CSE-571 **Probabilistic Robotics**

Rao-Blackwelized Particle Filters and Applications

Ball Tracking in RoboCup

- Extremely noisy (nonlinear) motion of observer
- Inaccurate sensing, limited processing power
- Interactions between target and

Goal: Unified framework for modeling the ball and its interactions.

Dieter Fox

CSE-571: Probabilistic Robotics

Tracking Techniques

- Kalman Filter
 - Highly efficient, robust (even for nonlinear)
 - Uni-modal, limited handling of nonlinearities
- Particle Filter
 - Less efficient, highly robust
 - Multi-modal, nonlinear, non-Gaussian
- Rao-Blackwellised Particle Filter, MHT
 - Combines PF with KF
 - Multi-modal, highly efficient

Dieter Fox

CSE-571: Probabilistic Robotics

Dynamic Bayes Network for Ball Tracking Landmark detection

 $\binom{r_{k-1}}{}$

Map and robot location Robot control

Ball motion mode

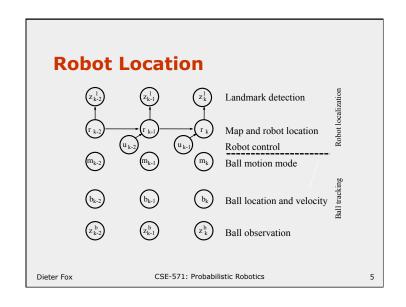
 $\left(b_{k-1}\right)$

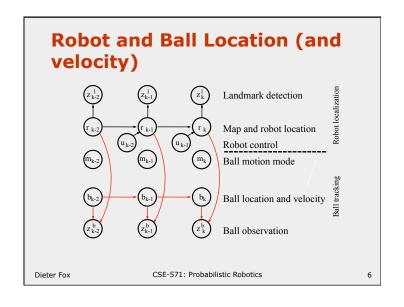
Ball location and velocity

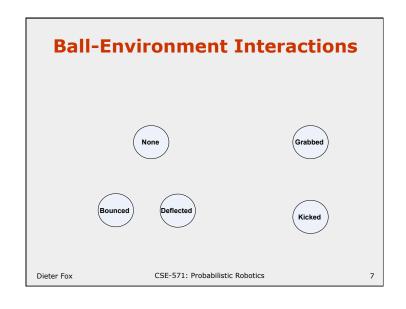
Ball observation

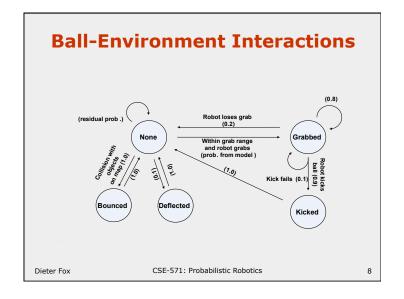
Dieter Fox

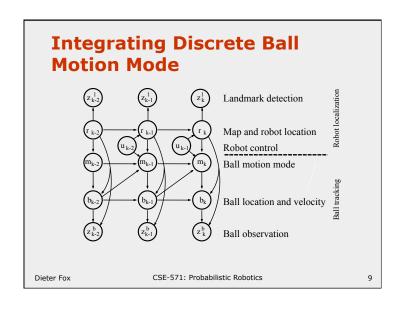
CSE-571: Probabilistic Robotics

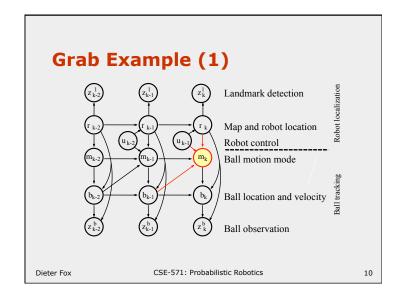


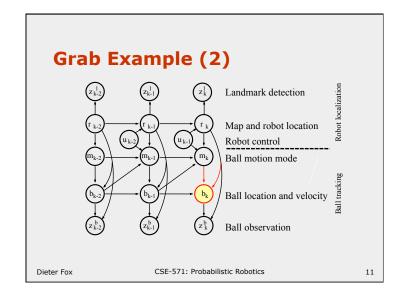


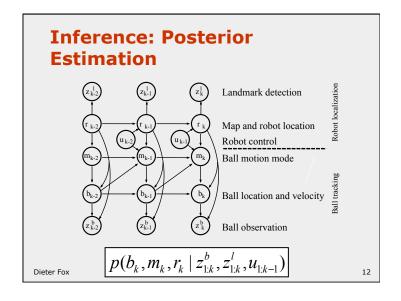












Rao-Blackwellised PF for Inference

- Represent posterior by random samples
- Each sample

