T

⎛
⎝ 1

|Af |
∑
i∈Af

∣∣Proj( T( f i
s ) )−Proj( f i

t )
∣∣2

⎞
⎠ . (2)

Instead of measuring the distance between the feature points
in 3D space, this metric measures the error in pixel space
when re-projecting associated features into the camera
frame. The projection function Proj : R

3 → R
3 provides

the projection of feature point f = ( x, y, z)∈ R
3 from its

Euclidean 3D position relative to the camera into the image
space of the camera, giving ( u, v, d)∈ R

3, where u and v
are RGB pixel coordinates and d is the disparity, which
represents the depth value in pixel space. Just as with a stan-
dard passive stereo camera, the depth of a pixel is measured
through triangulation. In the case of our RGB-D camera,
this is done using the baseline B between the infrared (IR)
emitter and IR camera sensor. It therefore makes sense to

minimize the depth error in the measurement space of the
IR sensor, which is in pixels. Note that this is the same mea-
surement space as the RGB pixel coordinates.6 Knowing
the focal length F of the camera and the center of the image
( Cu, Cv) in pixels, we compute Proj (( x, y, z) ) as

u = F

z
x+ Cu

v = F

z
y+ Cv (3)

d = F

z
B

An implicit assumption of (2) is that errors in u, v, and d
are independent and equally weighted, which is the assump-
tion made in the SBA implementation of Konolige (2010b)
which we use.

To jointly optimize the data association Af and the
transformation T∗ in (1) or (2), Perform_RANSAC_
Alignment first finds matching features between the two
frames. It then repeatedly samples three pairs of feature
points and determines the optimal transformation for this
sample using the method of Horn (1987). Proposed trans-
formations are evaluated according to the number of inliers
among the remaining 3D feature points. When optimizing
the distance metric used in (1), inlier correspondences are
determined by their 3D distance falling below a thresh-
old. When optimizing the re-projection metric used in (2),
inlier correspondences are determined by thresholding pixel
distances. For the sample resulting in the maximum inlier
count, the function then efficiently computes a more accu-
rate transformation taking all inlier points into account. To
minimize (1), we again use Horn’s method on all inlier
points. (2) is minimized through two-frame SBA as opposed
to rigid 3D alignment (see Section 3.2.3). The function
Perform_RANSAC_Alignment also returns the set of
associations Af containing the feature pairs that generated
the best transformation. The two-frame SBA refinement
may result in a small number of inliers now falling outside
the inlier threshold, which are discarded.
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In the relatively rare case that the final number of inliers
|Af | is below a minimal number γ , we cannot be confi-
dent that any of the associations are truly correct corre-
spondences; they may in fact be coincidentally consistent
spurious matches. In this case, we initialize T∗ = Tp and
clear the untrustworthy associations. This provides an ini-
tial estimate to the ICP portion of the algorithm based on
a constant-velocity motion model, which assumes that the
motion between frames n and n+1 is similar to that between
frames n− 1 and n.

In the algorithm introduced by Henry et al. (2010), we
used the 3D version of RANSAC for alignment. Later, we
show that the re-projection metric yields improved track-
ing results when used on the PrimeSense active stereo
cameras.3 While we call this technique re-projection error
RANSAC (RE-RANSAC), we refer to other version (1) as
Euclidean error RANSAC (EE-RANSAC).

3.1.2. Joint optimization Steps 4 through 7 of RGB-D ICP
perform the main ICP loop. Step 5 determines the associa-
tions Ad between the points in the dense point cloud. This
is done by transforming the 3D points in the source cloud,
Ps, using the current transformation T. In the first iteration,
T is initialized by the visual RANSAC transformation (if
enough visual features are present). For each point in Ps,
Step 5 then determines the nearest point in the target cloud
Pt. While it is possible to compute associations between
points based on a combination of Euclidean distance, color
difference, and shape difference, we found Euclidean dis-
tance along with a fast k–d tree search to be sufficient in
most cases. Step 6 minimizes the alignment error of both
the visual feature associations and the dense point associ-
ations. When using EE-RANSAC, the joint error function
is

T∗ = argmin
T

⎡
⎣α

⎛
⎝ 1

|Af |
∑
i∈Af

wi

∣∣T( f i
s )−f i

t

∣∣2

⎞
⎠

+( 1− α)

