CSE-571 Sampling-Based Motion Planning

Slides from Pieter Abbeel, Zoe McCarthy Many images from Lavalle, Planning Algorithms

Motion Planning

- Problem
 - Given start state X_S, goal state X_G
 - Asked for: a sequence of control inputs that leads from start to goal
- Why tricky?
 - Need to avoid obstacles
 - For systems with underactuated dynamics: can't simply move along any coordinate at will
 - E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Solve by Nonlinear Optimization for Control?

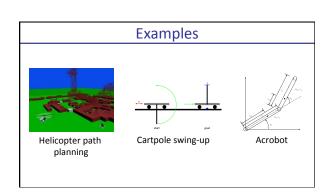
Could try by, for example, following formulation:

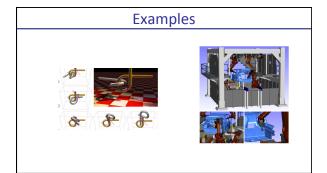
$$\begin{aligned} & \min_{u,x} & & (x_T - x_G)^\top (x_T - x_G) \\ & \text{s.t.} & & x_{t+1} = f(x_t, u_t) & \forall t \\ & & u_t \in \mathcal{U}_t \\ & & x_t \in \mathcal{X}_t \\ & & x_0 = x_S \end{aligned} \quad \quad \text{χ can encode obstacles}$$

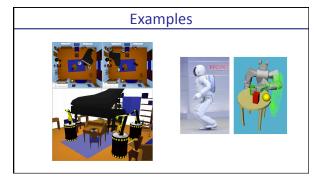
Or, with constraints, (which would require using an infeasible method):

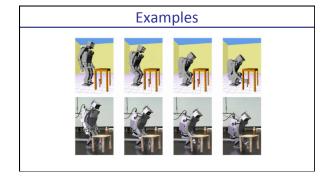
```
\begin{aligned} \min_{u,x} & \|u\| \\ \text{s.t.} & x_{t+1} = f(x_t, u_t) \ \forall t \\ & u_t \in \mathcal{U}_t \\ & x_t \in \mathcal{X}_t \\ & x_0 = x_S \\ & X_T = x_G \end{aligned}
```

Can work surprisingly well, but for more complicated problems can get stuck in infeasible local minima



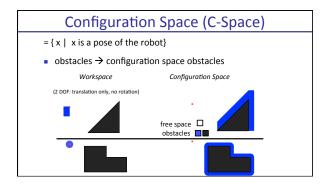


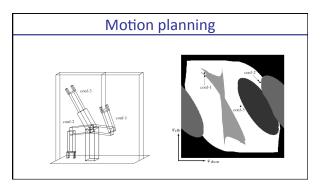


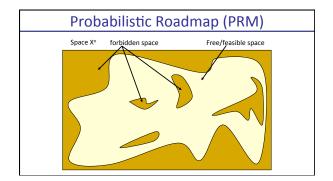


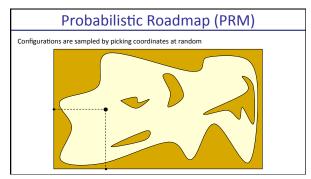
Motion Planning: Outline

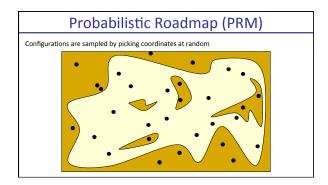
- Configuration Space
- Probabilistic Roadmap
- Rapidly-exploring Random Trees (RRTs)
- Extensions
- Smoothing

