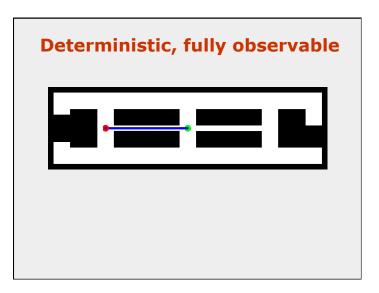
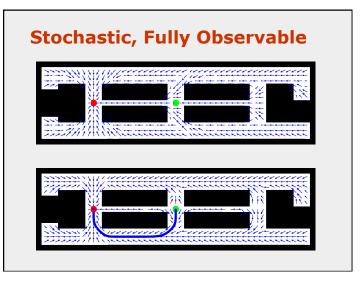
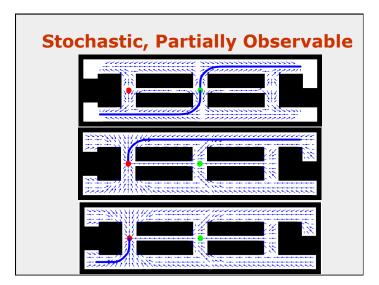


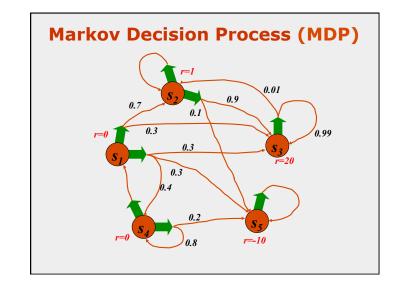
Problem Classes

- Deterministic vs. stochastic actions
- Full vs. partial observability









Markov Decision Process (MDP)

- Given:
- States *x*
- Actions *u*
- Transition probabilities p(x'|u,x)
- Reward / payoff function r(x,u)

• Wanted:

• Policy *p*(*x*) that maximizes the future expected reward

Rewards and Policies

• Policy (general case):

$$\pi: z_{1:t-1}, u_{1:t-1} \rightarrow u$$

• Policy (fully observable case):

$$\pi$$
: $x_t \rightarrow u$

• Expected cumulative payoff:

$$R_{T} = E \left[\sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} \right]$$

- T=1: greedy policy
- T>1: finite horizon case, typically no discount
- T=infty: infinite-horizon case, finite reward if discount < 1

Policies contd.

• Expected cumulative payoff of policy:

$$R_{T}^{\pi}(x_{t}) = E \left[\sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi \left(z_{1:t+\tau-1} u_{1:t+\tau-1} \right) \right]$$

• Optimal policy:

$$\pi^* = \operatorname{argmax} R_T^{\pi}(x_t)$$

• 1-step optimal policy:

$$\pi_1(x) = \operatorname{argmax} r(x, u)$$

• Value function of 1-step optimal policy: $V_1(x) = \gamma \max_u r(x, u)$

2-step Policies
• Optimal policy:

$$\pi_2(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$$

• Value function:
 $V_2(x) = \gamma \max_u \left[r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$

T-step Policies

• Optimal policy:

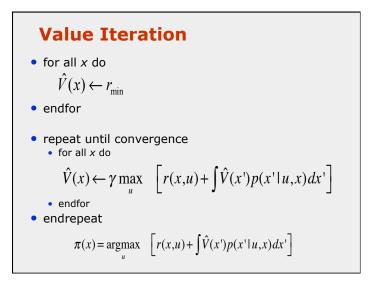
$$\pi_T(x) = \underset{u}{\operatorname{argmax}} \quad \left[r(x,u) + \int V_{T-1}(x') p(x' \mid u, x) dx' \right]$$

• Value function:

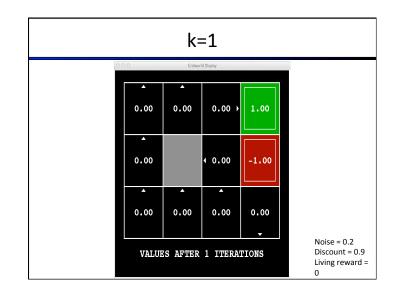
$$V_T(x) = \gamma \max_u \left[r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right]$$

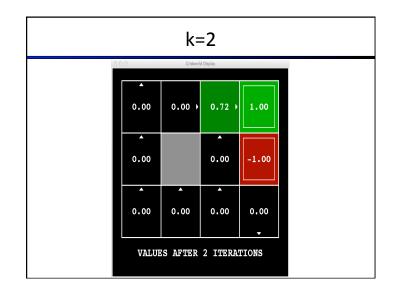
Infinite Horizon

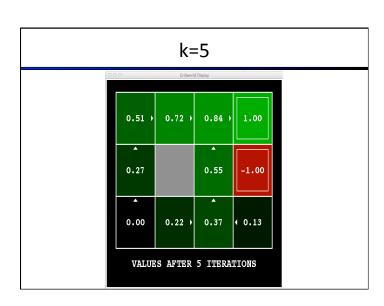
• Optimal policy: $V_{\infty}(x) = \gamma \max_{u} \left[r(x,u) + \int V_{\infty}(x')p(x'|u,x)dx' \right]$ • Bellman equation • Fix point is optimal policy • Necessary and sufficient condition