$$s_i = \langle r_i, m_i, b_i \rangle = \langle \langle x, y, \theta \rangle_i, m_i, \langle \mu, \Sigma \rangle_i \rangle$$

contains robot location, ball mode, ball Kalman filter

 Generate individual components of a particle stepwise using the factorization

$$p(b_k, m_{lk}, r_{lk} | z_{lk}, u_{lk-l}) = p(b_k | m_{lk}, r_{lk}, z_{lk}, u_{lk-l}) p(m_{lk} | r_{lk}, z_{lk}, u_{lk-l}) \cdot p(r_{lk} | z_{lk}, u_{lk-l})$$

Dieter Fox

CSE-571: Probabilistic Robotics

13

Inference

Rao-Blackwellised Particle Filter for

Map and robot location

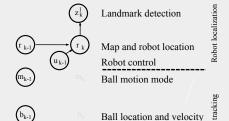
Ball location and velocity

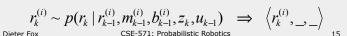
■ Draw a sample from the previous sample set:

 $\left\langle r_{k-1}^{(i)}, m_{k-1}^{(i)}, b_{k-1}^{(i)} \right\rangle_{\text{Dieter Fox}}$ Dieter Fox

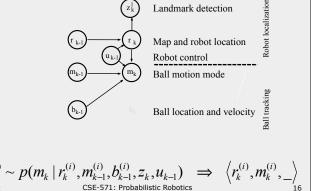
csE-571: Probabilistic Robotics 14

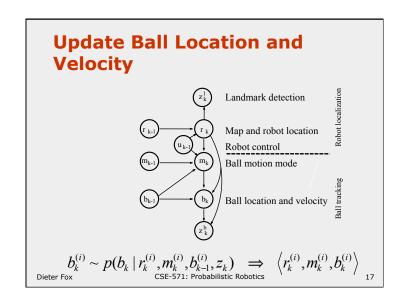
Generate Robot Location





Generate Ball Motion Model





Importance Resampling

Weight sample by

$$w_k^{(i)} \propto p(z_k^l \mid r_k^{(i)})$$

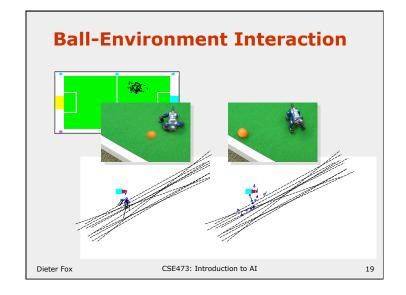
if observation is landmark detection and by

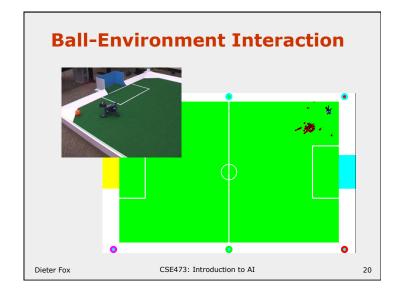
$$\begin{aligned} w_k^{(i)} &\sim p(z_k^b \mid m_k^{(i)}, r_k^{(i)}, b_{k-1}^{(i)}) \\ &= \int p(z_k^b \mid m_k^{(i)}, r_k^{(i)}, b_k^{(i)}) p(b_k^{(i)} \mid m_k^{(i)}, r_k^{(i)}, b_{k-1}^{(i)}) \, \mathrm{d}b_k \end{aligned}$$

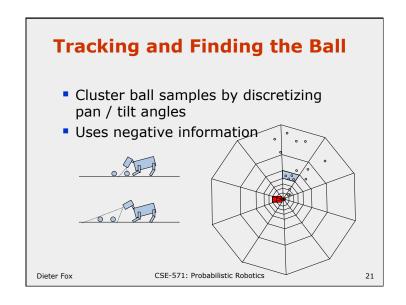
if observation is ball detection.

