
Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Reinforcement Learning: AI = RL

I RL is a general-purpose framework for artificial intelligence

I We seek a single agent which can solve any human-level task

I The essence of an intelligent agent

I Powerful RL requires powerful representations

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Deep Representations

I A deep representation is a composition of many functions

x

w

1

//
h

1

w

2

// ...
w

n

//
h

n

w

n+1

//
y

I Its gradient can be backpropagated by the chain rule

@h
1

@x
@h

2

@h
1

oo

✏✏

...oo @y
@h

n

oo

✏✏

@
@y

oo

✏✏
@h

1

@w
1

... @h
n

@w
n

@y
@w

n+1

Deep Neural Network
A deep neural network is typically composed of:

I Linear transformations

h

k+1

= Wh

k

I Non-linear activation functions

h

k+2

= f (h
k+1

)

Weight Sharing
Recurrent neural network shares weights between time-steps

y

1

y

2

... y

n

h

0

w

//
h

1

w

//

OO

h

2

w

//

OO

...
w

//
h

n

OO

x

1

OO

x

2

OO

... x

n

OO

Convolutional neural network shares weights between local regions

w1

w1

w2

w2

x

h1

h2

Loss Function

I A loss function l(y) measures goodness of output y , e.g.
I Mean-squared error l(y) = ||y⇤ � y ||2
I Log likelihood l(y) = logP [y⇤|x]

I The loss is appended to the forward computation

x

w

1

//
h

1

w

2

// ...
w

n

//
h

n

w

n+1

//
y

//
l(y)

I Gradient of loss is appended to the backward computation

@h
1

@x
@h

2

@h
1

oo

✏✏

...oo @y
@h

n

oo

✏✏

@l(y)
@y

oo

✏✏
@h

1

@w
1

... @h
n

@w
n

@y
@w

n+1

Stochastic Gradient Descent

I Minimise expected loss L(w) = E
x

[l(y)]

I Follow the gradient of L(w)

@L(w)

@w
= E

x


@l(y)

@w

�
= E

x

0

BB@

@l(y)
@w (1)

...
@l(y)
@w (k)

1

CCA

I Adjust w in direction of -ve gradient

�w = �↵

2
↵
@l(y)

@w

where ↵ is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Deep Supervised Learning

I Deep neural networks have achieved remarkable success
I Simple ingredients solve supervised learning problems

I Use deep network as a function approximator
I Define loss function
I Optimise parameters end-to-end by SGD

I Scales well with memory/data/computation

I Solves the representation learning problem

I State-of-the-art for images, audio, language, ...

I Can we follow the same recipe for RL?

Deep Supervised Learning

I Deep neural networks have achieved remarkable success
I Simple ingredients solve supervised learning problems

I Use deep network as a function approximator
I Define loss function
I Optimise parameters end-to-end by SGD

I Scales well with memory/data/computation

I Solves the representation learning problem

I State-of-the-art for images, audio, language, ...

I Can we follow the same recipe for RL?

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Policies and Value Functions

I Policy ⇡ is a behaviour function selecting actions given states

a = ⇡(s)

I Value function Q

⇡(s, a) is expected total reward
from state s and action a under policy ⇡

Q

⇡(s, a) = E
⇥
r

t+1

+ �r
t+2

+ �2r
t+3

+ ... | s, a
⇤

“How good is action a in state s?”

Approaches To Reinforcement Learning

Policy-based RL

I Search directly for the optimal policy ⇡⇤

I This is the policy achieving maximum future reward

Value-based RL

I Estimate the optimal value function Q

⇤(s, a)

I This is the maximum value achievable under any policy

Model-based RL

I Build a transition model of the environment

I Plan (e.g. by lookahead) using model

Approaches To Reinforcement Learning

Policy-based RL

I Search directly for the optimal policy ⇡⇤

I This is the policy achieving maximum future reward

Value-based RL

I Estimate the optimal value function Q

⇤(s, a)

I This is the maximum value achievable under any policy

Model-based RL

I Build a transition model of the environment

I Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

I Can we apply deep learning to RL?