⎛
⎝ 1

|Ad|
∑
j∈Ad

wj

∣∣∣( T( pj
s)−pj

t) ·nj
t

∣∣∣
2

⎞
⎠

⎤
⎦ , (4)

where the first part measures average squared distances
for the visually associated feature points. For the dense
points used in the second part, we employ a point-to-plane
error term that minimizes the squared distance error along
each target point’s normal. These normals, {nj

t}, are com-
puted efficiently by principal component analysis over a
small neighborhood of each target point. Point-to-plane
ICP has been shown to generate more accurate alignments
than point-to-point ICP due to an improved interpolation
between points (Segal et al. 2009), as well as being resis-
tant to boundary point matches. The two components in
(4) are weighted using a factor α. Since the point-to-plane

error metric has no known closed-form solution, minimiza-
tion requires the use of a nonlinear optimizer. RGB-D ICP
performs the minimization using Levenberg–Marquardt.

For the re-projection error used in RE-RANSAC, we
optimize a measure incorporating re-projection error for
feature point associations:

T∗ = argmin
T

⎡
⎣

⎛
⎝ 1

|Af |
∑
i∈Af

∣∣Proj( T( f i
s ) )−Proj( f i

t )
∣∣2

⎞
⎠

+β

⎛
⎝ 1

|Ad|
∑
j∈Ad

wj

∣∣∣( T( pj
s)−pj

t) · nj
t

∣∣∣
2

⎞
⎠

⎤
⎦ . (5)

The first part of (5) minimizes the re-projection error
between the fixed feature point associations obtained from
RANSAC, thereby using the same error metric by which
they were originally obtained. Again, optimization is done
using Levenberg–Marquardt.

The loop exits in Step 7 after the transformation no
longer changes above a small threshold θ or a maximum
number of iterations is reached. Otherwise, the dense data
associations are recomputed using the most recent trans-
formation. Note that feature point data associations are not
recomputed after the RANSAC procedure. This avoids sit-
uations in which the dense ICP components alone might
cause the point clouds to drift apart, which can happen in
under-constrained cases such as large flat walls.

3.1.3. Two-Stage RGB-D ICP In practice, we found that
when using RE-RANSAC, the joint optimization provides
only marginal improvement if there are sufficient RANSAC
inliers. Based on this insight, Algorithm 2 presents a fast
alternative algorithm Two-Stage RGB-D ICP which avoids
performing the more expensive ICP components of the
combined optimization by utilizing the RE-RANSAC trans-
form when reliable, and resorts to dense point-to-plane ICP
only in cases where RE-RANSAC has a small number of
inliers (≤ φ).

3.1.4. Implementation details We implement our system
using the Robot Operating System (ROS)7 framework. The
different components are implemented as separate nodes
(processes) which communicate via the ROS messaging
protocol.

In (4) we use a value of α = 0.5 as per our results in
Henry et al. (2010). The value of β in (5) is heuristically set
to 1,000, which brings the two different units (pixels and
meters) into roughly equivalent contribution to the error.
We consider inliers to be matches for (1) and (4) if they
fall within 0.03 m. For (2) and (5), the inlier distance is 2.0
pixels. RANSAC is considered to have failed if it obtains
fewer than γ = 10 inliers. In Two-Stage RGB-D ICP,
φ is a parameter to trade off speed and accuracy. In the
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input : source RGB-D frame Ps and target RGB-D
frame Pt

output: optimized relative transformation T∗

Fs← Extract_RGB_Point_Features (Ps);1

Ft← Extract_RGB_Point_Features (Pt);2

( T∗, Af )← Perform_RANSAC_Alignment3

(Fs, Ft);
if |Af | < γ then4

T∗ = Tp;5

Af = ∅;6

end7

if |Af | ≥ φ then8

return T∗;9

else10

repeat11

Ad ← Compute_Closest_Points12

(T∗, Ps, Pt);
T∗ ← Optimize_Alignment (T∗, Af , Ad);13

until (Change ( T∗)≤ θ ) or ( Iterations >14

MaxIterations) ;
return T∗;15

end16

Algorithm 2: Two-Stage RGB-D ICP algorithm for more
quickly matching two RGB-D frames.

extreme case, setting φ = γ means that ICP is run only
when RANSAC fails, which we did for the experiments in
Section 4.2.

We find that downsampling the source cloud given to
ICP by a factor of 10 gives a good compromise between
matching speed and accuracy. Our implementation allows
for setting the value of wi in the point-to-plane component
based on factors such as distance from the camera, nor-
mal angle agreement, and color difference. However, for the
experiments in Section 4.2 we leave wi = 1.

