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Mode 1: Learned behavior Mode 1: Learned cost map

Mode 2: Training example Mode 2: Training example

Mode 2: Learned behavior Mode 2: Learned behavior
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Mode 2: Learned cost map

Ratliff,	Bagnell,	Zinkevich 2005
Ratliff,		Bradley,	Bagnell,	Chestnutt,	NIPS	2006
Silver,	Bagnell,	Stentz,	RSS	2008

w' 
Weighting

vector

Cost =  
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F 

w=[],	F=[]

Ratliff,	Bagnell,	Zinkevich,	ICML	2006
Ratliff,		Bradley,	Bagnell,	Chestnutt,	NIPS	2006
Silver,	Bagnell,	Stentz,	RSS	2008

Learn F1

(        , High Cost)

(       ,  Low Cost)

w=[w1],	F=[F1]

Ratliff,	Bagnell,	Zinkevich,	ICML	2006
Ratliff,		Bradley,	Bagnell,	Chestnutt,	NIPS	2006
Silver,	Bagnell,	Stentz,	RSS	2008

Learn F2

(      , High Cost)

(       ,  Low Cost)

Ratliff,	Bradley,	Chesnutt,
Bagnell	06

Zucker,	Ratliff,	Stolle,	
Chesnutt,	Bagnell,	
Atkeson,	Kuffner 09
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Learned	Cost	Function	Examples Learned	Cost	Function	Examples

Learned	Cost	Function	Examples Learning	Manipulation	Preferences
• Input: Human demonstrations	of	preferred	behavior	

(e.g.,	moving	a	cup	of	water	upright	without	spilling)

• Output: Learned	cost	function	that	results	in	trajectories	
satisfying	user	preferences

22

23

Demonstration(s)

24

Demonstration(s) Graph
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Demonstration(s) Graph

26

Demonstration(s) Graph Projection

27

Demonstration(s) Graph Projection

28

Demonstration(s) Graph Projection

Learned	cost

29

Demonstration(s) Graph Projection

Discrete	sampled	
paths Learned	cost
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Demonstration(s) Graph Projection

Output	
trajectories

Discrete	sampled	
paths Learned	cost
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Demonstration(s) Graph Projection

Output	
trajectories

Discrete	sampled	
paths Learned	cost

Discrete	
MaxEnt IOC
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Demonstration(s) Graph Projection

Output	
trajectories

Discrete	sampled	
paths Learned	cost

Local	Trajectory	
Optimization

2D	obstacle	avoidance	task

33
2D	state:	(x,y)	

Graph	generation
• Goal: Construct	a	graph	in	the	robot’s	configuration	

space	providing	good	coverage

34

Projection
• Goal: Project	the	continuous	demonstration	onto	the	

graph,	resulting	in	a	discrete	graph	path

• Use	a	modified	Dijkstra’s algorithm	minimizing	sum	of:
– Length	of	discrete	path	(Euclidean)
– Distance	to	continuous	demonstration

35

Learning	the	cost	function
• Goal: Given	projected	demonstrations,	learn	the	cost	

function
• Learn	feature	weights	(			*)	using	softened	value	

iteration	on	the	discrete	graph	(MaxEnt IOC	- Ziebart et	al.,	2008)

– State	dependent	features	(eg: Distance	to	obstacles)

✓

36
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Experimental	Results

37

Setup

• Binary state-dependent	features	(~95)
• Histograms	of	distances	to	objects
• Histograms	of	end-effector	orientation
• Object	specific	features	(electronic	vs non-electronic)
• Approach	direction	w.r.t goal

• Comparison:	
• Human	demonstrations
• Obstacle	avoidance	planner	(CHOMP)
• Locally	optimal	IOC	approach	(similar	to	Max-Margin	
planning,	Ratliff	et.	al.,	2007)
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Laptop	task:	Demonstration	
(	Not	part	of	training	set)
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Laptop	task:	LTO	+	Discrete	graph	path
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Laptop	task:	LTO	+	Smooth	random	path
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Statistics	for	Laptop	task
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