11/29/15

CSE-571
Sampling-Based Motion Planning

Slides from Pieter Abbeel, Zoe McCarthy
Many images from Lavalle, Planning Algorithms

Motion Planning

= Problem

= Given start state X, goal state Xg

= Asked for: a sequence of control inputs that leads from start to goal
= Why tricky?

= Need to avoid obstacles

= For systems with underactuated dynamics: can’t simply move along any
coordinate at will

= E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Solve by Nonlinear Optimization for Control? Examples
= Could try by, for example, following formulation:
min,, (27 —2¢)" (a1 — 2c)
Stz = o) Vi
w €U
€ X X, can encode obstacles
o =g -
= Or, with constraints, (which would require using an infeasible method):
ming,, [lul -
st res1 = fla, Vit . .
::u, flrewo Helicopter path Cartpole swing-up Acrobot
s ek planning
d0= s
Xr=zc
= Can work isil well, but for more problems can get stuck in infeasible local minima

11/29/15

Examples

Examples

Examples

Motion Planning: Outline

Configuration Space

Probabilistic Roadmap
Rapidly-exploring Random Trees (RRTs)
Extensions

Smoothing

11/29/15

Configuration Space (C-Space)

Motion planning

={x | xisa pose of the robot}

= obstacles = configuration space obstacles
Workspace Configuration Space

(2 DOF: translation only, no rotation)

‘ free space O
obstacles [l
) ‘ | -

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)

Space X" forbidden space Free/feasible space
AN

4

Configurations are sampled by picking coordinates at random

11/29/15

Probabilistic Roadmap (PRM) Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random Sampled configurations are tested for collision

Probabilistic Roadmap (PRM) Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones Each milestone is linked by straight paths to its nearest neighbors

11/29/15

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

The collision-free links are retained as local paths to form the PRM

). 4

=

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

The PRM is searched for a path fromsto g

11/29/15

Probabilistic Roadmap

PRM Example 1

Initialize set of points with Xg and Xg
Randomly sample points in configuration space
Connect nearby points if they can be reached from each other

Find path from X to Xg in the graph

= Alternatively: keep track of connected components incrementally, and
declare success when X and X are in same connected component

PRM Example 2

PRM Example 2

11/29/15

PRM’s Pros and Cons

Rapidly exploring Random Tree (RRT)

= Pro:

= Probabilistically complete: i.e., with probability one, if run for long
enough the graph will contain a solution path if one exists.

= Cons:
= Required to solve 2-point boundary value problem

= Build graph over state space but no focus on generating a path

Steve LaValle (98)

= Basicidea:

= Build up a tree through generating “next states” in the tree by
executing random controls

= However: not exactly above to ensure good coverage

| How to Sample

Rapidly exploring Random Tree (RRT)

GENERATE_RRT (nit, K, At)
1 T.init(ini);
2 fork=1to K do
3 Trand < RANDOM_STATE();
4 Znear — NEAREST_NEIGHBOR (#rand, T);
5 u < SELECTINPUT (rand; Tnear);
6 Tnew NEW_STATE(Zrear, u, At):
7 T.add_vertex(zpew);
8 T .add-edge(Tnear, Tnew, 1);
9 Return T

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures t attempts to connect to goal semi-regularly

11/29/15

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

= Select random point, and expand nearest vertex towards it

= Biases samples towards largest Voronoi region

= Select random point, and expand nearest vertex towards it

= Biases samples towards largest Voronoi region

init

RRT Practicalities

Rapidly exploring Random Tree (RRT)

Source: Lavalle and Kuffner 01]

= NEAREST_NEIGHBOR(X,,.4 T): need to find (approximate)
nearest neighbor efficiently

= KD Trees data structure (upto 20-D) [e.g., FLANN]

= Locality Sensitive Hashing

= SELECT_INPUT(X,, 4 Xpenr)

= Two point boundary value problem

= If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

11/29/15

RRT Extension

Growing RRT

No obstacles, holonomic:

@

>/ Y\\\\w

With obstacles, holonomic:

X <

Non-holonomic: approximately (sometimes as approximate as picking best of a
few random control sequences) solve two-point boundary value problem

£ terations 390 iterations

Demo: hitp://en. wikipedia.orghwiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.git

Bi-directional RRT

Multi-directional RRT

Volume swept out by unidirectional RRT: = Volume swept out by bi-directional RRT:
b e
Xnew.
(e)
o o ol
near N
o

init

= Difference more and more pronounced as dimensionality increases

= Planning around obstacles or through narrow passages can
often be easier in one direction than the other

)
D) ‘\aj
)

11/29/15

Resolution-Complete RRT (RC-RRT) RRT*

Algorithm 6: RRT*

= Issue: nearest points chosen for expansion are
(too) often the ones stuck behind an obstacle

3 | @mna ¢ SampleFree;;
4| Tncarest = Nearest(G = (V, E), Trana);
5 | Bnew ¢ Steer(Tncarcsts Teand) §
RC-RRT solution: 6 | if ObtacleFree(Tycarest: Tuew) then
7
s
o

Kyear 4 Near(C = (V, E), @y, min{ynrer- (log(card (V))/ card (V)% n}) 5
Ve VU{zuah
min 4= Tncarsti Crmin 4 COBE (Tncaret) + C{LAE (Troarests Fnew))i
10 foreach Tucor € Xpear do // Connect along a minimum-cost path

= Choose a maximum number of times, m, you are willing to try to expand each node

= For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

u \\ifrﬂ‘) A Co8t(@sear) + c(Line(Tacar, Taew)) < Cuin then
« Initilize CVF to zero when node is added to tree ” L o ¢ Sner Grin ¢ CO8t () + (1428 (ncars ew))
i E EU{(@min, Tnew) i
« Whenever an expansion from the node is unsuccessful (e.g. per hitting an obstacle): " foreach e € Xoour do // Rewire the tree
15 if Coll Tncar) A COSt(Enew) + ¢(Line(Zuew, Tncar)) < Cost
+ Increase CVF of that node by | then Tyusent — PaTent (T);
16 E + (E\ {(<parents Tncar) }) U {(Tnews Tnear) }

= Increase CVF of its parent node by I/m, its grandparent I/m?, ...

17 return G = (V, B);
= When a node is selected for expansion, skip over it with probability CVF/m Source: Karaman and Frazzoli

RRT* RRT*

= Asymptotically optimal

= Main idea: RRT
= Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent
RRT*

Source: Karaman and Frazzoli

10

11/29/15

Smoothing

RRT*

Source: Karaman and Frazzoli

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

- In practice: do smoothing before using the path

= Shortcutting:
= along the found path, pick two vertices X,,, X,, and try to connect them
directly (skipping over all intermediate vertices)
= Nonlinear optimization for optimal control

= Allows to specify an objective function that includes smoothness in
state, control, small control inputs, etc.

11