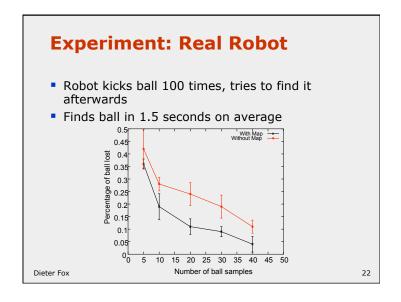
Resample

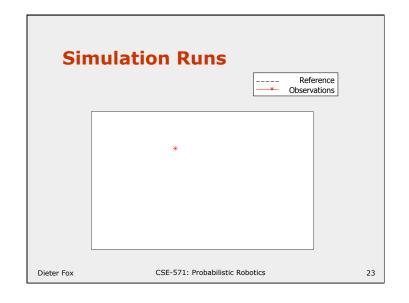
Dieter Fox CSE-571: Probabilistic Robotics

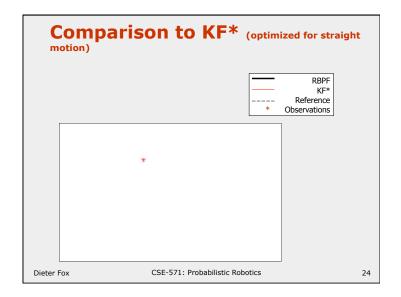


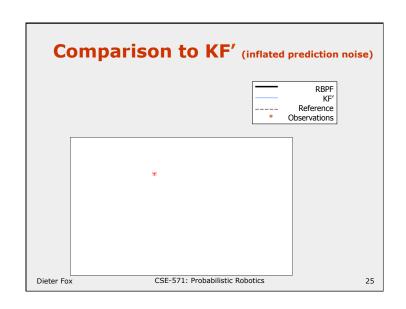


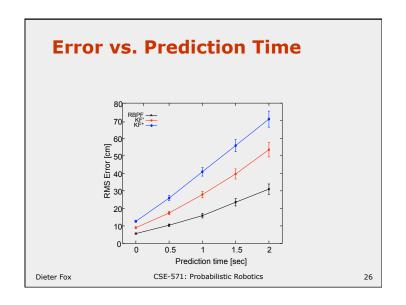


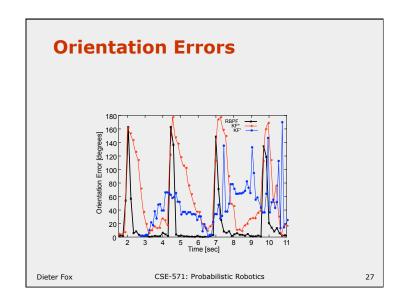


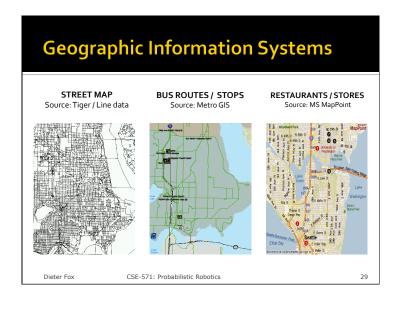












[Liao-Fox-Kautz: AAAI-04, AIJ-07]

- Given data stream from a wearable GPS unit
 - Infer the user's location and mode of transportation (foot, car, bus, bike, ...)
 - Predict where user will go

30

Detect novel behavior / user errors

Dieter Fox

Task

CSE-571: Probabilistic Robotics

GPS-Tracking Is NOT Trivial

- Dead and semi-dead zones near buildings, trees, etc.
- Sparse measurements inside vehicles, especially bus
- Multi-path propagation
- Inaccurate street map

· ...