There exist several variants of RANSAC with alternative
inlier selection schemes, such as MLESAC (Torr and Zis-
serman 1996). An investigation of these is left for future
work.

3.2. Loop-closure detection and global
optimization

Alignment between successive frames is a good method
for tracking the camera position over moderate distances.
However, errors in alignment between a particular pair of
frames and noise and quantization in depth values cause
the estimation of camera position to drift over time, leading
to inaccuracies in the map. This is most noticeable when
the camera follows a long path, eventually returning to a
previously visited location. The cumulative error in frame
alignment results in a map that has two representations of
the same region in different locations. This is known as

the loop-closure problem, and our solution to it has two
parts. First, loop-closure detection is needed to recognize
when the camera has returned to a previously visited loca-
tion. Second, the map must be corrected to merge duplicate
regions.

3.2.1. Loop-closure detection The simplest approach to
loop closure detection would be to run RANSAC align-
ment between the current frame and each of the previous
frames and detect a loop closure whenever the number of
inliers is above a threshold. This is prohibitively expensive,
and the computation required for each new frame grows
quickly with the number of previous frames. We employ
a combination of techniques to make loop detection more
efficient.

First, we define keyframes, which are a subset of the
aligned frames. These can be selected in various ways. The
simplest is to choose every nth frame. Another option is to
determine keyframes based on visual overlap. In our pre-
vious work (Henry et al. 2010), after we align a frame F,
we reuse the visual features to find a rigid transformation
with the most recent keyframe, using the same RANSAC
procedure defined for frame-to-frame alignment. As long
as the number of RANSAC inliers is above a threshold,
we do not add F as a keyframe. As the camera continues
to move, its view contains progressively fewer 3D feature
point matches with the previous keyframe. The first frame
that fails to match against the previous keyframe becomes
the next keyframe, which is still localized relative to the
previous keyframe through intervening non-keyframes. We
have found that a more efficient estimate of visual overlap
is to compose all relative poses since the previous keyframe
and establish a new keyframe whenever the accumulated
rotation or translation is above a threshold. This allows
the density of keyframes to adjust to camera motion with-
out requiring an additional RANSAC alignment for each
new frame. Keyframes are the only frames considered as
potential loop-closure frames.

Each time we create a new keyframe we attempt to
detect loop closures with previous keyframes. Not all previ-
ous keyframes need be considered. We prefilter keyframes
based on the currently estimated global poses, avoiding
a relatively expensive RANSAC alignment against frames
more than a few meters away from our current position
estimate.

We also take advantage of work on place recognition
to further prefilter loop-closure candidates. By using a
vocabulary tree (Nister and Stewenius 2006) based on the
Calonder feature descriptors, we are able to identify n pre-
vious frames with similar appearance. Briefly, this tech-
nique hierarchically quantizes feature descriptors, which
allows for each keyframe to be represented as a ‘bag of
visual words’ which can be rapidly compared with other
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keyframes providing likely loop-closure candidates. We use
an implementation available from within ROS.7

Only keyframes passing these prefilters are subjected to
RANSAC alignment with the current keyframe. A closure
is detected if enough geometrically consistent feature point
matches are recovered by RANSAC.

3.2.2. Pose graph optimization One strategy for global
optimization is to represent constraints between frames with
a pose graph structure, with edges between frames corre-
sponding to geometric constraints. The relative transfor-
mations from the alignment of sequential frames give us
some constraints, so without any loop closure, the graph
consists of a linear chain. Loop closures are represented as
constraints between frames that are not temporally adjacent.

In order to minimize the conflict between sequential con-
straints and loop closure constraints we employ TORO
(Grisetti et al. 2007a,b). TORO efficiently minimizes the
error in such graphs where vertices are parameterized by
translation and rotation components and edges represent
constraints between the parameters with associated covari-
ance matrices. TORO uses stochastic gradient descent to
maximize the likelihood of the vertex parameters subject to
the constraints. We run TORO to convergence each time a
loop closure is detected, initializing it with the output of the
previous TORO run and the contiguous-frame constraints
added since then.

