Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems
- Particle filters are a way to **efficiently** represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses (“particles”)
 - Survival-of-the-fittest

Density Approximation

- Particle sets can be used to approximate densities
- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?
Let us assume that $f(x) \leq 1$ for all x
- Sample x from a uniform distribution
- Sample c from $[0,1]$
- if $f(x) > c$ keep the sample
 otherwise reject the sample

\[f(x) \leq 1 \quad \text{for all } x \]

We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the “differences between g and f”
- $w = f / g$
- f is often called target
- g is often called proposal
This is Easy!
We can draw samples from $p(x | z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution $f : p(x | z_1, z_2, \ldots, z_n) = \frac{\prod_{l=1}^{k} p(z_i | x) \cdot p(x)}{p(z_i, z_2, \ldots, z_n)}$

Sampling distribution $g: p(x | z_l) = \frac{p(z_i | x)p(x)}{p(z_l)}$

Importance weights $w : \frac{f}{g} = \frac{p(x | z_1, z_2, \ldots, z_n)}{p(x | z_l)} = \frac{p(z_i) \prod_{l=1}^{k} p(z_i | x)}{p(z_i, z_2, \ldots, z_n)}$

Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling Algorithm

1. Algorithm systematic_resampling(S,n):
2. $S' = \emptyset$, $c_1 = w^1$
3. For $i = 2 \ldots n$
4. $c_i = c_{i-1} + w^i$
5. $u_i \sim U[0,n^{-1}], i = 1$
6. For $j = 1 \ldots n$
7. While $(u_j > c_i)$
8. $i = i + 1$
9. $S' = S' \cup \lessgtr x^i, n^{-1} >$
10. $u_j = u_j + n^{-1}$
11. Return S'

Also called stochastic universal sampling

Particle Filters

Sensor Information: Importance Sampling

$Bel(x) \leftarrow \alpha \frac{p(z | x) \cdot Bel'(x)}{Bel'(x)} = \alpha \frac{p(z | x)}{Bel'(x)}$
Robot Motion

\[Bel'(x) \leftarrow \int p(x | u, x') Bel(x') \, dx \]

Sensor Information: Importance Sampling

\[
Bel(x) \leftarrow \alpha p(z | x) Bel'(x) \\
w \leftarrow \alpha p(z | x) Bel'(x) = \alpha p(z | x)
\]

Particle Filter Algorithm

1. Algorithm **particle_filter**(\(S_{t-1}, u_{t-1}, z_t \)):
2. \(S_t = \emptyset, \ \eta = 0 \)
3. For \(i = 1 \ldots n \) \(\rightarrow \) **Generate new samples**
4. Sample index \(j(i) \) from the discrete distribution given by \(w_{t,i} \)
5. Sample \(x'_i \) from \(p(x_i | x_{i-1}, u_{i-1}) \) using \(x_{i-1}^{(j(i)),} \) and \(u_{i-1} \)
6. \(w'_i = p(z_i | x'_i) \) \(\rightarrow \) **Compute importance weight**
7. \(\eta = \eta + w'_i \) \(\rightarrow \) **Update normalization factor**
8. \(S_t = S_t \cup \{x'_i, w'_i\} \) \(\rightarrow \) **Insert**
9. For \(i = 1 \ldots n \) \(\rightarrow \) **Normalize weights**
10. \(w'_i = w'_i / \eta \)
Particle Filter Algorithm

\[\text{Bel}(x_t) = \eta \cdot p(z_t \mid x_t) \cdot \int p(x_t \mid x_{t-1}, u_{t-1}) \cdot \text{Bel}(x_{t-1}) \, dx_{t-1} \]

- Draw \(x_{t-1} \) from \(\text{Bel}(x_{t-1}) \)
- Draw \(x_t \) from \(p(x_t \mid x_{t-1}, u_{t-1}) \)

Importance factor for \(x_t \):

\[w_t' = \frac{\text{target distribution}}{\text{proposal distribution}} = \frac{\eta \cdot p(z_t \mid x_t) \cdot p(x_t \mid x_{t-1}, u_{t-1}) \cdot \text{Bel}(x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \cdot \text{Bel}(x_{t-1})} \propto p(z_t \mid x_t) \]

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z: $P(z|x)$

$P(z|x)$:
Next to a Light

Elsewhere

Global Localization Using Vision

Recovery from Failure
Localization for AIBO robots

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser
Particle Filter Projection

Density Extraction

Sampling Variance

CSE-571
Robotics

Bayes Filter Implementations

Discrete filters
Discrete Bayes Filter Algorithm

1. **Algorithm** *Discrete_Bayes_filter* (*Bel(x), d*):
 2. \(\eta = 0 \)
 3. If *d* is a perceptual data item *z* then
 4. For all *x* do
 5. \(Bel'(x) = P(z \mid x)Bel(x) \)
 6. \(\eta = \eta + Bel'(x) \)
 7. For all *x* do
 8. \(Bel'(x) = \eta^{-1}Bel(x) \)
 9. Else if *d* is an action data item *u* then
 10. For all *x* do
 11. \(Bel'(x) = \sum_{x'} P(x \mid u, x') Bel(x') \)
 12. Return \(Bel'(x) \)

Piecewise Constant Representation

\(Bel(x_i) = \langle x, y, \theta > \)

\((0, 0, 0)\)

Grid-based Localization
Sonars and Occupancy Grid Map

Idea: Represent density using a variant of Octrees

Tree-based Representations

- Efficient in space and time
- Multi-resolution

Localization Algorithms - Comparison

<table>
<thead>
<tr>
<th></th>
<th>Kalman filter</th>
<th>Multi-hypothesis tracking</th>
<th>Topological maps</th>
<th>Grid-based (fixed/variable)</th>
<th>Particle filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Features</td>
<td>Non-Gaussian</td>
<td>Non-Gaussian</td>
</tr>
<tr>
<td>Posterior</td>
<td>Gaussian</td>
<td>Multi-modal</td>
<td>Piecewise constant</td>
<td>Piecewise constant</td>
<td>Samples</td>
</tr>
<tr>
<td>Efficiency (memory)</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>-/o</td>
<td>+/+</td>
</tr>
<tr>
<td>Efficiency (time)</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>o/+</td>
<td>+/+</td>
</tr>
<tr>
<td>Implementation</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Accuracy</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>+/++</td>
<td>++</td>
</tr>
<tr>
<td>Robustness</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+/+</td>
</tr>
<tr>
<td>Global localization</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>