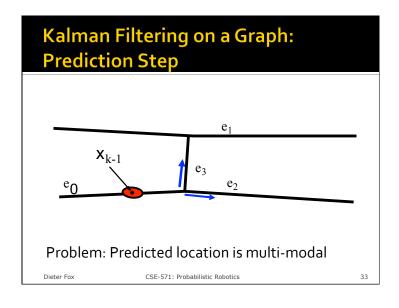
Dieter Fox CSE-571: Probabilistic Robotics

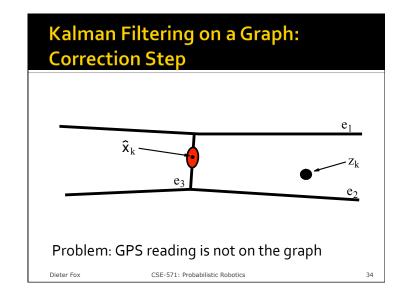
Graph-based Location Estimation

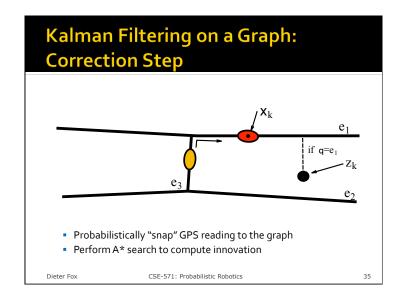
- Map is directed graph
- Location:
 - Edge e
 - Distance d from start of edge
- Prediction:
 - Move along edges according to velocity model
- Correction:
 - Update estimate based on GPS reading

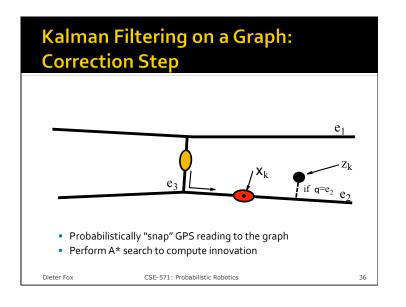
Dieter Fox

CSE-571: Probabilistic Robotics









Location Tracking: Inference

Rao-Blackwellised particle filter represents posterior by sets of weighted particles:

$$S_k = \{ \langle s^{(i)}, w^{(i)} \rangle, i = 1, ..., n \}$$

• Each particle contains Kalman filter for location:

$$s^{(i)} = \left\langle e^{(i)}, v^{(i)}, \boldsymbol{\theta}^{(i)}, N^{(i)}(\mu, \sigma^2) \right\rangle$$
Edge transitions, velocities, edge

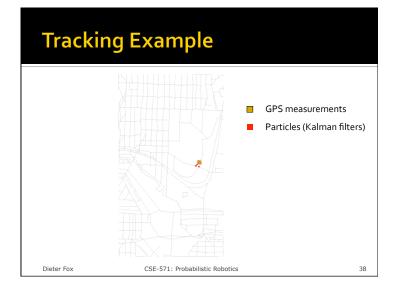
Gaussian for position

Dieter Fox

CSE-571: Probabilistic Robotics

associations

37

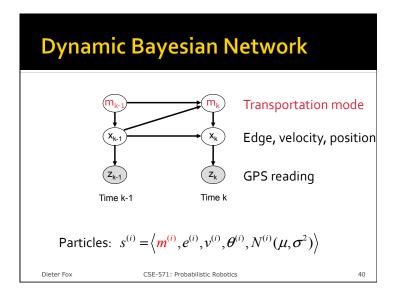


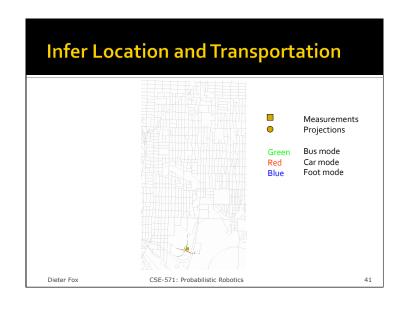
Infer Mode of Transportation

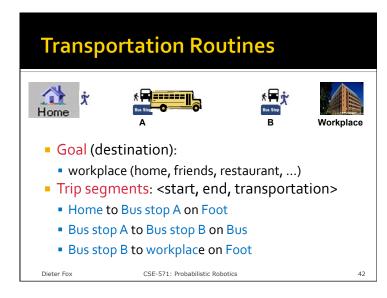
- Encode prior knowledge into the model
 - Modes have different velocity distributions
 - Buses run on bus routes
 - Get on/off the bus near bus stops
 - Switch to car near car location