3.2.3. Sparse bundle adjustment A second strategy is to
globally minimize the re-projection error of feature points
across all frames in which these points are matched using
SBA (Triggs et al. 2000; Lourakis and Argyros 2009; Kono-
lige 2010b). This has the advantage of taking into account
the same visual features appearing in multiple frames, as
well as adjusting the estimated 3D locations of feature
points along with the camera poses making the optimization
robust to uncertain depth estimates. Formally, SBA solves
for a set of camera poses C (where ci ∈ SE( 3)) and 3D fea-
ture point locations P (where pj ∈ R

3) which minimize the
global re-projection error

∑
ci∈C

∑
pj∈P

vij

∣∣Proj( ci( pj))−( ū, v̄, d̄)
∣∣2

. (6)

The function Proj is described in (3) and ( ū, v̄, d̄) is the
observed projection of pj onto camera ci. The notation
ci( pj) indicates the application of the 6DOF transforma-
tion taking point pj from world coordinates to 3D Euclidean
coordinates relative to the camera center of ci. The dummy
variable vij indicates whether feature point pj is observed in
camera ci. Although SBA can be used to solve for addi-
tional camera parameters, here we have a single camera
with known parameters and are interested in recovering the
optimized camera poses.

Bundle adjustment has an advantage over pose graph
optimization because it can reason about the underlying
mutually observed feature points which constrain the rel-
ative poses between frames. However, it is not immediately
clear how pairs of frames which have fewer than the min-
imum RANSAC inliers γ can be incorporated into this
optimization. Such pairs of frames have a relative pose con-
straint between them obtained from the ICP component
of our system, and thus are no different from RANSAC
constraints in the context of pose-graph optimization (Sec-
tion 3.2.2), where this issue does not arise. In the context
of bundle adjustment, we solve this problem by selecting
pairs of points from the dense point clouds to constrain the
relative pose between such frames. We sample points from
one of the frames across a grid in image space, and find the
closest point in the dense cloud of the other frame accord-
ing to the relative pose obtained from ICP. Over these pairs
of points, we keep those pairs whose distance is below a
threshold. We further filter the pairs by only keeping those
in which the corresponding normals deviate by less than
an angular threshold. These remaining pairs are consid-
ered equivalent to feature point matches, and are included
as additional points within the global SBA system. With-
out this modification, frame sequences containing any ICP-
only constraints could result in a disconnected, unsolvable
bundle adjustment system.

In addition to being a valuable global optimization tool,
SBA is also our choice for refining the inliers of RE-
RANSAC used in RGB-D ICP (see Section 3.1.1). To do
this, we simply set up a small SBA system consisting of the
two frames with all inliers as feature points.

We use an implementation of SBA available in ROS7

which uses the techniques described by Konolige (2010b).

3.3. Surfel representation

Considering that each frame from the RGB-D camera gives
us roughly 250,000 points, it is necessary to create a more
concise representation of the map. One option is to down-
sample the clouds. However, it is more appealing to incor-
porate all the information from each frame into a concise
representation for visualization. One method for doing this
is surfels (Pfister et al. 2000; Krainin et al. 2011). A sur-
fel consists of a location, a surface orientation, a patch size
and a color. As more point clouds are added to the surfel
representation, we follow rules similar to those of Pfister
et al. (2000) and Krainin et al. (2011) for updating, adding,
and removing surfels. Surfels store a measure of confidence,
which is increased through being seen from multiple angles
over time. This is represented as a two-dimensional his-
togram of orientations relative to the surfel normal from
which the surfel has been observed. Surfels with low confi-
dence are removed from the representation. Because surfels
have a notion of size (obtained initially from the depth of the
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Fig. 4. (Left) 3D maps generated by RGB-D Mapping for large loops in the Intel lab (upper) and the Allen Center (lower). (Right)
Accuracy: Maps (red) overlaid on a 2D laser scan map of the Intel Lab and on a floor plan of the Allen Center. For clarity, most floor
and ceiling points were removed from the 3D maps.

original point in the RGB-D frame), we can reason about
occlusion, so if an existing surfel is seen through too often,
it can be removed.

Based on the estimated normals within each RGB-D
frame, the surfel normal directions can be updated as well.
We can also wait to add surfels until their normal is pointed
(within some angle) towards the camera position, which
leads to a more accurate recovery of the surfel size. The
color of a surfel is determined from the RGB-D frame most
aligned with the normal direction. We direct the reader
to Krainin et al. (2011) for more details of our surfel
implementation.

Currently surfel maps are created from point cloud maps
as a post-process, as the incremental nature of surfel map
construction requires rebuilding the surfel map when cam-
era poses are updated through global optimization.

4. Experiments

We performed several experiments to evaluate different
aspects of RGB-D Mapping. Specifically, we demonstrate

the ability of our system to build consistent maps of large-
scale indoor environments, we show that our RGB-D ICP
algorithm improves accuracy of frame-to-frame alignment,
and we illustrate the advantageous properties of the surfel
representation.

