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RGB-D	Mapping:	Using	Depth	Cameras	for	Dense	3D	Modeling	of	Indoor	Environments. Henry	et	al.		ISER	2010
RGB-D	Mapping:	Using	Kinect-style	Depth	Cameras	for	Dense	3D	Modeling	of	Indoor	Environments. Henry	et	al.		IJRR	2012
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Visual	Features

• Detector
– Repeatable
– Stable
– Invariances:

• Illumination
• Rotation
• Scale

• Descriptor
– Discriminative
– Invariant
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Visual	Features

• Tree	bark	itself	not	
really	distinct

• Rocky	ground	not	
distinct

• Rooftops,	windows,	
lamp	post	fairly	distinct	
and	should	be	easier	to	
match	across	images

Say	we	have	2	images	of	this	scene	we’d	like	to	align	by	matching	local	features
What	would	be	good	local	features	(ones	easy	to	match)?

Courtesy: S. Seitz and R. Szeliski
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Invariant	local	features
-Algorithm	for	finding	points	and	representing	their	patches	should	produce	
similar	results	even	when	conditions	vary
-Buzzword	is	“invariance”

– geometric	invariance:		translation,	rotation,	scale
– photometric	invariance:		brightness,	exposure,	…

Feature Descriptors
Courtesy: S. Seitz and R. Szeliski

Basic idea:
• Take 16x16 square window around detected feature
• Compute gradient for each pixel
• Throw out weak gradient magnitudes
• Create histogram of surviving gradient orientations

Scale	Invariant	Feature	Transform

Adapted from slide by David Lowe

0 2p

angle histogram

SIFT	keypoint descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties	of	SIFT
Extraordinarily	robust	matching	technique

– Can	handle	changes	in	viewpoint
• Up	to	about	60	degree	out	of	plane	rotation

– Can	handle	significant	changes	in	illumination
• Sometimes	even	day	vs.	night	(below)

– Fast	and	efficient—can	run	in	real	time
– Lots	of	code	available

• http://www.vlfeat.org
• http://www.cs.unc.edu/~ccwu/siftgpu/
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Feature	distance
• How	to	define	the	difference	between	two	features	f1,	f2?

– Simple	approach	is	SSD(f1,	f2)	
• sum	of	square	differences	between	entries	of	the	two	descriptors
• can	give	good	scores	to	very	ambiguous	(bad)	matches	

f1 f2

I1 I2

Feature	distance
• How	to	define	the	difference	between	two	features	f1,	f2?

– Better	approach:		ratio	distance	=	SSD(f1,	f2)	/	SSD(f1,	f2’)
• f2	is	best	SSD	match	to	f1	in	I2
• f2’		is		2nd	best	SSD	match	to	f1	in	I2
• gives	small	values	for	ambiguous	matches

I1 I2

f1 f2f2'

Are	descriptors	unique?

11 12

No,	they	can	be	matched	to	wrong	features,	generating	
outliers.

Are	descriptors	unique?



11/6/16

4

Strategy:	RANSAC

• RANSAC	loop:
1. Randomly	select	a	seed	group of	matches
2. Compute	transformation	from	seed	group
3. Find	inliers	to	this	transformation	
4. If	the	number	of	inliers	is	sufficiently	large,	re-compute	

least-squares	estimate	of	transformation	on	all	of	the	
inliers

• Keep	the	transformation	with	the	largest	
number	of	inliers

M.	A.	Fischler,	R.	C.	Bolles.	Random	Sample	Consensus:	A	Paradigm	for	Model	Fitting	with	Applications	to	Image	Analysis	and	Automated	
Cartography.	Comm.	of	the	ACM,	Vol 24,	pp 381-395,	1981.	

Simple	Example

• Fitting	a	straight	line

Why	will	this	work	?
RANSAC	example:	Translation

Putative	matches

Slide:	A.	Efros
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Select	onematch,	count	inliers

Slide:	A.	Efros

RANSAC	example:	Translation

Find	“average”	translation	vector

Slide:	A.	Efros

RANSAC	example:	Translation

RANSAC:	Line	Fitting RANSAC	pros	and	cons

• Pros
– Simple	and	general
– Applicable	to	many	different	problems
– Often	works	well	in	practice

• Cons
– Lots	of	parameters	to	tune
– Can’t	always	get	a	good	initialization	of	the	model	
based	on	the	minimum	number	of	samples

– Sometimes	too	many	iterations	are	required
– Can	fail	for	extremely	low	inlier	ratios
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Visual	Odometry
• Compute	the	motion	between	consecutive	camera	
frames	from	visual	feature	correspondences.