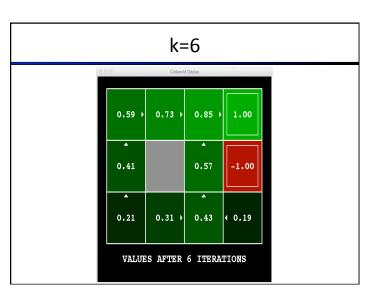


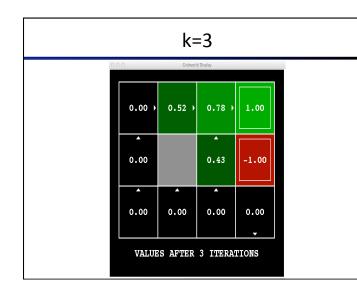
k=0					
0 0 0 Gridworld Display					
	•	•	•		
	0.00	0.00	0.00	0.00	
	•		•		
	0.00		0.00	0.00	
		A	_		
	0.00	0.00	0.00	0.00	
	VALUES AFTER 0 ITERATIONS				Noise = 0.2 Discount = 0.9 Living reward = 0

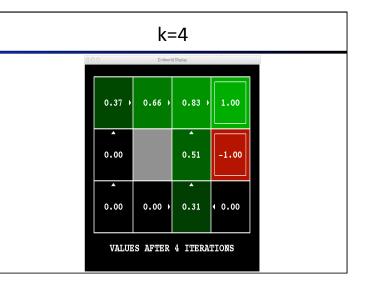


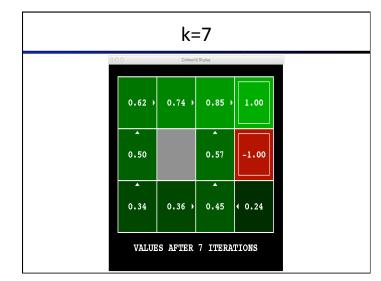


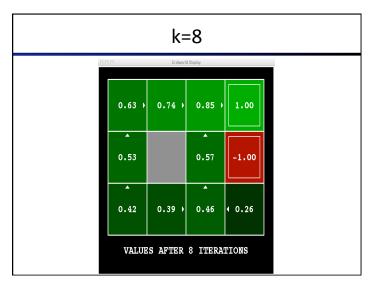


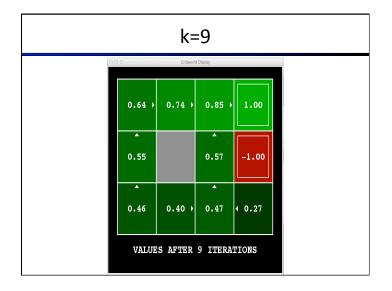


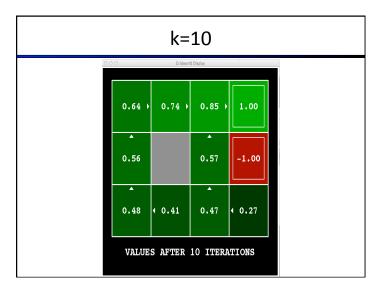


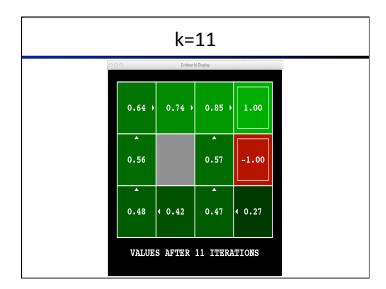


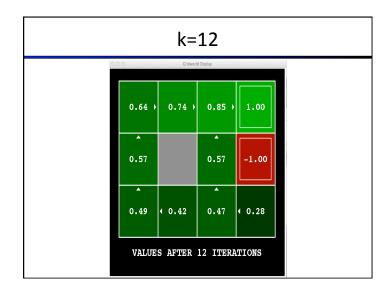


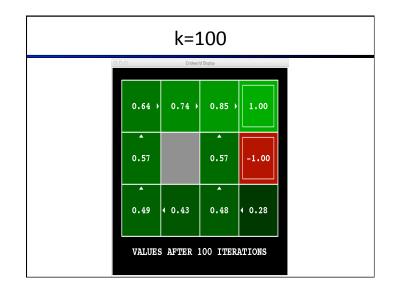


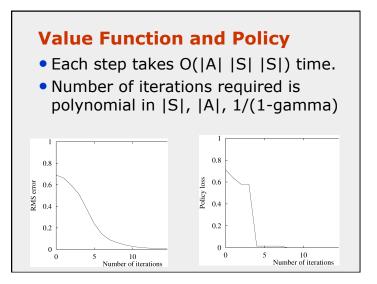








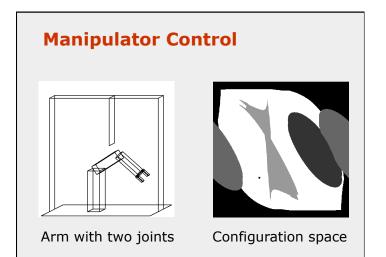




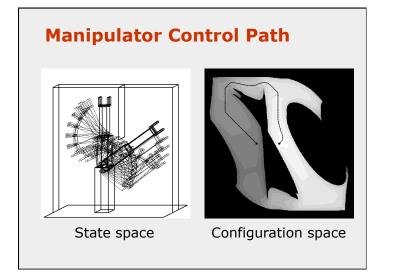
Value Iteration for Motion Planning (assumes knowledge of robot's location)

Frontier-based Exploration

• Every unknown location is a target point.



Manipulator Control Path Л State space Configuration space



POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the **number of linear** constraints grows exponentially.
- Full fledged POMDPs have only been applied to very small state spaces with small numbers of possible observations and actions.
- Approximate solutions are becoming more and more capable.