4.1. Global consistency

We tested RGB-D Mapping in two indoor environments:
the Intel Labs Seattle offices and the Paul G. Allen Center
for Computer Science and Engineering at the University of
Washington. During mapping, the camera was carried by
a person, and generally pointed in the direction of travel.
The left panels in Figure 4 show 3D maps built for large
loops in these environments. The loop in the upper panel
consists of 906 frames over a length of 71 m, while the
lower panel is from 716 frames over a length of 114 m (the
difference in frames per meter is due to variations in the
carrier’s rate of motion). To assess the consistency of these
maps we overlaid our 3D maps onto 2D layouts generated
by different means. The right panels in Figure 4 shows these
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Table 1. Comparison of Euclidean error RANSAC and
re-projection error RANSAC on the Intel-Day sequence.

EE-RANSAC RE-RANSAC

Mean inliers per frame 60.3 116.7

overlays. For the Intel lab, we compare against a map built
with a SICK laser scanner using a standard two-dimensional
SLAM approach. An architectural floor plan is used in the
case of the Allen Center. For clarity, most floor and ceiling
points were removed from our 3D maps; the remaining 3D
points are shown in red. RGB-D Mapping produces very
consistent maps.

4.2. Properties of RGB-D ICP

To more thoroughly evaluate the benefits of RGB-D ICP,
we determined ground-truth poses in the Intel lab loop. We
placed 16 markers around the Intel loop and measured the
true distance between consecutive markers, which varied
between 3 and 5.5 m. We collected two datasets: Intel-
Day and Intel-Night, where the second is a challenging
dataset collected at night with the lights turned off in a
hallway section of the building. The camera was carried
sequentially between the marker locations and placed care-
fully on a tripod at each marker location, returning finally
to the starting marker. In this way we obtained 16 mea-
surements of sequential frame alignment error over small
sections of the map by measuring the difference between
real-world distance and between-marker distance deter-
mined by successive frame-to-frame alignments.

We first evaluate the benefit of using RE-RANSAC
instead of EE-RANSAC on the Intel-Day sequence. As can
be seen in Table 1, RE-RANSAC averages nearly twice as
many inliers per frame. This is because visual features with
more uncertain depth estimates can be utilized using a re-
projection inlier threshold. Additionally, it can be seen in
Table 2 that RE-RANSAC achieves lower error than EE-
RANSAC on the Intel-Day sequence due to optimizing a
more appropriate error metric.

We now investigate the contributions of various compo-
nents of RGB-D ICP. As can be seen in Table 2, RGB-
D ICP provides lower error than either component alone.
The large error of RE-RANSAC and EE-RANSAC on
Intel-Night is due to failed alignments in the dark sec-
tion of the environment, where they resort to a constant
motion assumption. Two-Stage RGB-D ICP is equivalent
to RE-RANSAC on the Intel-Day sequence because RE-
RANSAC never fails on this sequence, and thus the ICP
portion of Two-Stage RGB-D ICP is never executed. Two-
Stage RGB-D ICP also exhibits only marginally higher
error than RGB-D ICP across both sequences, suggesting
that it is a valuable alternative for more rapid alignment of
frames.

Corresponding to the error results in Table 2, we present
timing results for each of the alignment methods in Table 3.
The two RANSAC methods are consistently fastest. One
thing to note is that RGB-D ICP is faster than ICP alone
because RGB-D ICP initializes the combined optimization
procedure from the RE-RANSAC solution and therefore
requires fewer iterations to converge. Observe that Two-
Stage RGB-D ICP is equivalent to RE-RANSAC on the
Intel-Day sequence because ICP is never required, and Two-
Stage RGB-D ICP is more efficient than RGB-D ICP on
the Intel-Night sequence since the combined optimization
is required only on frames where RE-RANSAC fails.

4.3. Properties of global optimization

We show results from aligning a more complex data
sequence to investigate the optimization properties of bun-
dle adjustment with SBA. In this challenging sequence, sev-
eral frames in the kitchen area have insufficient RANSAC
inliers (≤ γ ), and thus ICP is required. Figure 5 shows
that SBA optimization is still able to operate on a sequence
which contains pose constraints generated from ICP align-
ments. The resulting surfel map, even in the kitchen where
the ICP component of RGB-D ICP was required, is visually
consistent.