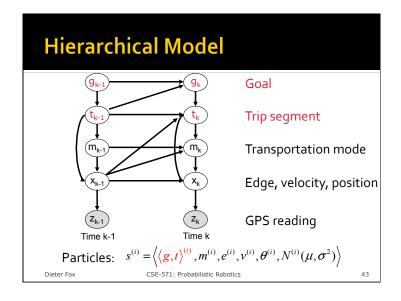
Dieter Fox

CSE-571: Probabilistic Robotics









Model Learning

- Key to goal / path prediction and error detection
- Customized model for each user
- Unsupervised model learning
 - Learn variable domains (goals, trip segments)
 - Learn transition parameters (goals, trips, edges)
- Training data
 - 30 days GPS readings of one user, logged every second (when outdoors)

Dieter Fox

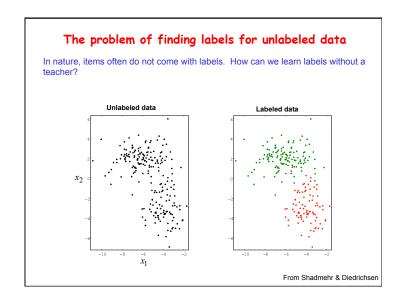
CSE-571: Probabilistic Robotics

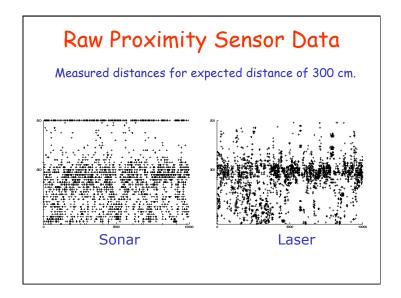
The EM Algorithm

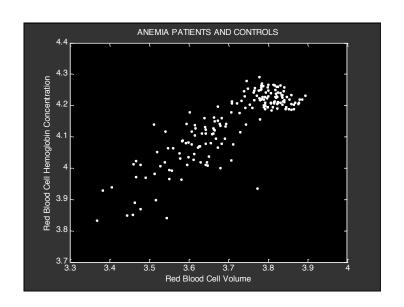
 Iterative method for finding maximum likelihood estimates of parameters in statistical models, where the model depends on unobserved (unlabeled) latent variables.

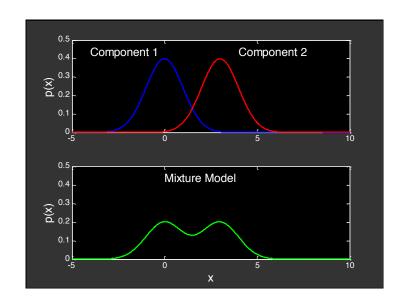
Dieter Fox

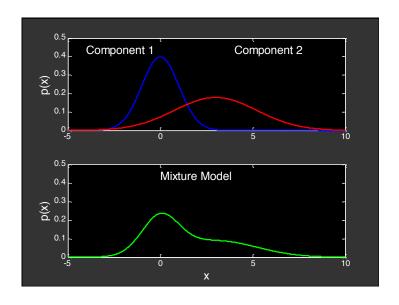
CSE-571: Probabilistic Robotics

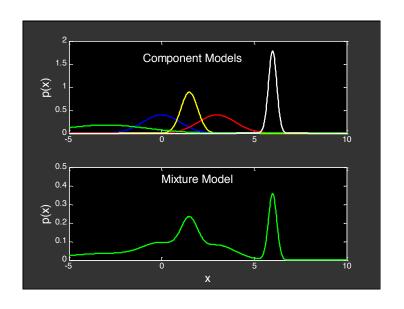












Mixtures

If our data is not labeled, we can hypothesize that:

- 1. There are exactly m classes in the data:
- $y \in \{1, 2, L, m\}$
- Each class y occurs with a specific frequency:
- P(y)
- 3. Examples of class y are governed by a specific distribution: $p(\mathbf{x}|y)$

According to our hypothesis, each example $\mathbf{x}^{(i)}$ must have been generated from a specific "mixture" distribution:

$$p(\mathbf{x}) = \sum_{j=1}^{m} P(y=j) p(\mathbf{x}|y=j)$$

We might hypothesize that the distributions are Gaussian:

