CSE-571
Robotics

Fast-SLAM Mapping

Particle Filters

Represent belief by random
Estimation of processes

Sampling Importance Resampling (SIR) principle
Draw the new generation of particles
Assign an importance weight to each particle
Resampling

Typical application scenarios are
tracking, localization, ...

Dependencies

Is there a dependency between the dimensions of
the state space?

If so, can we use the dependency to solve the
problem more efficiently?

In the SLAM context
The map depends on the of the robot.

We know how to build a map the position of the
sensor is

Particle Filter Algorithm

Sample the particles from the proposal distribution

J

2~z | )

Compute the importance weights
target(zy])

] _
W = p'roposal(m[tj])
Resampling: Draw sample 7 with probability ’U)y]

and repeat J times

Courtesy: C. Stachniss




Particle Representation

0 A set of weighted samples

¥ o= e}~

01 Think of a sample as one hypothesis about the state

0 For feature-based SLAM:

— T
r = (214, mM1x, M1y MMz mM,y)

Courtesy: C. Stachniss

Dimensionality Problem

Particle filters are effective in low dimensional spaces
as the likely regions of the state space need to be
covered with samples.

— T
r = (xlib M1, M1 ys-- - MM mM,y)

Courtesy: C. Stachniss

Can We Exploit Dependencies Between
the Different Dimensions of the State

Space?

L1, M7, -, TNNS

Courtesy: C. Stachniss

If We Know the Poses of the Robot,
Mapping is Easy!

L1, M7, -« TNMNf

/

Courtesy: C. Stachniss




Key Idea

L1, M7, -, TNMNf

/

If we use the particle set only to model the robot’s path,
each sample is a path hypothesis. For each sample, we
can compute an individual map of landmarks.

Courtesy: C. Stachniss

Rao-Blackwellization

Factorization to exploit dependencies between
variables:

p(a,b) = p(b|a) p(a)

If p(b | a) can be computed efficiently, represent
only p(a) with samples and compute p(b | a) for
every sample

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(zo:t, m1:pr | 21045 u1:) =

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

p(xo:, m1:pr | 2104 u1:) =
P(CEO:t | Zlitvulit) p(mle | xo:t,21:t)

First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances
in Neural Information Processing Systems, 1999 Courtesy: C. Stachniss




Rao-Blackwellization for SLAM

01 Factorization of the SLAM posterior
p(xo:, M1 | 218, u1) =

P(330:t | Zl:t>U1:t) P(ml:M | mo:tazl:t)

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

0 Factorization of the SLAM posterior
p(zo:t, M1y | 2105 u1:t) =

p(xo:¢ | 21:4,u1:¢) P(Mmi:ps | 04, 21:1)

M
p(zo:¢ | 21:4,u1:¢) H p(m; | ©o:¢, 21:¢)
i=1

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

0 Factorization of the SLAM posterior
p(zo:t, m1:ng | 21:85u1:t) =
p(zo:t | 21:4,u1:t) P(Ma1:v | To:t, 21:8)
M

(@ | z1:6,u1e) ] pOmi | mots 21:4)
i=1

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

0 Factorization of the SLAM posterior
p(xo:t, M1 | 210, uL:e) =
p(zo:t | 21:4,u1:e) (Mg | Towts 21:1)
M
p(xo:t | z1:6u1:) [ pOmi | mots 21:4)
=1

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss




Modeling the Robot’s Path

0 Sample-based representation for
p(zo:t | 21:¢,u1:t)
0 Each sample is a path hypothesis

Lo L] L2
starting location, pose hypothesis
typically (0,0,0) at time t=1

0 Past poses of a sample are not revised

0 No need to maintain past poses in the sample set

Courtesy: C. Stachniss

FastSLAM — Motion Update

i — Landmark 1
BESCa < 2x2 EKF
Particle #1 |

SR S

Particle #2 11 —

Particle #3

FastSLAM

01 Proposed by Montemerlo et al. in 2002
0 Each landmark is represented by a 2x2 EKF

0 Each particle therefore has to maintain M individual
EKFs

:‘""‘Ie ,Y, 2] . Landmark 1 I Landmark 2 l Landmark M
;‘""de x,, 0 . Landmark 1 I Landmark 2 l Landmark M

:;'"'c'e x,vy, 0 . Landmark 1 I Landmark 2 l Landmark M

FastSLAM — Sensor Update

i — Landmark 1
(Oq-4- < 2x2 EKF
Particle #1 N

* Landmark 2
2x2 EKF

/

s/

Particle #2 -

Particle #3 NIRE ?

Courtesy: M. Montemerl

Courtesy: M. Montemerld




FastSLAM — Sensor Update FastSLAM — Sensor Update

. 1 :\- — C e i 9_- :\- — Update map

Particle #1 B Weight = 0.8 Particle #1 of particle 1

. (js:_‘ Lo i (_952_5 Update map

Particle #2 Weight = 0.4 Particle #2 $ of particle 2
= = AT

Particle #3 NEBER Weight = 0.1 Particle #3 NREEE Update map

of particle 3

Courtesy: M. Montemerld Courtesy: M. Montemerlq

Key Steps of FastSLAM 1.0 FastSLAM in Action

0 Extend the path posterior by sampling a new pose . . o
for each sample

(K]
zi ~ p(a | l’t 1?ut) . @
exp. observation

0 Compute particle weight
wltl = 27Q| % exp {—3(z — ZENTQ™ (2 — 2[k])}

.
. . . '
innovation covariance . .