We now compare results between using pose-graph opti-
mization (via TORO) or bundle adjustment (via SBA) as a
global optimizer. In Figure 6 we aligned roughly 100 frames
using Two-Stage RGB-D ICP and globally optimized the
camera poses using TORO in one case and SBA in the
second. SBA results in more consistent alignment due to
jointly optimizing re-projection error over feature matches
as opposed to simply optimizing relative pose constraints
directly as TORO does.

A second comparison of bundle adjustment (SBA) and
pose-graph optimization (TORO) is shown in Figure 7.
This sequence is a portion of the single large Intel Labs
office building loop following optimization of the entire
loop sequence. Although TORO does ‘close’ the loop (not
shown), the resulting point cloud map has inconsistencies
due to TORO failing to consistently combined the sequen-
tial pose constraints with medium range constraints gen-
erated by loop-closure detection. The same sequence is
globally optimized by SBA in a more consistent fashion,
because SBA is a joint optimization over camera poses
and feature locations, allowing it to smoothly combine
sequential and loop-closure constraints. It should be noted
that incorporating this type of medium range loop-closure
constraint helps reduce camera drift.

Next we examine the running time requirements for
TORO and SBA on the large loop shown in Figure 5. A
graph of the time required for global optimization of all
frames is shown in Figure 8. TORO is considered to have
converged when the error change between iterations falls
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Table 2. Sequential alignment comparison on large-scale marker sequences. Values are mean error in meters measured against ground
truth distances between markers with 95% confidence intervals.

RE-RANSAC EE-RANSAC ICP RGB-D ICP Two-Stage RGB-D ICP

Intel-Day 0.11 (±0.05) 0.16 (±0.07) 0.15 (±0.05) 0.10 (±0.04) 0.11 (±0.05)
Intel-Night 1.09 (±0.88) 1.15 (±0.89) 0.17 (±0.06) 0.15 (±0.08) 0.15 (±0.09)

Table 3. Timing results for sequential alignment techniques. Values are mean seconds per frame with 95% confidence intervals.

RE-RANSAC EE-RANSAC ICP RGB-D ICP Two-Stage RGB-D ICP

Intel-Day 0.21 (±0.03) 0.20 (±0.05) 0.72 (±0.73) 0.48 (±0.10) 0.21 (±0.03)
Intel-Night 0.20 (±0.05) 0.20 (±0.05) 0.43 (±0.64) 0.57 (±0.47) 0.37 (±0.63)

(a) (b)

(c) (d)

Fig. 5. Results on a challenging data sequence in the Intel Labs Seattle office. (a) RGB-D ICP poses before optimization. (b) SBA
optimized pose graph. (c) SBA pose graph and point cloud. (d) Detailed view of a kitchen area in the surfel map, including counters
and a refrigerator.

below a small threshold. SBA is run for five iterations,
then outlier projections with error greater than 2.0 pix-
els are removed, followed by another five iterations. We

see that SBA takes notably longer than TORO, and that
the time taken by SBA grows roughly linearly with the
size of the map, which agrees with the observations about
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(a) (b)

(c) (d)

Fig. 6. Comparison of detailed visual consistency between TORO and SBA. In the upper images a white box shows the region detailed
in the lower images. Note the more consistent alignment from SBA. Color variation is due to camera auto-exposure and white balance.
(a) Point cloud using TORO. (b) Point cloud using SBA. (c) Close-up of TORO cloud. (d) Close-up of SBA cloud.

(a) (b)

Fig. 7. Comparison of structural consistency between TORO and SBA. Both are optimizing the same set of loop-closure constraints.
Note the more jagged path produced by optimizing over non-sequential pose constraints with TORO. Ceiling and floor points are
removed for clarity. (a) Point cloud using TORO (b) Point cloud using SBA.
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Fig. 8. Time taken by global optimization for the map shown
in Figure 5. The final optimization with TORO and SBA takes
1.08 and 9.73 seconds, respectively. The increase in time taken by
TORO towards the end of the sequence occurs after the large-scale
loop is closed, requiring more iterations for TORO to converge.

sparse maps made in Konolige (2010b). Even with the rel-
atively large amount of time taken by SBA towards the
end of the sequence, when amortized over the total num-
ber of frames, SBA optimization takes only 0.12 seconds
per frame, which is less than the time required for frame-
to-frame RGB-D ICP. Clearly this will not continue to hold
as the map grows arbitrarily large, and more sophisticated
strategies will be required, such as running SBA over only
a window of recent frames or applying global SBA less
frequently.

