CSE-571
Probabilistic Robotics

Rao-Blackwelized Particle
Filters and Applications

Ball Tracking
in RoboCup

= Extremely noisy (nonlinear) motion of
observer

® Inaccurate sensing, limited processing
power
= Interactions between target and
Goal: Unified framework for modeling the ball
and its interactions. t

Dieter Fox CSE-571: Probabilistic Robotics

Tracking Techniques

= Kalman Filter
= Highly efficient, robust (even for nonlinear)
= Uni-modal, limited handling of nonlinearities
= Particle Filter
= |Less efficient, highly robust
= Multi-modal, nonlinear, non-Gaussian
= Rao-Blackwellised Particle Filter, MHT
= Combines PF with KF
= Multi-modal, highly efficient

Dieter Fox CSE-571: Probabilistic Robotics

Dynamic Bayes Network for Ball
Tracking

Landmark detection

Map and robot location

Robot localization

Robot control

©
®® © 06

®
® 60600

Ball motion mode

Ball location and velocity

Ball tracking

®0 ®O 6

Ball observation
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Robot Location

=
@ Landmark detection 2
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=
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— _‘ Q Map and robot location 2
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@ @ Robot control =

@ @ @ Ball motion mode
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Ball location and velocity £
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Ball observation
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Robot and Ball Location (and
velocity)

=
@ Landmark detection 8
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_‘ _‘ Q Map and robot location %
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@ @ Robot control &=
@ @ @ Ball motion mode
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Ball location and velocity £
z
@ @ a Ball observation
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Ball-Environment Interactions

Grabbed
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Ball-Environment Interactions
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Integrating Discrete Ball
Motion Mode

@ Landmark detection

_‘ _‘ Q Map and robot location
@ | @ | Robot control

Ball motion mode

. Ball location and velocity

@ a Ball observation

Robot localization

Ball tracking

Grab Example (1)
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5
@ Landmark detection k-
N
5
£
— — Q Map and robot location 3
]
| @ | @ ]\ Robot control =
@ @ @ Ball motion mode
| ! 3
3
@ @ Ball location and velocity £
z
@ @ @ Ball observation
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@ Landmark detection .g
— _‘ Q Map and robot location Ei
l @ 1 @ | Robot control 2
@ @ @ Ball motion mode
Vs
@ @ Ball location and velocity g
=
m
@ @ @ Ball observation
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Inference: Posterior
Estimation
a Landmark detection g
— @ B~ Q Map and robot location é;)
1 @ 1 @ 1 Robot control &
@ @ @ Ball motion mode
v
@ @ Ball location and velocity Zé
&
@ @ @ Ball observation
b [
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Rao-Blackwellised PF for
Inference

= Represent posterior by random samples
® Fach sample

8= <’?>mi>bi> = <<x,y,¢9>i,ml.,<,u,2>i>
contains robot location, ball mode, ball Kalman
filter
® Generate individual components of a particle
stepwise using the factorization
Py By |zt ) =

Pby | My, By 2y sty ) Py [ T 2oty ) - (g | Ziges Uiy y)
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Rao-Blackwellised Particle Filter for
Inference

@ Map and robot location

@ Ball motion mode
Ball location and velocity

Robot localization

Ball tracking

®" Draw a sample from the previous sample set:

@) 0 (i)z
r_,m
Dieter Fox <£s’é-_§7’1: PKoRabilieid Robotics
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Generate Robot Location

=
@ Landmark detection g
N
3
£
@— Q Map and robot location 3
]
@ Robot control =
@ Ball motion mode
=
g
<
Ball location and velocity £
=
m

(i) (@) @) 7,0 (i)
v~ p | na.m2,b0,z 00, ) = <7}cl’_7_>
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Generate Ball Motion Model

=]
a Landmark detection g
N
3
2
@— Map and robot location &
=}
@ | Robot control ==
@—‘ Ball motion mode
2
£
@ Ball location and velocity &
z
@ @) @) 1) @) @)
m” ~ p(my |n",mZ,00 2w ,) = (r7,m", _
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Update Ball Location and
Velocity

