
Maxim Likhachev 1

CSE-571

Deterministic Path Planning in Robotics
Courtesy of Maxim Likhachev

University of Pennsylvania

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

• Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

• Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

• Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, …

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as path planning):

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

Maxim Likhachev 2

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose updatemap update

i.e., Bayesian update (EKF)
i.e., deterministic registration

or Bayesian update

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

Maxim Likhachev 3

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

re-plan every time
sensory data arrives or

robot deviates off its path

re-planning needs to be FAST

CSE-571: Courtesy of Maxim Likhachev, CMU

Example

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
• Uncertainty can be in:

- prior environment (i.e., door is open or closed)
- execution (i.e., robot may slip)
- sensing environment (i.e., seems like an obstacle but not sure)
- pose

• Planning approaches:
- deterministic planning:

- assume some (i.e., most likely) environment, execution, pose
- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

computationally MUCH harder

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

Maxim Likhachev 4

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid
(one way to construct a graph)

Maxim Likhachev 5

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
- VERY popular due to its simplicity and representation of

arbitrary obstacles

discretize

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

-major problem with paths on the grid:
- transitions difficult to execute on non-holonomic robots

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph

eight-connected grid

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph

action template

replicate it
online

each transition is feasible
(constructed beforehand)

outcome state is the center of the corresponding cell

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
• Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it
online

Maxim Likhachev 6

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

CSE-571: Courtesy of Maxim Likhachev, CMU

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstar t

S

S2

S1

Sgoal…

the cost of a shortest path
from ss tar t to s found so far

an (under) estimate of the cost
of a shortest path from s to sgoal

at any point of time:

A* Search

CSE-571: Courtesy of Maxim Likhachev, CMU

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstar t

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search

Maxim Likhachev 7

CSE-571: Courtesy of Maxim Likhachev, CMU

• Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

A* Search

helps with robot deviating off its path
if we search with A*

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

• A* Search: expands states in the order of f = g+h values

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal

sstart sgoal

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

Maxim Likhachev 8

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =
g+εh values, ε > 1 = bias towards states that are closer to
goal 20DOF simulated robotic arm

state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)
CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta , Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

planning with R* (randomized version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

ATRV navigating
initially-unknown environment planning map and path

• Robot needs to re-plan whenever
– new information arrives (partially-known environments or/and

dynamic environments)
– robot deviates off its path

Maxim Likhachev 9

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)
• Robot needs to re-plan whenever

– new information arrives (partially-known environments or/and
dynamic environments)

– robot deviates off its path
incremental planning (re-planning):

reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

How to reuse these g-values from one search to
another? – incremental A*

Maxim Likhachev 10

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be
very different for forward A*?

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Any work needs to be done if robot

deviates off its path?

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Anytime Aspects

CSE-571: Courtesy of Maxim Likhachev, CMU

Maxim Likhachev 11

Anytime Aspects

CSE-571: Courtesy of Maxim Likhachev, CMU

Heuristics

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Summary
• Deterministic planning

- constructing a graph
- search with A*
- search with D*

• Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

used a lot in real-time

think twice before trying to use it in real-time

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