• Visual	features	from		RGB	image	have	a	3D	counterpart	
from	depth image.

• Three	3D-3D	correspondences	constrain	the	motion.

21

Visual	Odometry	Failure	Cases

22

• Low	light,	lack	of	visual	texture	or	features
• Poor	distribution	of	features	across	image
• But:	RGB-D	camera	still	provides	shape	info

ICP
(Iterative	Closest	Point)

• Iterative	Closest	Point	(ICP)	uses	shape	to	align	
frames

• Does	not require	the	RGB	image
• Does	need	a	good	initial	“guess”
• Repeat	the	following	two	steps:

– For	each	point	in	cloud	A,	find	the	closest	
corresponding	point	in	cloud	B

– Compute	the	transformation	that	best	aligns	this	
set	of	corresponding	pairs

23

ICP	Variants

• Correspondence
– Outliers	as	absolute	or	percentage
– No	many-to-one	correspondences
– Reject	boundary	points
– Normal	agreement

• Error	metric
– Point-to-point
– Point-to-plane
– Weight	by	color	/	normal	agreement

24
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ICP	(Iterative	Closest	Point)
• Iteratively	align	frames	based	on	shape
• Needs	a	good	initial	estimate	of	the	pose

25

ICP	Failure	Cases

26

• Not	enough	distinctive	shape
• Don’t	have	a	close	enough	initial	“guess”	
• Here	the	shape	is	basically	a	simple	plane…

Optimal	Transformation

• Jointly	minimize	feature	re-projection	and	ICP:

27

RGB-D	Mapping:	Using	Depth	Cameras	for	Dense	3D	Modeling	of	Indoor	Environments. Henry	et	al.		ISER	2010
RGB-D	Mapping:	Using	Kinect-style	Depth	Cameras	for	Dense	3D	Modeling	of	Indoor	Environments. Henry	et	al.		IJRR	2012

Joint	Optimization	(RGBD-ICP)

28
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Experiments

• Reprojection error	is	better	for	RANSAC:

• Errors	for	variations	of	the	algorithm:

• Timing	for	variations	of	the	algorithm:

29

Loop	Closure

• Sequential	alignments	accumulate	error
• Revisiting	a	previous	location	results	in	an	
inconsistent	map

30

Loop	Closure	Detection

• Detect	by	running	RANSAC	against	previous	frames
• Pre-filter	options	(for	efficiency):

– Only	a	subset	of	frames	(keyframes)
– Only	keyframes with	similar	estimated	3D	pose
– Place	recognition	using	vocabulary	tree

• Scalable	recognition	with	a	vocabulary	tree,	David	Nister and	
Henrik Stewenius,	2006

• Post-filter	(avoid	false	positives)
– Estimate	maximum	expected	drift	and	reject	detections	
changing	pose	too	greatly

31 32
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Loop	Closure	Correction	(TORO)

• TORO	[Grisetti 2007,	2009]:
– Constraints	between	camera	locations	in	pose	graph
– Maximum	likelihood	global	camera	poses

33

Loop	Closure	Correction:
Bundle	Adjustment

34

[Image:	Manolis Lourakis]

SBA	Points

35 36
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A	Second	Comparison

37TORO SBA

Timing

38

39

Resulting	Map

40
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Experiments:	Overlay	1

41

Experiments:	Overlay	2
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Map	Representation:	Surfels

• Surface	Elements [Pfister 2000,	Weise	2009,	Krainin 2010]

• Circular	surface	patches
• Accumulate	color	/	orientation	/	size	
information

• Incremental,	independent	updates
• Incorporate	occlusion	reasoning
• 750	million	points	reduced	to	9	million	surfels

43 44
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Application:	Quadrocopter

• Collaboration	with	Albert	Huang,	Abe	
Bacharach,	and	Nicholas	Roy	from	MIT

45 46

47

Larger	Maps
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ElasticFusion

50

[Whelan-Leutenegger-SalasMoreno-Glocker-Davison:	RSS-15]

Conclusion

• Kinect-style	depth	cameras	have	recently	become	
available	as	consumer	products

• RGB-D	Mapping	can	generate	rich	3D	maps	using	
these	cameras

• RGBD-ICP	combines	visual	and	shape	information	
for	robust	frame-to-frame	alignment

• Global	consistency	achieved	via	loop	closure	
detection	and	optimization	(RANSAC,	TORO,	SBA)

• Surfels provide	a	compact	map	representation

51