@ Landmark detection

@_‘ Q Map and robot location

@ Robot control

@—* @ Ball motion mode

@ Ball location and velocity

O~ b | A0 802 = (.m0

Dieter Fox CSE-571: Probabilistic Robotics

Robot localization

Ball tracking

17

Importance Resampling

= Weight sample by
w o< p(z | 1)
if observation is landmark detection and by
wi o p(z; |m” 1", b%)
= [ p(L 1m0 b0 | m? 1 b, db,

if observation is ball detection.

= Resample

Dieter Fox CSE-571: Probabilistic Robotics 18

Ball-Environment Interaction

Dieter Fox CSE473: Introduction to AI

19

Ball-Environment Interaction

Dieter Fox CSE473: Introduction to Al 20




Tracking and Finding the Ball

= Cluster ball samples by discretizing
pan / tilt angles

= Uses negative information

e

o N
i

l"-.‘»;s,'ll.
ar

Experiment: Real Robot

= Robot kicks ball 100 times, tries to find it
afterwards
= Finds ball in 1.5 seconds on average

0.5 ' ‘_‘xvmt‘ Map ——
Without Map —+—
0.45 ? 1

Percentage of ball lost
o
N
131

P S S .
0 5 10 15 20 25 30 35 40 45 50
Dieter Fox Number of ball samples 22
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Simulation Runs
77777 Reference
—*—  Observations
¥
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Compal‘ison tO KF* (optimized for straight

motion)

— RBPF
E— KF*
————— Reference

* Observations
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Compa riSOI‘I tO KF’ (inflated prediction noise)

— RBPF
— KF’
————— Reference

*  Observations
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Error vs. Prediction Time

RMS Error [cm]
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Orientation Errors
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Goalie
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Geographic Information Systems

STREET MAP BUS ROUTES / STOPS RESTAURANTS / STORES
Source: Tiger / Line data Source: Metro GIS Source: MS MapPoint

Dieter Fox CSE-571: Probabilistic Robotics 29

GPS-Tracking Is NOT Trivial

[Liao-Fox-Kautz: AAAl-o4, AlJ-07]

Given data stream from a wearable GPS unit

= Infer the user’s location and mode of
transportation (foot, car, bus, bike, ...)

= Predict where user will go

= Detect novel behavior [ user errors

Dieter Fox CSE-571: Probabilistic Robotics 30

Graph-based Location Estimation

Dead and semi-dead zones near buildings,
trees, etc.

Sparse measurements inside vehicles,
especially bus

Multi-path propagation

Inaccurate street map

Dieter Fox CSE-571: Probabilistic Robotics 31

Map is directed graph

Location:
= Edgee
= Distance d from start of edge

Prediction:
= Move along edges according to velocity model

Correction:
= Update estimate based on GPS reading

Dieter Fox CSE-571: Probabilistic Robotics 32




Kalman Filtering on a Graph:
Prediction Step

Problem: Predicted location is multi-modal

Dieter Fox CSE-571: Probabilistic Robotics
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Kalman Filtering on a Graph:
Correction Step

Kalman Filtering on a Graph:
Correction Step

Problem: GPS reading is not on the graph

Dieter Fox CSE-571: Probabilistic Robotics
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Kalman Filtering on a Graph:

Correction Step

C

Zy
Xk ,/
&3 L— fitae o

= Probabilistically “snap” GPS reading to the graph
= Perform A* search to compute innovation

= Probabilistically “snap” GPS reading to the graph
= Perform A* search to compute innovation
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Location Tracking: Inference

Rao-Blackwellised particle filter represents posterior
by sets of weighted particles:

