CSE 571
Probabilistic Robotics

Bayesian Filtering, Models

ESTIMATION

Recap
z = observation
- u = action
Bayes Filters x = state
Bel(x,)+ P(x, |u,z, ....u,,z,)
Bayes =1 P(z, | x,,u,,2,, ...,u,) P(x, |u,z,, ...,u,)
Markov =n P(z, | x,) P(x, |u,,z,...,u,)
Total prob. =1} P(Zt |xt) J-P(Xt |ul,Z1, ...,ut,xt_l)
P(x w2, ...5u,) dx,
Markov =1 P(z,|x,) J.P(xt lu,, %) P(x, w2, .. 0,) dx,

£ P(z, 1) [ PO lu,x,,) Bel(x,,) dx,., |

Parametric Sensor Model

T

Oyt B, (z|x,m)
P(z|x,m) = inexp . Punexp (z|x,m)
max P (2| x,m)

T P, (2| x,m)




Parametric Kinematics Model Alternative: Non-Parametric

o _ Gaussian Process Models
® Robot moves from <x,y,0>to <76',?',6">.
 Odometry information u=(5,,,,5,,,,,6,,,

8y = F=T) +(7-7)’

5rot1 = atan2 (37'_)7’ x'_f) - 6_
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Variance
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Representations for Bayesian
Robot Localization

The Prediction-Correction-Cycle
\ of Kalman Filters

/ -Kalman filters (late-80s?
*Discrete approaches (’95

» Gaussians
- Topological representation (*95) + approximately linear models /I
« uncertainty handling (POMDPs) « position tracking
« occas. global localization, recovery
* Grid-based, metric representation (’96)
« global localization, recovery
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T+
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l)(l(x,)f{ 5 S (U-KC)E LK, =%.C/(CEC +0Q) ‘

Particle filters (’99)
« sample-based representation

*Multi-hypothesis (’00
* multiple Kalman filters

ion
\ * global localization, recovery| /< « global localization, reco\? K ’/
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EKF Linearization
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UKF Linearization
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Particle Filter Proj
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Importance Sampling Principle

= We can use a different distribution g to generate samples
from f

® By introducing an importance weight w, we can account for
the “differences between g and 1"

w=f/g

proposal(x) ——
target(x)
samples

probability / weight

_MmmummnllmmmulMH_Lu
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SLAM

ESTIMATION
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Types of SLAM-Problems

Grid maps or scans <\>\

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras,
99; Haehnel, 01;...]

Landmark-based
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Why is SLAM a hard problem?

*SLAM: robot path and map are both unknown

© 0 -
o Vo
*

*Robot path error correlates errors in the map

EKF-SLAM
® Map with N landmarks:(3+2N)-dimensional
Gaussian
x) (o o, 0,
y 0'9, 0; oyﬂ
6 g,
Bel(x,,m) = I, a,f oy, Oy,

e

2
Oy, @, > Gy,

2
IN Oy, O, = O

® Can handle hundreds of dimensions
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FastSLAM

Robot Pose 2 x 2 Kalman Filters

Pamc'e X, Y, 2 . Landmark 1 | Landmark 2 I Landmark N

Pa:;"'e X, Y, 2 . Landmark 1 | Landmark 2 I Landmark N

Pa:;‘:'e X, Y, . Landmark 1 | Landmark 2 I Landmark N

Pa"'ac'e XY, Z . Landmark 1 || Landmark 2 I Landmark N
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[Courtesy of Mike Montemerlo]

Graph-SLAM Idea

X Q, %, 1%, = gy, x)] R [, = g1t x,)] 22— h(myx ) Q™[22 — hGmyx,)]

1% = gy, 3) 1" R = g, )] /..

[z, = hOm, )] Q7' [z, — him;, x)]

& L2y = hOmy, x)1 Q' [z, = h(my, x)]
[z, = x )T Q7' [z, =i x )] ="

[x, = gy x)]" R [x, — glu,,x,)]

Sum of all constraints:

oo =% Qo %o+ 2 1%, =g, x, ) R [x, - 8w, x, DI+ Y[z, = h(m, . x)I Q7' [z, —h(m, ,x,)]
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3D Outdoor Mapping

108 features, 10> poses, only few secs using cg. 10

RGB-D Mapping
T —r—
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RGB-D Mapping
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MORE COMPLEX
ESTIMATION