I Use deep network to represent value function / policy / model

I Optimise value function / policy /model end-to-end

I Using stochastic gradient descent

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Bellman Equation
I Bellman expectation equation unrolls value function Q

⇡

Q

⇡(s, a) = E
⇥
r

t+1

+ �r
t+2

+ �2r
t+3

+ ... | s, a
⇤

= E
s

0,a0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

I Bellman optimality equation unrolls optimal value function Q

⇤

Q

⇤(s, a) = E
s

0


r + � max

a

0
Q

⇤(s 0, a0) | s, a
�

I Policy iteration algorithms solve Bellman expectation equation

Q

i+1

(s, a) = E
s

0
⇥
r + � Q

i

(s 0, a0) | s, a
⇤

I Value iteration algorithms solve Bellman optimality equation

Q

i+1

(s, a) = E
s

0,a0


r + � max

a

0
Q

i

(s 0, a0) | s, a
�

Bellman Equation
I Bellman expectation equation unrolls value function Q

⇡

Q

⇡(s, a) = E
⇥
r

t+1

+ �r
t+2

+ �2r
t+3

+ ... | s, a
⇤

= E
s

0,a0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

I Bellman optimality equation unrolls optimal value function Q

⇤

Q

⇤(s, a) = E
s

0


r + � max

a

0
Q

⇤(s 0, a0) | s, a
�

I Policy iteration algorithms solve Bellman expectation equation

Q

i+1

(s, a) = E
s

0
⇥
r + � Q

i

(s 0, a0) | s, a
⇤

I Value iteration algorithms solve Bellman optimality equation

Q

i+1

(s, a) = E
s

0,a0


r + � max

a

0
Q

i

(s 0, a0) | s, a
�

Bellman Equation
I Bellman expectation equation unrolls value function Q

⇡

Q

⇡(s, a) = E
⇥
r

t+1

+ �r
t+2

+ �2r
t+3

+ ... | s, a
⇤

= E
s

0,a0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

I Bellman optimality equation unrolls optimal value function Q

⇤

Q

⇤(s, a) = E
s

0


r + � max

a

0
Q

⇤(s 0, a0) | s, a
�

I Policy iteration algorithms solve Bellman expectation equation

Q

i+1

(s, a) = E
s

0
⇥
r + � Q

i

(s 0, a0) | s, a
⇤

I Value iteration algorithms solve Bellman optimality equation

Q

i+1

(s, a) = E
s

0,a0


r + � max

a

0
Q

i

(s 0, a0) | s, a
�

Policy Iteration with Non-Linear Sarsa

I Represent value function by Q-network with weights w

Q(s, a,w) ⇡ Q

⇡(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E

2

64

0

B@r + �Q(s 0, a0,w)| {z }
target

� Q(s, a,w)

1

CA

2

3

75

I Leading to the following Sarsa gradient

@L(w)

@w
= E

�
r + �Q(s 0, a0,w)� Q(s, a,w)

� @Q(s, a,w)

@w

�

I Optimise objective end-to-end by SGD, using @L(w)

@w

Policy Iteration with Non-Linear Sarsa

I Represent value function by Q-network with weights w

Q(s, a,w) ⇡ Q

⇡(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E

2

64

0

B@r + �Q(s 0, a0,w)| {z }
target

� Q(s, a,w)

1

CA

2

3

75

I Leading to the following Sarsa gradient

@L(w)

@w
= E

�
r + �Q(s 0, a0,w)� Q(s, a,w)

� @Q(s, a,w)

@w

�

I Optimise objective end-to-end by SGD, using @L(w)

@w

Policy Iteration with Non-Linear Sarsa

I Represent value function by Q-network with weights w

Q(s, a,w) ⇡ Q

⇡(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E

2

64

0

B@r + �Q(s 0, a0,w)| {z }
target

� Q(s, a,w)

1

CA

2

3

75

I Leading to the following Sarsa gradient

@L(w)

@w
= E

�
r + �Q(s 0, a0,w)� Q(s, a,w)

� @Q(s, a,w)

@w

�

I Optimise objective end-to-end by SGD, using @L(w)

@w

Value Iteration with Non-Linear Q-Learning

I Represent value function by deep Q-network with weights w

Q(s, a,w) ⇡ Q

⇡(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E

2

664

0

BB@r + � max
a

0
Q(s 0, a0,w)

| {z }
target

� Q(s, a,w)

1

CCA

2

3

775

I Leading to the following Q-learning gradient

@L(w)