Parameters of the distributions $\theta = \left\{ P(y=1), \mu_1, \Sigma_1, \dots, P(y=m), \mu_m, \Sigma_m \right\}$

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} P(y=j) N(\mathbf{x}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

Mixing proportions Normal distribution

Learning Mixtures from Data

Consider fixed K = 2

e.g., Unknown parameters $Q = \{m_1, s_1, m_2, s_2, a_1\}$

Given data D = $\{x_1, ..., x_N\}$, we want to find the parameters Q that "best fit" the data

1977: The EM Algorithm

· Dempster, Laird, and Rubin

General framework for likelihood-based parameter estimation with missing data

- · start with initial guesses of parameters
- E-step: estimate memberships given params
- · M-step: estimate params given memberships
- · Repeat until convergence

Converges to a (local) maximum of likelihood E-step and M-step are often computationally simple

Generalizes to maximum a posteriori (with priors)

EM for Mixture of Gaussians

 E-step: Compute probability that point x_i was generated by component i:

$$p_{ij} = \alpha P(x_j \mid C = i) P(C = i)$$
$$p_i = \sum_i p_{ij}$$

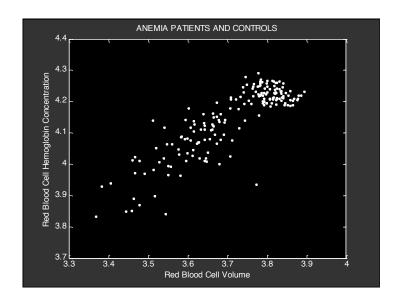
 M-step: Compute new mean, covariance, and component weights:

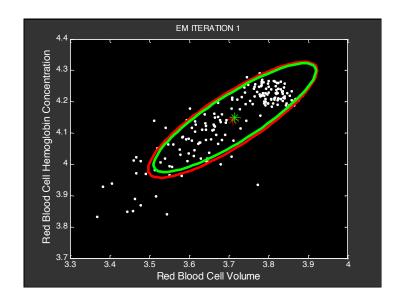
$$\mu_i \leftarrow \sum_j p_{ij} x_j / p_i$$

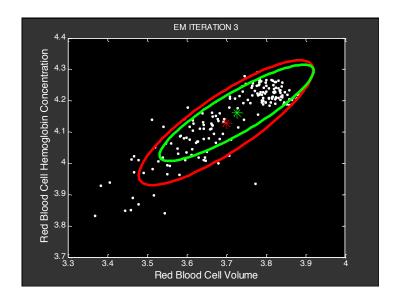
$$\sigma^2 \leftarrow \sum_j p_{ij} (x_j - \mu_i)^2 / p_i$$