Ball-Environment Interaction




sDieter
Fox

Inference: Posterior

stimation
e Landmark detection g
— _‘ Q Map and robot location _::
1 @ 1 @ 1 Robot control &
@ @ Ball motion mode

l
@ @ Ball location and velocity ;é
&

@ @ @ Ball observation

p(b,my, 1, |Z£k9211:k9u1:k—1) s

Hierarchical Model

Geographic Information Systems
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Goal
Trip segment
Transportation mode

Edge, velocity, position

GPS reading
Time k-1 Time k

PaI’tIC|es s(i) = <<gvt>m ,m(i))e(i), V(i),g(i))N(i)(lu)O.Z)>

eDieter Fox *CSE-571: Probabilistic Robotics 27

PLANNING / CONTROL




Coordinated exploration with three robots
from unknown start locations

The robots are fully autonomous.
All computation is performed on—board.

Shown is the perspective of one robot

Deterministic, fully observable

Planning via Cell Decomposition
* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness " %ﬁ

action template

2= replicate it e

online

C(s,85) =5

CSE-571: Courtesy of Maxim Likhachev, CMU

Rapidly exploring Random Tree (RRT)

S7
C(s,s,) = 100

Source: LaValle and Kuffner 01




Stochastic, Fully Observable

N
NSNS

Manipulator Control Path

State space Configuration space

RL in Uncertain Environments:
Converting Beliefs to Augmented
States

S .::}, NN
AN

+State variables

“Uncertainty
svariables

Belief Augmented state

Stochastic, Partially Observable

L AN N S

PASONN
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The Belief Roadmap Algorithm

GOAL

Zg 2g
2y
7
1. Sample means from Cy.,, build graph and
transfer functions

2. Propagate covariances by performing graph
search

PILCO: GP Model-Based Learning

Swing pendulum up
and balance in
inverted position
Learn nonlinear
control from scratch
4D state space, 300
controll parameters
7 trials/17.5 sec
experience

Control freqg.: 10 Hz

trial #1 (random actions)

Inverse Optimal Control

Cost Map

] it 2D
Learning . Planner

Y
(Path to goal)

Further Examples and
Discussion

40
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[Schmidt-Newcombe-F: RSS-14]

DART: Dense Articulated Real-Time Tracking

Using Articulated Signed-Distance Functions

Goal: General tool for real-time tracking of arbitrary
articulated objects

Input: Shape models of parts along with joint structure
Insight: Efficient optimization via articulated signed
distance functions

?
{

([

[Schmidt-etal: ICRA-15]

Fine-Grained Manipulation

Kinect RGB

Tracking

[Schmidt-Newcombe-F: RSS-14, AR-15]

DART: Model-Based Tracking
Hand (27 DoF) and Human Body (42 DoF

Detection-Based Approach to
Articulated Tracking

0 40 50

RNN Output.

Inspired by
[Tompson-etal:
SIGGRAPH-14]
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[Bollini-Rus]

Model-Based / Detection-Based BakeBot

Model-based Detection-based

Generalit Minimal assumptions, broad ~ Only in trained regime B k B .

y applicability a e o t .

Robustness Requires initialization and Robust in trained regime; M Ot | on P I ann | n g fO r COO k| n g
good model; Failure detection more
Can detect failures difficult

Training Minimal training, model Major training effort ; Model- Mario Bo|||n| and Daniela Rus
building based for supervision

CSAIL, MIT
Physics contacts Explicitly modeled Must be learned in data
7 driven way {ﬁﬁfﬂL

Efﬁciency Efficient for local tracking; Highly efficient once trained ' L%ciSA: i

Initialization extremely hard

[Kunze-Dolha-Beetz]

Physics Simulation for Prediction How Julia Does it

Logic Programming with Simulation-based Temporal
Projection for Everyday Robot Object Manipulation

Lars Kunze, Mihai Emanuel Dolha and Michael Beetz

Intelligent
,"“\ Autonomous 0.

! Systems




Gravity and Onions

Q-Network
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Human-level control
through deep reinforcement
learning

Learning Models from Raw
Perce N tion [Finn-Tan-Duan-Darrell-Levine-Abbeel]

Deep Spatial Autoencoders
for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan,
Trevor Darrell, Sergey Levine, Pieter Abbeel
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Summary

Probabilistic robotics
= Great framework for approaching robotics problems

= Not always possible, or the most appropriate
approach

On models and learning

= Models are great but never perfect

= Especially when reasoning about messy stuff
= Learning of residuals, shortcuts, everything?
= Combination is key
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