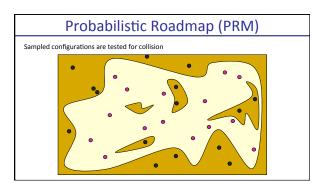


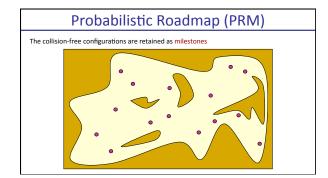


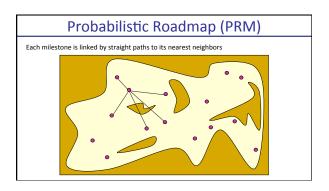


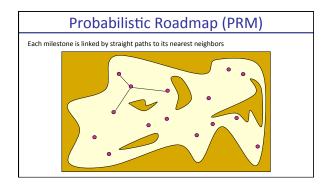


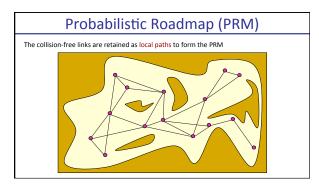


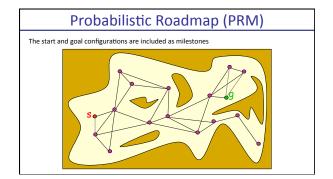


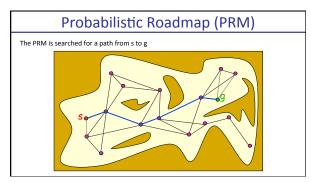






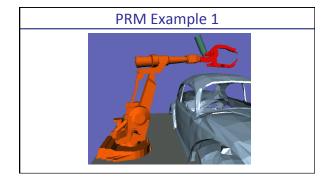


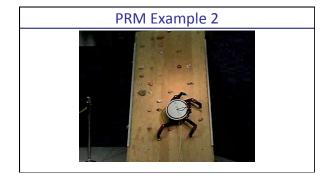


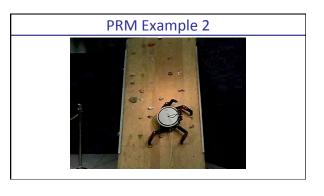


Probabilistic Roadmap

- Initialize set of points with X_S and X_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- $\qquad \quad \textbf{Find path from } \textbf{X}_{\textbf{S}} \, \textbf{to} \, \textbf{X}_{\textbf{G}} \, \textbf{in the graph}$
 - $\,\blacksquare\,$ Alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component







PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.
- Cons:
 - Required to solve 2-point boundary value problem
 - Build graph over state space but no focus on generating a path

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

How to Sample

Rapidly exploring Random Tree (RRT)

```
\begin{aligned} & \text{GENERATE\_RRT}(x_{init}, K, \Delta t) \\ & 1 \quad \mathcal{T}.\text{init}(x_{init}); \\ & 2 \quad & \text{for } k = 1 \text{ to } K \text{ do} \\ & 3 \quad \quad x_{rand} \leftarrow \text{RANDOM\_STATE}(); \\ & 4 \quad \quad x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T}); \\ & 5 \quad \quad u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near}); \\ & 6 \quad \quad x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t); \\ & 7 \quad \quad \mathcal{T}.\text{add\_vertex}(x_{new}); \\ & 7 \quad \quad \mathcal{T}.\text{add\_lodge}(x_{near}, x_{new}, u); \\ & 9 \quad \text{Return } \mathcal{T} \end{aligned}
```

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly exploring Random Tree (RRT)

- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

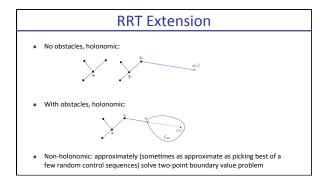
Rapidly exploring Random Tree (RRT)

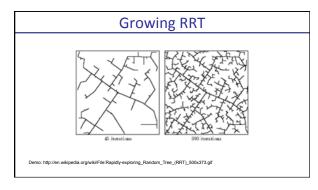
- Select random point, and expand nearest vertex towards it
 - Biases samples towards largest Voronoi region

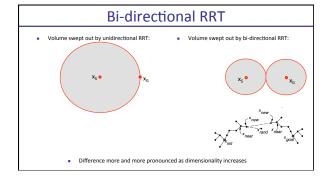
Rapidly exploring Random Tree (RRT)

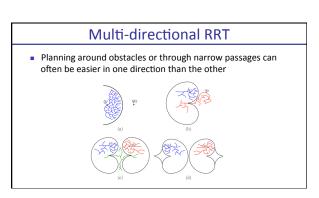
RRT Practicalities

- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing
- SELECT_INPUT(X_{rand}, X_{near})
 - Two point boundary value problem
 - If too hard to solve, often just select best out of a set of control sequences.
 This set could be random, or some well chosen set of primitives.









Resolution-Complete RRT (RC-RRT)

 Issue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle

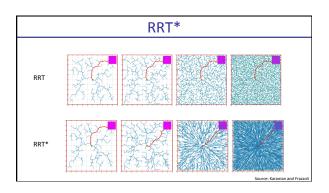
RC-RRT solution:

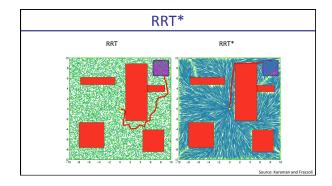
- · Choose a maximum number of times, m, you are willing to try to expand each node
- For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
- Initialize CVF to zero when node is added to tree
- Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
 - Increase CVF of that node by I
- When a node is selected for expansion, skip over it with probability CVF/m

```
| Algorithm 6: RRT* | V \leftarrow \{x_{linit}\}, E \leftarrow \emptyset; | S \leftarrow \{x_{linit}\}, E \leftarrow \{x_{lini
```

RRT*

- Asymptotically optimal
- Main idea:
 - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent





Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

- $\ensuremath{ \rightarrow}$ In practice: do smoothing before using the path
- Shortcutting:
 - \bullet along the found path, pick two vertices \mathbf{X}_t , \mathbf{X}_2 and try to connect them directly (skipping over all intermediate vertices)
- Nonlinear optimization for optimal control
 - Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.