CSE-571

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev
Carnegie Mellon University

Motion/Path Planning

* Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

* Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as path planning):
g 2o | B n

1: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Q< “Immovable 4
(_/ Obstacles
@V < v ?ﬂ

Goal Configuration

Start
Configuration

Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

Motion/Path Planning

v
A

Path/Motion Planner

‘path

Controller

S

\ 4

‘commands
\ A

map update pose update

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning Uncertainty and Planning

* Uncertainty can be in:
- prior environment (i.e., door is open or closed)
Path/Motion Planner - execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)

‘path - pose

* Planning approaches:
- deterministic planning:

v
-~

Controller <

v

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

‘commands

map update pose update

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)

CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
Uncertainty and Planning Uncertainty and Planning
* Uncertainty can be in: * Uncertainty can be in:
- prior environment (i.e., door is open or closed) - prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip) - execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure) - sensing environment (i.e., seems like an obstacle but not sure)
- pose - pose
* Planning approaches: re-plan every time * Planning approaches:
- deterministic planning: sensory data arrives or - deterministic planning:
- assume some (i.c., most likely) environme, /000! deviates off its path - assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under thi~) . - plan a single least-cost trajectory under this assumption
- re-plan as new information arrives re-planning needs to be FAST - re-plan as new information arrives
- planning under uncertainty: - planning under uncertainty:
- associate probabilities with some elements or everything - associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action -plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal and minimizes expected cost-to-goal . .
- re-plan if unaccounted events happen - re-plan if unaccounted events happen computationally MUCH harder
CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU
Example

Mission Planning

Behavioral Executive

W Perception

Motion Planning

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

+ State is po!
<x06,

< Vg, V¢,

constant profile

v

sition, curvature, and velocity
KV >

* Velocity profiles determine forward speed

Vr, Ao, af, to, tf >

* Spline represents shape and overall time

< Ko, K1, K2, Sf >

second order spline profile

inoar profie inear ramp profle trapezoidal profle

v <

v 8

iy T
T

CSE-571: Courtesy of Maxim Likhachev, CMU

sim)

-~ s

@ ®) am o um g T am g um

Optimize (fine-tune) parameters initialized via interpolation

CSE-571: Courtesy of Maxim Likhachev, CMU

' - > -
TR Lzm

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning
- constructing a graph

- search with A*
- search with D*

Maxim Likhachev

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning

- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

»

planning map

Ss3

s | g5 convert into a graph search the graph
—

for a least-cost path
from Srar to Sgoal

Se

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

n
>

o

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

n

eight-connected grid

(one way to construct a graph) '

planning map

S2 | S3 @ @ @
S | 5 convert into a graph ‘.:‘ search the graph
| ¥ —- ®\@ for a least-cost path

S from Sgrar to Sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of
arbitrary obstacles

- Problem: transitions difficult to execute on non-holonomic
robots

discretize
—l I~

g

CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

Planning via Cell Decomposition
* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action femplate

C(s,5) =100
& . . o= Cfsys9=5
e replicate it “* ™"

online”

s
A\

sis

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

Planning via Cell Decomposition

* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

* Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

action template

Wil
v ¢
St
<

e] - replicate it “*~
> online” \

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

A¥* Search

A* Search

+ Computes optimal g-values for relevant states » Computes optimal g-values for relevant states

at any point of time: at any point of time:

an (under) estimate of the c.

of a shortest path from s to s

one popular heuristic function — Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

A* Search

» Computes optimal g-values for relevant states

+ Computes optimal g-values for relevant states
ComputePath function

ComputePath function
while(sgoq is not expanded) while(sgoq is not expanded)

remove s with the smallest /f{s) = g(s)+h(s)] from OPEN; remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;

insert s into CLOSED; insert s into CLOSED;

for every successor s of s such that s " not in CLOSED for every successor s of s such that s " not in CLOSED

ifg(s’) > gls) +c(s,s”) ifg(s’) > gls) +c(s,s”) ‘
als”) = g5) + clss); 867) =8(5) + cs5); 8069 > Slouw) * <losaes)
insert s into OPEN;

g=o
h=1

insert s into OPEN;

CLOSED = {}
OPEN = {sstari}
next state to expand: Ssar

CLOSED = {}
OPEN = {Ssan}
next state to expand: Ssiar

8= 8=
Maxim Likhachev, University of Pennsylftimd

Maxim Likhachev, University of Pennsy/timid

Maxim Likhachev

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(sg,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > g(s) + c(s.s”)
a(s’) = g(s) + c(ss);
insert s into OPEN;

g=0
_ h=3
CLOSED = {ssian} @
OPEN = {55}
next state to expand: S2
g= g=oo
Maxim Likhachev, University of Pennsylftimd h

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(sgo is not expanded)
remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) >g(s) +cfss’)
os") = g5) + cfs.s”);
insert s into OPEN;

CLOSED = {syarus2} S
OPEN = {5154
next state to expand.‘ S

A* Search

+ Computes optimal g-values for relevant states

ComputePath function
while(sg,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s * of s such that s " not in CLOSED
ifg(s’) > gls) + c(ss”)
g(s)= g(s) +c(s,s ’);
insert s into OPEN;

CLOSED = {ssarn5251} @
OPEN = {54,5g0al/
next state to expand.‘ Sq

A¥* Search

» Computes optimal g-values for relevant states

ComputePath function
while(sgo is not expanded)
remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) >g(s) +cfss’)
o(s") = g5) + cfs.s”);
insert s into OPEN;