4.4. Surfel representation

To demonstrate the value of the surfel representation of
aligned point clouds, we first point out that the surfel repre-
sentation shown in Figure 9 is formed from a sequence of
95 aligned frames, each containing roughly 250,000 RGB-
D points. Simply merging the point clouds would result in
a representation containing roughly 23,750,000 points. Fur-
thermore, these points duplicate much information, and are
not consistent with respect to color and pose. In contrast, the
surfel representation consists of only 730,000 surfels. This
amounts to a reduction in size by a factor of 32. The color
for each is selected from the frame most in line with the sur-
fel normal. The final surfel representation shown in Figure
9(d) has concisely and faithfully combined the information
from all input frames.

We now examine the relationship between point cloud
maps, surfel maps, and SBA feature points. In Figure 10, the
feature points used for SBA optimization are shown super-
imposed over the point cloud. In Figure 11, it can be seen
that the surfel map is smoother and more consistent than the
point cloud representation. The surfel representation is also
more efficient, as it combines information from roughly 28
million points into 1.4 million surfels. Generating a surfel
map takes roughly 3 seconds per frame when updating and

)b()a(

)d()c(

Fig. 9. Surfel updates. (a) The initial surfels from the first frame.
(b,c) As the camera moves closer, more surfels are added and
existing ones are refined. (d) The completed surfel model from
95 aligned RGB-D images.

Fig. 10. Optimized point cloud map showing SBA feature point
locations.

adding surfels in a map of the size of our large loops. How-
ever, this is currently the least optimized component of our
system.

We have created software that allows surfel maps to be
navigated in real-time, including a stereoscopic 3D mode
which create an immersive experience we believe is well
suited for telepresence and augmented reality applications.

Videos of our results can be found at http://www.cs.uw.
edu/robotics/rgbd-mapping/.

4.5. Lessons learned

RANSAC is the faster and more reliable alignment com-
ponent when considered individually. Using re-projection

 at UNIV WASHINGTON LIBRARIES on February 27, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


14 The International Journal of Robotics Research 0(0)

(a) (b)

(c) (d)

Fig. 11. The surfel map created after SBA optimization is compared with the point cloud map (duplicated from Figure 6 for comparison
purposes). The surfel map is smoother and more consistent. (a) Point cloud using SBA. (b) Surfels using SBA. (c) Close-up of SBA
cloud. (d) Close-up of SBA surfels.

error as we do in RE-RANSAC improves alignment accu-
racy considerably. However, there are situations where it is
unreliable and the joint optimization is required. For some
frames, many detected visual features are out of range of
the depth sensor, so those features have no associated 3D
points and do not participate in the RANSAC procedure.
Also, when the majority of the features lie in a small region
of the image, they do not provide very strong constraints on
the motion. For example, in badly lit halls it is common to
see features only on one side wall. It is in situations such
as these that RGB-D ICP provides notably better alignment
than RANSAC alone.

Our experiments also show that for active stereo depth
cameras such as PrimeSense or Kinect, a stereo-based re-
projection error metric for RANSAC yields better align-
ments than a Euclidean error metric typically used for point
cloud alignment. To generate globally aligned maps, we
investigate both pose-based optimization (TORO) and SBA.
While TORO can readily incorporate pose constraints gen-
erated by both ICP and RANSAC, SBA requires that all
consecutive frames are connected via point-based corre-
spondences. To enable the use of SBA in environments with
featureless areas, we incorporate point associations found

via RGB-D ICP into the SBA optimization. Visual com-
parisons of the resulting maps indicate that SBA yields
more accurate fine-grained alignments than TORO. How-
ever, TORO has the advantage of being far more efficient
and more recent versions of this approach should generate
yet more accurate results than those presented here (Ruhnke
et al. 2011).

5. Conclusion

Building accurate, dense models of indoor environments
has many applications in robotics, telepresence, gaming,
and augmented reality. Limited lighting, lack of distinctive
features, repetitive structures, and the demand for rich detail
are inherent to indoor environments, and handling these
issues has proved a challenging task for both robotics and
computer vision communities. Laser scanning approaches
are typically expensive and slow and need additional reg-
istration to add appearance information (visual details).
Vision-only approaches to dense 3D reconstruction often
require a prohibitive amount of computation, suffer from
lack of robustness, and cannot yet provide dense, accurate
3D models.
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We investigate how inexpensive depth cameras devel-
oped mainly for gaming and entertainment applications can
be used for building dense 3D maps of indoor environ-
ments. The key insights of this investigation are that:

1. purely vision-based or purely depth-based frame match-
ing techniques are not sufficient to provide robust and
accurate visual odometry with these cameras;

2. a tight integration of depth and color information can
yield robust frame matching and loop-closure detection;

3. building on best practices in SLAM and computer
graphics makes it possible to build and visualize accu-
rate and extremely rich 3D maps with such cameras;

4. it will be feasible to build complete robot navigation and
interaction systems solely based on inexpensive RGB-D
camera.

