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CSE-571
Robotics

Planning and Control:

Markov Decision Processes

Problem Classes

•Deterministic vs. stochastic actions

•Full vs. partial observability

Deterministic, fully observable

Stochastic, Fully Observable Stochastic, Partially Observable Markov Decision Process (MDP)
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Markov Decision Process (MDP)

• Given:
• States x
• Actions u
• Transition probabilities p(x’|u,x)
• Reward / payoff function r(x,u)

• Wanted:
• Policy p(x) that maximizes the future 

expected reward

Rewards and Policies
• Policy (general case):

• Policy (fully observable case):

• Expected cumulative payoff:

• T=1: greedy policy
• T>1: finite horizon case, typically no discount
• T=infty: infinite-horizon case, finite reward if discount < 1
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Policies contd.
• Expected cumulative payoff of policy:

• Optimal policy:

• 1-step optimal policy:

• Value function of 1-step optimal policy:
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2-step Policies
• Optimal policy:

• Value function:

π 2 (x) = argmax
u

r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

V2 (x) = γ maxu r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

T-step Policies
• Optimal policy:

• Value function:

πT (x) = argmax
u

r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

VT (x) = γ maxu r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

Infinite Horizon

• Optimal policy:

• Bellman equation

• Fix point is optimal policy

• Necessary and sufficient condition

V∞(x) = γ maxu r(x,u)+ V∞(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦
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Value Iteration
• for all x do

• endfor

• repeat until convergence
• for all x do

• endfor
• endrepeat

V̂ (x)←γ max
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

min)(ˆ rxV ¬

π (x) = argmax
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

k=0

Noise	=	0.2
Discount	=	0.9
Living	reward	=	
0

k=1

Noise	=	0.2
Discount	=	0.9
Living	reward	=	
0
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k=5 k=6 k=7

k=8 k=9 k=10
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k=11 k=12 k=100

Value Function and Policy
•Each step takes O(|A| |S| |S|) time.
•Number of iterations required is

polynomial in |S|, |A|, 1/(1-gamma)

Value Iteration for Motion 
Planning
(assumes knowledge of robot’s location)

Frontier-based Exploration
• Every unknown location is a target point.
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Manipulator Control

Arm with two joints        Configuration space

Manipulator Control Path

State space            Configuration space

Manipulator Control Path

State space            Configuration space

POMDPs
• In POMDPs we apply the very same idea as in 

MDPs.

• Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

• For finite horizon problems, the resulting value 
functions are piecewise linear and convex. 

• In each iteration the number of linear 
constraints grows exponentially.

• Full fledged POMDPs have only been applied to 
very small state spaces with small numbers of 
possible observations and actions. 

• Approximate solutions are becoming more 
and more capable.