CLOSED = {Sstar,52,51,54} @
OPEN = {s3,5goal/
next state to expand: sgoal

A* Search

+ Computes optimal g-values for relevant states

ComputePath function
while(sgoq is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’)>g(s) +css”)
gs") =g(s) +ess’);
insert s into OPEN;

g=0
h=3
CLOSED = {Sstart,52:5 1,545 goal} &)
OPEN = {s3)
done

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(sgoq is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifgs’) > g(s) +clss’)
8(s") =g(s) +clss);
insert s into OPEN;

g=1
=2

for every expanded state g(s) is optima

for every other state g(s) is an upper bound @—3>

we can now compute a least-cost path g=2
Maxim Likhachev, University of Pennsyiid

Maxim Likhachev

A* Search

» Computes optimal g-values for relevant states

ComputePath function
while(sg,, is not expanded)
remove s with the smallest /f{s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s~ of s such that s " not in CLOSED
ifg(s’) > g(s) + c(s.s”)
a(s’) = g(s) + c(ss);
insert s into OPEN;

for every expanded state g(s) is optima

for every other state g(s) is an upper bound @—3>

we can now compute a least-cost path g=2
Maxim Likhachev, University of Pennsytimd

A* Search

« [s guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

* Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

* Is guaranteed to return an optimal nath (in fact, for every

expanded state) — f"'hélps with robot deviating off its pall; ~M
if we search with A*
backwards (from goal to start)
* Performs provably minimai nuwoa v state expansions
required to guarantee optimality — optimal in terms of the

computations

g=1

g=2
h=2

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

» A* Search: expands states in the order of f'= g+h values

Ssware

Sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

* A* Search: expands states in the order of f'= g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

Sswarc
Sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

» Weighted A* Search: expands states in the order of f'=
gteh values, ¢ > [= bias towards states that are closer to
goal

lution is always e-suboptimal:

cost(solution) < &-cost(optimal solution)

Satns
Sooal

CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

€ = 1.0 (optimal search)

initial search (e = 2.5) second search (e = 1.5) third search (e = 1.0)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

» Weighted A* Search: expands states in the order of /=
g+eh values, € > 1 = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

« planning in 8D (<x,y> for each foothold)
« heuristic is Euclidean distance from the center of the body to the goal location
« cost of edges based on kinematic stability of the robot and quality of footholds

planning with R* (randomized version of weighted A*)

Joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

* Deterministic planning
- constructing a graph
- search with A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever
— new information arrives (partially-known environments or/and
dynamic environments)
— robot deviates off its path

ATRV navigating
initially-unknown environment

planning map and path

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

» Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments) incremental planning (re-planning):
— robot deviates off its path reuse of previous planning efforts

planning in dynamic environments

Tartanracing, CMU
CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to g,y initially

st paths to s, afier the door turns out to be closed

oo afafa [[[l < [[[
o

I I N S S
CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 g,y initially

lues if search is

El

« after the door turns out to be closed

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to g,y initially

osts are optimal g-values if search is
done backwards

ool afafa [[[l [[[
o

I I N S S
CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths 10 g,y initially

el b
0 1 Y

Id # of changed g-values be
[ferent for forward A*?

o ffiefn

[Sa0al

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
* Reuse state values from previous searches

cost of least-cost paths to g, initially

| 2
13
[4

work needs to be done if robot
deviates off'its path?

cost of least-cost paths to s

s
T

Szcal]

oofatat~ |~ < Rl [s [l | of

518 S8 [%
CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
» Reuse state values from previous searches

initial search by backwards A*

initial search by D* Lite

11
11
11
T

Maxim Likhachev

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

\ cost = 133,736
£=30
13,000 2\
z //) #expands = 1,715

11,000
> cost = 77,345
38 £=10
expands = 14,132
9,000
1
7,000
0 0.2 0.4 0.6
time (secs)

CSE-571: Courtesy of Maxim Likhachev, CMU

Searching the Graph

* Incremental behavior of Anytime D*:

initial path a path after re-planning

Maxim Likhachev & Dave Ferguson 57

Building the Graph

* Benefit of the multi-resolution lattice used for Urban
Challenge:

Lattice States Expanded | Planning Time (s)
High-resolution 2,933 0.19
Multi-resolution 1,228 0.06

Maxim Likhachev & Dave Ferguson

Searching the Graph
 Performance of Anytime D* depends strongly on
heuristics /(s): estimates of cost-to-goal

should be A and admissible (never overesti cost-t)

(SZ == - Sgoal
-

Maxim Likhachev & Dave Ferguson

Maxim Likhachev

Searching the Graph
* In our planner: i(s) = max(hmecn(s), henv(s)), Where
— Nmecn(s) — mechanism-constrained heuristic
— heny(s) — environment-constrained heuristic

hmeci(s) — considers only dynamics constraints

henv(s) — considers only environment
and ignores environment

constraints and ignores dynamics

Maxim Likhachev & Dave Ferguson

10

Searching the Graph
* In our planner: i(s) = max(hmeci(s), hen(s)), Where
— Nmecn(s) — mechanism-constrained heuristic
— hem(s) — environment-constrained heuristic
hmech(s) — considers only dynamics constraints hem(s) — considers only environment

and ignores environment constraints and ignores dynamics
A Y n

pre-computed as a table lookup computed online by running
Jfor high-res. lattice a 2D A* with late termination

Maxim Likhachev & Dave Ferguson 61

Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hap 26,108 1.30
hesn 124,794 3.49

CSE-571: Courtesy of Maxim Likhachev, CMU

Example, again

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Summary

* Deterministic plannin{
- constructing a graph
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev

11