0 Update belief of observed landmarks ° e .
(EKF update rule) " . by "

0 Resample

Courtesy: C. Stachniss Courtesy: M. Montemerlo




FastSLAM — Video — All Maps
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FastSLAM — Video — “Best” particle in
terms of of the Posterior
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Data Association Problem
0 Which observation belongs to which landmark?

X%VT-»IG?N%

[0 More than one possible association

O

Courtesy: M. Montemerlo




Particles Support for Multi-Hypotheses
Data Association

0 Decisions on a per-particle %
basis

0 Robot pose error is factored ;.
out of data association = * w
decisions -

Courtesy: M. Montemerlo

Per-Particle Data Association

9’ — Was the observation
ﬂ generated by the red
& or by the blue
\ 4 landmark?

P(observation | red) = 0.3 P(observation | blue) = 0.7

Courtesy: M. Montemerlo

Per-Particle Data Association

9_ 1 Woas the observation
. ‘ generated by the red
& or by the blue
\ j landmark?

P(observation | red) = 0.3 P(observation | blue) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick a random association weighted by the observation likelihoods
= |f the probability for an assignment is too low, generate a new
landmark

Courtesy: M. Montemerlo

Results — Victoria Park

0 4 km traverse

0 < 2.5 mRMS
position error

0 100 particles

Blue = GPS
= FastSLAM

Courtesy: M. Montemerlo




Results — Victoria Park (Video)

Courtesy: M. Montemerlo

Results (Sample Size)

Accuracy of FastSLAM vs. the EKF on Simulated Data
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Courtesy: M. Montemerlo

Results (Motion Uncertainty)

Comparison of FastSLAM and EKF Given Motion Ambiguity
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Courtesy: M. Montemerlo

Techniques to Reduce the
Number of Particles Needed

» Better proposals (put the particles in
the right place in the prediction

step).

» Avoid particle depletion (re-sample

only when needed).




Generating better Proposals

® Use scan-matching to compute highly
accurate odometry measurements
from consecutive range scans.

® Use the improved odometry in the
prediction step to get highly accurate
proposal distributions.

Motion Model for Scan Matching

s Raw Odometry
Scan Matching

Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle

A “'ll‘

map of particle 1
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Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle

Rao-Blackwellized Mapping with
Scan-Matching

Map: Intel Research Lab Seattle

Example (Intel Lab)

= 15 particles
> N ) = four times faster
B4 BT A N > than real-time
A / J— 8 P4, 2.8GHz
! \ = 5cm resolution
| = | - e during scan
Moy 1 \ | matching
| - = 1cm resolution in
| ‘ | ‘ final map

Work by Grisetti et al.

= 30 particles
= 250x250m?2

= 1.088 miles
(odometry)

= 20cm resolution
during scan
matching

= 30cm resolution
in final map

Work by Grisetti et al.
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FastSLAM 1.0

01 FastSLAM 1.0 uses the motion model as the
proposal distribution

(K]

k
zy ~ p(xy | 531[5—]171%)

[Montemerlo et al., 2002] Courtesy: C. Stachniss

Weakness of FastSLAM 1.0

0 Proposal Distribution 0 Importance weighting

() (b)

FastSLAM 1.0 to FastSLAM 2.0

0 FastSLAM 1.0 uses the motion model as the
proposal distribution

(K]

k
zy ~ play | 331[5—]1vut)
0 FastSLAM 2.0

01 Especially useful if an accurate sensor is used
(compared to the motion noise)

[Montemerlo et al., 2003] Courtesy: C. Stachniss

FastSLAM 2.0 (Informally)

0 FastSLAM 2.0 samples from

k k \
371[5 N p(@”t | x[l;l_pulstazlst‘)

0 Results in a more peaked proposal distribution
0 Less particles are required
[ More robust and accurate

0 But more complex...

[Montemerlo et al., 2003] Courtesy: C. Stachniss
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FastSLAM Problems

0 How to determine the sample size?

0 Particle deprivation, especially when closing
(multiple) loops

Particles share common history here

,,,,,,,,, o aateooooa

FastSLAM 1.0 - «| |FastSLAM2.0..

Courtesy: M. Montemerlo

DP-SLAM: High-Res Fast-SLAM
via History Sharing
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Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s

Consistency

Results obtained with
DP-SLAM 2.0 (offline)
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Eliazar & Parr, 04
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Close up

End courtesy of Eliazar & Parr

FastSLAM Summary

0 Particle filter-based SLAM

0 Rao-Blackwellization: model the robot’s path by
sampling and compute the landmarks given the

poses
0 Allow for per-particle data association
0 FastSLAM 1.0 and 2.0 differ in the proposal

distribution

0 Complexity O(N log M)

Courtesy: C. Stachniss

Literature

FastSLAM
0 Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-
13.3 + 13.8 (see erratal)

01 Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A
Factored Solution to the Simultaneous Localization
and Mapping Problem, 2002

1 Montemerlo and Thrun: Simultaneous Localization and

Mapping with Unknown Data Association Using
FastSLAM, 2003

Courtesy: C. Stachniss
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