@w
= E

✓
r + � max

a

0
Q(s 0, a0,w)� Q(s, a,w)

◆
@Q(s, a,w)

@w

�

I Optimise objective end-to-end by SGD, using @L(w)

@w

Example: TD Gammon

 B
bar 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 W

bar

V(s, w)

w

s

Self-Play Non-Linear Sarsa

I Initialised with random weights

I Trained by games of self-play

I Using non-linear Sarsa with afterstate value function

Q(s, a,w) = E
⇥
V (s 0,w)

⇤

I Greedy policy improvement (no exploration)

I Algorithm converged in practice (not true for other games)

I TD Gammon defeated world champion Luigi Villa 7-1
(Tesauro, 1992)

Self-Play Non-Linear Sarsa

I Initialised with random weights

I Trained by games of self-play

I Using non-linear Sarsa with afterstate value function

Q(s, a,w) = E
⇥
V (s 0,w)

⇤

I Greedy policy improvement (no exploration)

I Algorithm converged in practice (not true for other games)

I TD Gammon defeated world champion Luigi Villa 7-1
(Tesauro, 1992)

New TD-Gammon Results

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
I Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values
I Policy may oscillate
I Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown
I Naive Q-learning gradients can be large

unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay
I Break correlations in data, bring us back to iid setting
I Learn from all past policies
I Using o↵-policy Q-learning

2. Freeze target Q-network
I Avoid oscillations
I Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
I Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience

I Take action a

t

according to ✏-greedy policy

I Store transition (s
t

, a
t

, r
t+1

, s
t+1

) in replay memory D
I Sample random mini-batch of transitions (s, a, r , s 0) from D
I Optimise MSE between Q-network and Q-learning targets, e.g.

L(w) = E
s,a,r ,s0⇠D

"✓
r + � max

a

0
Q(s 0, a0,w)� Q(s, a,w)

◆
2

#

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

I Compute Q-learning targets w.r.t. old, fixed parameters w�

r + � max
a

0
Q(s 0, a0,w�)

I Optimise MSE between Q-network and Q-learning targets

L(w) = E
s,a,r ,s0⇠D

"✓
r + � max

a

0
Q(s 0, a0,w�)� Q(s, a,w)

◆
2

#

I Periodically update fixed parameters w� w

Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

DQN Results in Atari

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Indeed, in certain games DQN is able to discover a relatively long-term
strategy (for example, Breakout: the agent learns the optimal strategy,
which is to first dig a tunnel around the side of the wall allowing the ball
to be sent around the back to destroy a large number of blocks; see Sup-
plementary Video 2 for illustration of development of DQN’s perfor-
mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).

In this work, we demonstrate that a single architecture can success-
fully learn control policies in a range of different environments with only
very minimal prior knowledge, receiving only the pixels and the game
score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player
would have. In contrast to previous work24,26, our approach incorpo-
rates ‘end-to-end’ reinforcement learning that uses reward to continu-
ously shape representations within the convolutional network towards
salient features of the environment that facilitate value estimation. This
principle draws on neurobiological evidence that reward signals during
perceptual learning may influence the characteristics of representations
within primate visual cortex27,28. Notably, the successful integration of
reinforcement learning with deep network architectures was critically
dependent on our incorporation of a replay algorithm21–23 involving the
storage and representation of recently experienced transitions. Conver-
gent evidence suggests that the hippocampus may support the physical

realization of such a process in the mammalian brain, with the time-
compressed reactivation of recently experienced trajectories during
offline periods21,22 (for example, waking rest) providing a putative mech-
anism by which value functions may be efficiently updated through
interactions with the basal ganglia22. In the future, it will be important
to explore the potential use of biasing the content of experience replay
towards salient events, a phenomenon that characterizes empirically
observed hippocampal replay29, and relates to the notion of ‘prioritized
sweeping’30 in reinforcement learning. Taken together, our work illus-
trates the power of harnessing state-of-the-art machine learning tech-
niques with biologically inspired mechanisms to create agents that are
capable of learning to master a diverse array of challenging tasks.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 10 July 2014; accepted 16 January 2015.

1. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction (MIT Press, 1998).
2. Thorndike, E. L. Animal Intelligence: Experimental studies (Macmillan, 1911).
3. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and

reward. Science 275, 1593–1599 (1997).
4. Serre, T., Wolf, L. & Poggio, T. Object recognition with features inspired by visual

cortex. Proc. IEEE. Comput. Soc. Conf. Comput. Vis. Pattern. Recognit. 994–1000
(2005).

5. Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36,
193–202 (1980).

V

Figure 4 | Two-dimensional t-SNE embedding of the representations in the
last hidden layer assigned by DQN to game states experienced while playing
Space Invaders. The plot was generated by letting the DQN agent play for
2 h of real game time and running the t-SNE algorithm25 on the last hidden layer
representations assigned by DQN to each experienced game state. The
points are coloured according to the state values (V, maximum expected reward
of a state) predicted by DQN for the corresponding game states (ranging
from dark red (highest V) to dark blue (lowest V)). The screenshots
corresponding to a selected number of points are shown. The DQN agent

predicts high state values for both full (top right screenshots) and nearly
complete screens (bottom left screenshots) because it has learned that
completing a screen leads to a new screen full of enemy ships. Partially
completed screens (bottom screenshots) are assigned lower state values because
less immediate reward is available. The screens shown on the bottom right
and top left and middle are less perceptually similar than the other examples but
are still mapped to nearby representations and similar values because the
orange bunkers do not carry great significance near the end of a level. With
permission from Square Enix Limited.

RESEARCH LETTER

5 3 2 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Extended Data Figure 1 | Two-dimensional t-SNE embedding of the
representations in the last hidden layer assigned by DQN to game states
experienced during a combination of human and agent play in Space
Invaders. The plot was generated by running the t-SNE algorithm25 on the last
hidden layer representation assigned by DQN to game states experienced
during a combination of human (30 min) and agent (2 h) play. The fact that
there is similar structure in the two-dimensional embeddings corresponding to
the DQN representation of states experienced during human play (orange

points) and DQN play (blue points) suggests that the representations learned
by DQN do indeed generalize to data generated from policies other than its
own. The presence in the t-SNE embedding of overlapping clusters of points
corresponding to the network representation of states experienced during
human and agent play shows that the DQN agent also follows sequences of
states similar to those found in human play. Screenshots corresponding to
selected states are shown (human: orange border; DQN: blue border).

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

How much does DQN help?

DQN

Q-learning Q-learning Q-learning Q-learning
+ Replay + Replay

+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

Stable Deep RL (3): Reward/Value Range

I DQN clips the rewards to [�1,+1]

I This prevents Q-values from becoming too large

I Ensures gradients are well-conditioned

I Can’t tell di↵erence between small and large rewards

I Better approach: normalise network output

I e.g. via batch normalisation

Stable Deep RL (3): Reward/Value Range

I DQN clips the rewards to [�1,+1]

I This prevents Q-values from becoming too large

I Ensures gradients are well-conditioned

I Can’t tell di↵erence between small and large rewards

I Better approach: normalise network output

I e.g. via batch normalisation

Demo: Normalized DQN in PacMan

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Policy Gradient for Continuous Actions

I Represent policy by deep network a = ⇡(s, u) with weights u

I Define objective function as total discounted reward

J(u) = E
⇥
r

1

+ �r
2

+ �2r
3

+ ...
⇤

I Optimise objective end-to-end by SGD

I i.e. Adjust policy parameters u to achieve more reward

Deterministic Policy Gradient

The gradient of the policy is given by

@J(u)

@u
= E

s


@Q⇡(s, a)

@u

�

= E
s


@Q⇡(s, a)

@a

@⇡(s, u)

@u

�

Policy gradient is the direction that most improves Q

Deterministic Actor-Critic

Use two networks

I Actor is a policy ⇡(s, u) with parameters u

s

u

1

// ...
u

n

//
a

I Critic is value function Q(s, a,w) with parameters w

s, a
w

1

// ...
w

n

//
Q

I Critic provides loss function for actor

s

u

1

// ...
u

n

//
a

w

1

// ...
w

n

//
Q

I Gradient backpropagates from critic into actor

@a
@u ...oo @Q

@a
oo ...oo oo

Deterministic Actor-Critic: Learning Rule

I Critic estimates value of current policy by Q-learning

@L(w)

@w
= E

✓
r + �Q(s 0,⇡(s 0),w)� Q(s, a,w)

◆
@Q(s, a,w)

@w

�

I Actor updates policy in direction that improves Q

@J(u)