S, ={< sOw >i=1..,n}

Each particle contains Kalman filter for location:

o@D = < e v, 00 N (u, o> )>

[ €

v
Edge transitions, Gaussian for position
velocities, edge
associations

Dieter Fox CSE-571: Probabilistic Robotics 37

Infer Mode of Transportation

Encode prior knowledge into the model

= Modes have different velocity distributions
= Buses run on bus routes

= Get on/off the bus near bus stops

= Switch to car near car location

Dieter Fox CSE-571: Probabilistic Robotics 39

Tracking Example

@ GPS measurements

Dieter Fox CSE-571: Probabilistic Robotics

B Particles (Kalman filters)

38

Dynamic Bayesian Network

@ a GPS reading

Time k-1 Time k

Particles: s = </n("),e(i),v("),9(i),N(i)(ﬂ, 0'2)>

Dieter Fox CSE-571: Probabilistic Robotics

?—‘? @ Transportation mode
@ ° Edge, velocity, position

40
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Infer Location and Transportation

Measurements
o Projections
Bus mode
Red Car mode
Blue Foot mode

Dieter Fox CSE-571: Probabilistic Robotics

41

Hierarchical Model

Transportation Routines

Home

B Workplace

Goal (destination):

= workplace (home, friends, restaurant, ...)

Trip segments: <start, end, transportation>
= Home to Bus stop A on Foot

= Bus stop A to Bus stop B on Bus

* Bus stop B to workplace on Foot

Dieter Fox CSE-571: Probabilistic Robotics 42

Goal

Trip segment

GPS reading
Time k-1 Time k
X 0 _ (i) . . - . N 5
Particles: s" —<<gal> ;m”, e V600 N (u,o )>
Dieter Fox CSE-571: Probabilistic Robotics

Transportation mode

Edge, velocity, position

43

Model Learning

Key to goal / path prediction and error detection
Customized model for each user

Unsupervised model learning

= Learn variable domains (goals, trip segments)

= Learn transition parameters (goals, trips, edges)
Training data

= 30 days GPS readings of one user, logged every
second (when outdoors)

Dieter Fox CSE-571: Probabilistic Robotics 44
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The EM Algorithm

lterative method for finding maximum
likelihood estimates of parameters in
statistical models, where the model depends
on unobserved (unlabeled) latent variables.

Dieter Fox CSE-571: Probabilistic Robotics 45

The problem of finding labels for unlabeled data

In nature, items often do not come with labels. How can we learn labels without a

teacher?

Unlabeled data Labeled data

X

-1

From Shadmehr & Diedrichsen

Raw Proximity Sensor Data

Measured distances for expected distance of 300 cm.

po o o
£ — [ [

)
©

Red Blood Cell Hemoglobin Concentration

ANEMIA PATIENTS AND CONTROLS

3.6 3.7 3.8
Red Blood Cell Volume
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Component 1 Component 2

Mixture Model

Component Models

Mixture Model

Component 1 Component 2

Mixture Model

Mixtures
If our data is not labeled, we can hypothesize that:
1. There are exactly m classes in the data: ye{l,2,L ,m}
2. Each class y occurs with a specific frequency: P(»)

3. Examples of class y are governed by a specific distribution: p(x\y)

According to our hypothesis, each example x() must have been generated
from a specific “mixture” distribution:
p(x)=2P(y=j)p(xly=J)
=1
We might hypothesize that the distributions are Gaussian:
Parameters of the distributions @ = {P(y = 1),‘u] IS -,P(y = ’n)’#m’zm}
P(x0)=2P(y=J)N(x|u,Z))
j=1
[

Mixing proportions  Normal distribution

13



Learning Mixtures from Data

Consider fixed K = 2

e.g., Unknown parameters Q = {m;, s; ,m,, s, , a;}

Given data D = {xi,......x\}, we want to find the
parameters Q that “best fit” the data

1977: The EM Algorithm

* Dempster, Laird, and Rubin

General framework for likelihood-based
parameter estimation with missing data

* start with initial guesses of parameters

+ E-step: estimate memberships given params

* M-step: estimate params given memberships

* Repeat until convergence
Converges to a (local) maximum of likelihood
E-step and M-step are often computationally
simple
Generalizes to maximum a posteriori (with priors)