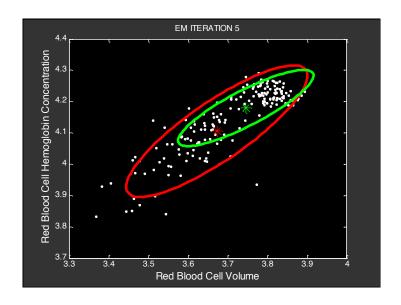
$$w_i \leftarrow p_i$$

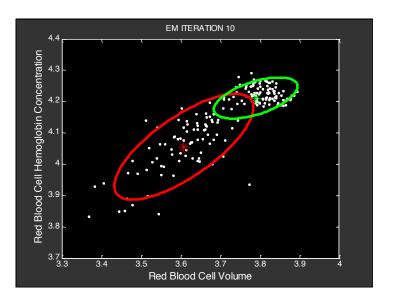
"I TI

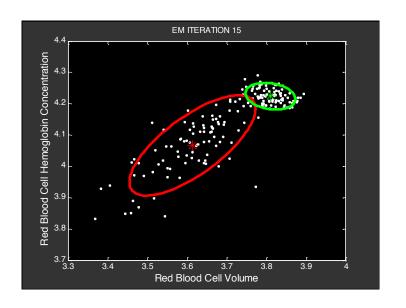


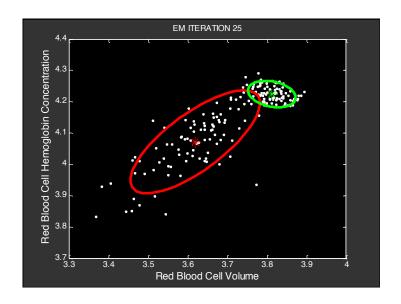


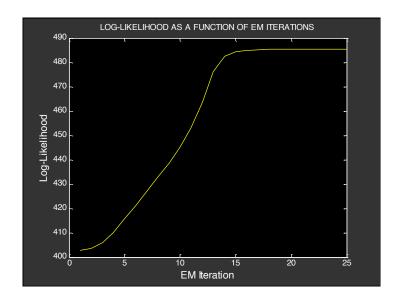


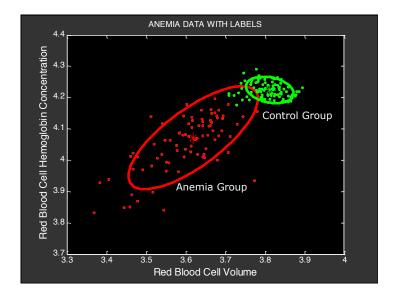


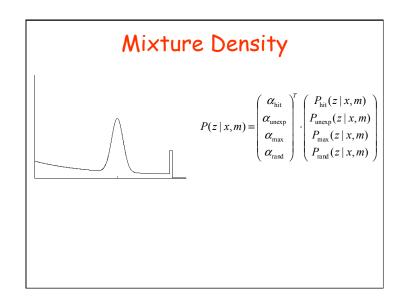


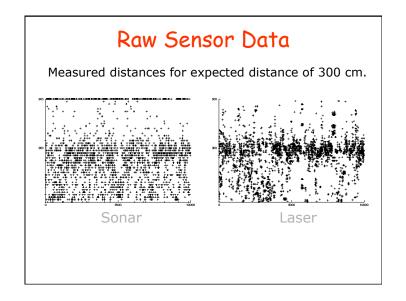


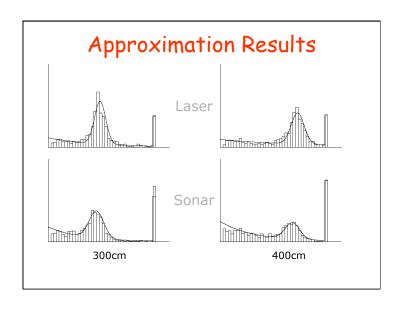


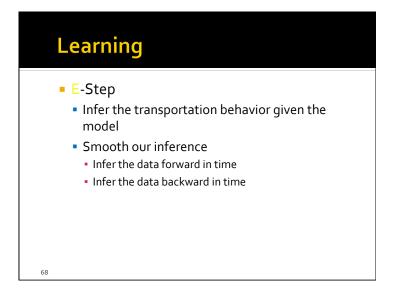


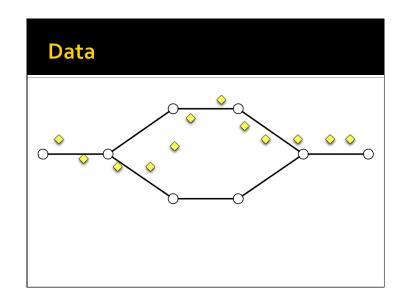


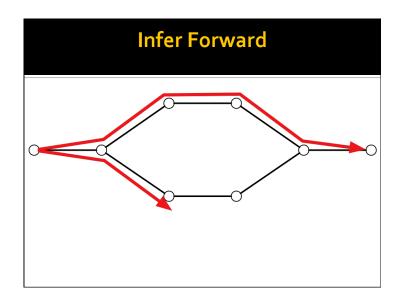


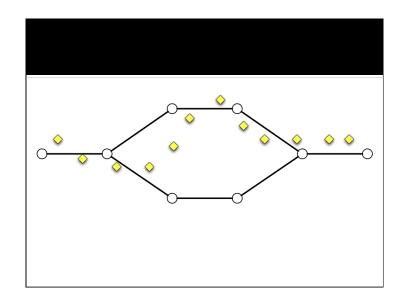


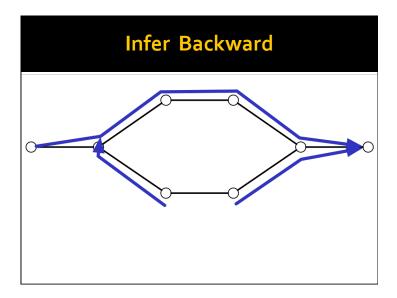