@u
= E

s


@Q(s, a,w)

@a

@⇡(s, u)

@u

�

Deterministic Deep Policy Gradient (DDPG)

I Naive actor-critic oscillates or diverges with neural nets

I DDPG provides a stable solution

1. Use experience replay for both actor and critic

2. Freeze target network to avoid oscillations

@L(w)

@w
= E

s,a,r ,s0⇠D

✓
r + �Q(s 0,⇡(s 0, u�),w�)� Q(s, a,w)

◆
@Q(s, a,w)

@w

�

@J(u)

@u
= E

s,a,r ,s0⇠D


@Q(s, a,w)

@a

@⇡(s, u)

@u

�

Deterministic Deep Policy Gradient (DDPG)

I Naive actor-critic oscillates or diverges with neural nets

I DDPG provides a stable solution

1. Use experience replay for both actor and critic

2. Freeze target network to avoid oscillations

@L(w)

@w
= E

s,a,r ,s0⇠D

✓
r + �Q(s 0,⇡(s 0, u�),w�)� Q(s, a,w)

◆
@Q(s, a,w)

@w

�

@J(u)

@u
= E

s,a,r ,s0⇠D


@Q(s, a,w)

@a

@⇡(s, u)

@u

�

DDPG for Continuous Control
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Physics are simulated in MuJoCo

Q(s,a)

π(s)

a

[Lillicrap et al.]

DDPG Demo

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Model-Based RL
Learn a transition model of the environment

p(r , s 0 | s, a)

Plan using the transition model

I e.g. Lookahead using transition model to find optimal actions

rightleft

right rightleft left

Deep Models

I Represent transition model p(r , s 0 | s, a) by deep network

I Define objective function measuring goodness of model

I e.g. number of bits to reconstruct next state (Gregor et al.)

I Optimise objective by SGD

DARN Demo

Challenges of Model-Based RL

Compounding errors

I Errors in the transition model compound over the trajectory

I By the end of a long trajectory, rewards can be totally wrong

I Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly

I Each layer of network performs arbitrary computational step

I
n-layer network can “lookahead” n steps

I Are transition models required at all?

Challenges of Model-Based RL

Compounding errors

I Errors in the transition model compound over the trajectory

I By the end of a long trajectory, rewards can be totally wrong

I Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly

I Each layer of network performs arbitrary computational step

I
n-layer network can “lookahead” n steps

I Are transition models required at all?

Deep Learning in Go
Monte-Carlo search

I Monte-Carlo search (MCTS) simulates future trajectories
I Builds large lookahead search tree with millions of positions
I State-of-the-art 19⇥ 19 Go programs use MCTS
I e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks
I 12-layer convnet trained to predict expert moves
I Raw convnet (looking at 1 position, no search at all)
I Equals performance of MoGo with 105 position search tree

(Maddison et al.)

Program Accuracy
Human 6-dan ⇠ 52%
12-Layer ConvNet 55%
8-Layer ConvNet* 44%
Prior state-of-the-art 31-39%

*Clarke & Storkey

Program Winning rate
GnuGo 97%
MoGo (100k) 46%
Pachi (10k) 47%
Pachi (100k) 11%

Deep Learning in Go
Monte-Carlo search

I Monte-Carlo search (MCTS) simulates future trajectories
I Builds large lookahead search tree with millions of positions
I State-of-the-art 19⇥ 19 Go programs use MCTS
I e.g. First strong Go program MoGo

(Gelly et al.)
Convolutional Networks

I 12-layer convnet trained to predict expert moves
I Raw convnet (looking at 1 position, no search at all)
I Equals performance of MoGo with 105 position search tree

(Maddison et al.)

Program Accuracy
Human 6-dan ⇠ 52%
12-Layer ConvNet 55%
8-Layer ConvNet* 44%
Prior state-of-the-art 31-39%

*Clarke & Storkey

Program Winning rate
GnuGo 97%
MoGo (100k) 46%
Pachi (10k) 47%
Pachi (100k) 11%

Conclusion

I RL provides a general-purpose framework for AI

I RL problems can be solved by end-to-end deep learning

I A single agent can now solve many challenging tasks

I Reinforcement learning + deep learning = AI

Questions?

“The only stupid question is the one you never asked” -Rich Sutton