EM for Mixture of Gaussians
+ E-step: Compute probability that point
X; was generated by component i:
p; =0 P(x;1C=i) P(C=1i)
pi :Zpij
* M-step: Compute new mean, covariance,
and component weights:
< Xy, I,
o’ <X p, (- 1) Ip,

W, <D
©D. Weld and D. Fo:
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Red Blood Cell Hemoglobin Concentration

Red Blood Cell Hemoglobin Concentration

3.5

3.5

EM ITERATION 1

3.6 3.7
Red Blood Cell Volume

EM ITERATION 5

3.6 3.7
Red Blood Cell Volume

3.8

3.8

Red Blood Cell Hemoglobin Concentration

Red Blood Cell Hemoglobin Concentration

3.5

3.5

EM ITERATION 3

3.6 3.7
Red Blood Cell Volume

EM ITERATION 10

3.6 3.7
Red Blood Cell Volume

3.8

3.8
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Red Blood Cell Hemoglobin Concentration

Log-Likelihood
A S S N i
@ N [ [} ~
o o o o o

IS
N
=]

I
=
o

EM ITERATION 15

3.5 3.6 3.7 3.8
Red Blood Cell Volume

LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS

10 15
EM teration

Red Blood Cell Hemoglobin Concentration

Red Blood Cell Hemoglobin Concentration

EM ITERATION 25

3.5 3.6 3.7 3.8
Red Blood Cell Volume

ANEMIA DATA WITH LABELS

Control Group

Anemia Group

3.5 3.6 3.7 3.8
Red Blood Cell Volume
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Mixture Density

T
(o7 B (z|x,m)
. P (2| x,m)
max Pmax (Z | X, m)

g B (2] x,m)

aunexp

P(z|x,m)=

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Approximation Results
ﬁmﬁﬁﬂmmﬁﬁﬁﬁﬁ" it

300cm 400cm

Learning

-Step
= Infer the transportation behavior given the
model
= Smooth our inference
= Infer the data forward in time
= Infer the data backward in time

68
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Infer Forward

< >

Infer Backward

>
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Learning

Smoothed Inference

-Step

= Update the model parameters to better explain the
smoothed inference

= Stochastic version of the Baum-Welch Algorithm

= Count how many particles move from one edge to
the next

= Update the transition probabilities to reflect the
counts

75

19



Re-estimate Model

Predict Goal and Path Learned Transition Parameters

o GOING TOTHE WORKPLACE GOING HOME
e Predicted goal
Bus stop Bus stop
Predicted Path | Parking lot |\ Parking lot
“'\ // “) /
v \
Work. s 'K,_,\\ Work .,\ 2
. e
Parking lot Parking lot

High probability transitions: bus car foot

Dieter Fox CSE-571: Probabilistic Robotics 79 Dieter Fox CSE-571: Probabilistic Robotics 80




Detect Atypical Behavior and User

Application: Opportunity Knocks

[Patterson-Liao-etAl: Ubicomp-o4]

Behavior mode

normal / unknown / error

Goal
Trip segment
Transportation mode

Edge, velocity, position

GPS reading w -y

Time k-1 Time k
Dieter Fox CSE-571: Probabilistic Robotics 81 Dieter Fox

CSE-571: Probabilistic Robotics 82

Detect User Errors

CTN
" Knock;
Hom® ¢ Knock.))
\Knodly

Novelty Prob Error Prob

Dieter Fox CSE-571: Probabilistic Robotics 83 Dieter Fox CSE-571: Probabilistic Robotics 84




Discussion

= Particle filters are intuitive and simple
= Support point-wise thinking (reduced uncertainty)
= It's an art to make them work

= Good for test implementation if system behavior is
not well known

= Inefficient compared to Kalman filter

= Rao-Blackwellization

= Only sample discrete / highly non-linear parts of
state space

= Solve remaining part analytically (KF,discrete)
Dieter Fox CSE-571: Probabilistic Robotics 85
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