We introduce RGB-D Mapping, a framework that can
generate dense 3D maps of indoor environments despite
the limited depth precision and field of view provided by
RGB-D cameras. RGB-D Mapping incorporates a surfel
representation to enable compact representations and visu-
alizations of 3D maps. At the core of RGB-D Mapping is
RGB-D ICP, a novel ICP variant that takes advantage of the
rich information contained in RGB-D data. The main idea
behind RGB-D ICP is to use visual information to identify
sparse point features in each camera frame. These point fea-
tures can be used in a RANSAC optimization to generate
alignments between consecutive frames for visual odome-
try, and between temporally far apart frames to detect loop
closures. While sparse visual features typically provide bet-
ter alignment accuracies than dense point cloud alignment
via ICP, they might fail in areas that lack visual information,
such as very dark rooms. RGB-D ICP overcomes this lim-
itation by combining visual feature matching (RANSAC)
with dense point cloud alignment (point-to-plane ICP) to
get the best of both techniques: maximally accurate align-
ment when visual features are available, and robust align-
ment when there are no visual features. We introduce two
variants of RGB-D ICP, one that combines RANSAC and
ICP into a joint optimization, and another, slightly more
efficient approach, that performs either RANSAC or the full
joint optimization depending on the situation.

Given that RGB-D cameras are available to the public
at an extremely low price, an RGB-D-based modeling sys-
tem will potentially have a huge impact on everyday life,
allowing people to build 3D models of arbitrary indoor
environments. Furthermore, our results indicate that RGB-
D cameras could be used to build robust robotic mapping,
navigation, and interaction systems. Along with the poten-
tial decrease in cost of the resulting navigation platform,
the application of RGB-D cameras is an important step
to towards enabling the development of useful, affordable
robot platforms.

Despite these encouraging results, every module of
RGB-D Mapping has several shortcomings that deserve
future effort. RGB-D Mapping only uses two consecutive
frames to estimate the motion of the camera. Based on
our findings, we believe that a sequential window-based
bundle adjustment technique that reasons about multiple
frames at a time could certainly improve the accuracy of
alignments, without substantial increase in complexity. Cur-
rently, loop closures are detected by frame-to-frame visual
feature matching. While this approach is able to detect
obvious loop closures, it is not sufficient to add all of the
constraints needed to generate fully consistent 3D maps.
More work on loop closure detection taking the full depth
and color information into account is needed. We hope to
perform more extensive and detailed ground-truth experi-
ments, for example using motion capture. In recent work,
we have begun to investigate the benefits and opportunities
afforded through interactive mapping, in which a human
operator receives real-time feedback which can be used to
correct mapping failures and generate complete maps (Du
et al. 2011).

The computer graphics community has developed
extremely sophisticated visualization techniques, and incor-
porating these into RGB-D Mapping could further improve
the alignment and visual quality of the 3D maps. For exam-
ple, patch-based multi-view stereo (PMVS; Furukawa and
Ponce, 2010)5 can generate quite accurate reconstructions
using a visual consistency measure, and it would be exciting
to apply these techniques to our maps. Another interesting
avenue for research is the extraction of object representa-
tions from the rich information contained in dense 3D maps.
Other areas for future research include the development of
exploration techniques for building complete 3D maps and
the extension to dynamic environments.

Notes

1. See http://www.xbox.com/en-US/kinect and http://www.
primesense.com/

2. See http://www.canesta.com/ and http://www.mesa-imaging.
ch/

3. See http://www.primesense.com/.
4. See http://www.xbox.com/en-US/kinect
5. See also http://grail.cs.washington.edu/software/pmvs/.
6. A small transformation is applied within the camera driver

which shifts the points from the frame of the IR camera to the
physically adjacent frame of the RGB camera, so the depth
(z) values in Euclidean space (as obtained from the camera
driver) are relative to the RGB camera.

7. See http://www.ros.org/.
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