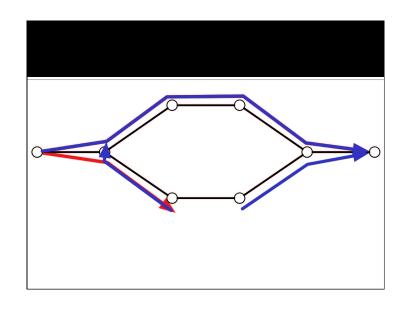


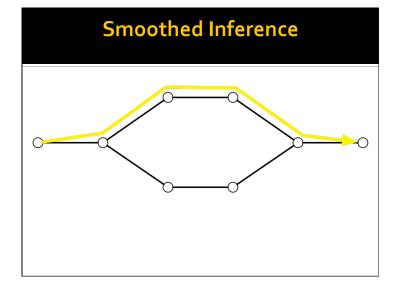






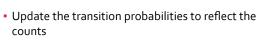


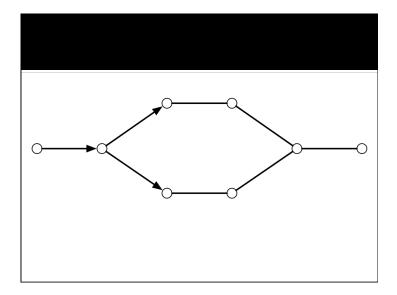


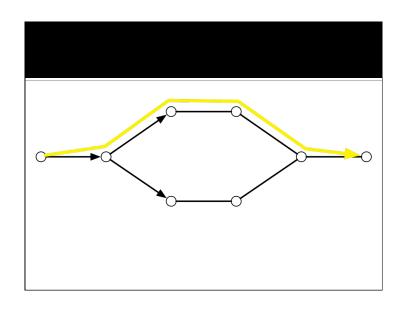


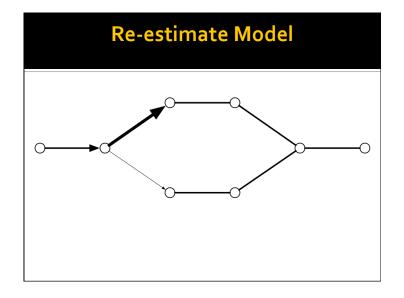
Learning

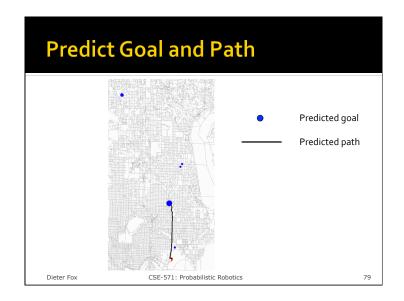
- M-Step
 - Update the model parameters to better explain the smoothed inference
 - Stochastic version of the Baum-Welch Algorithm
 - Count how many particles move from one edge to the next



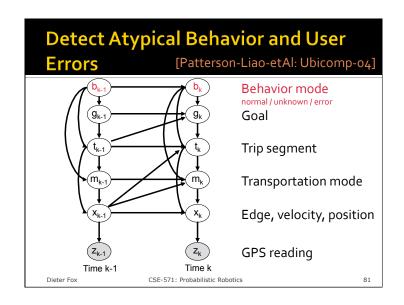


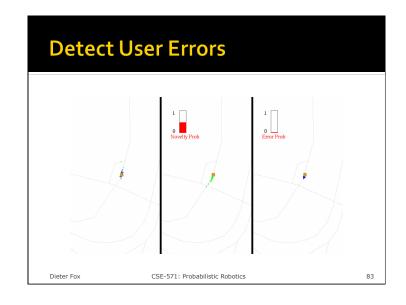


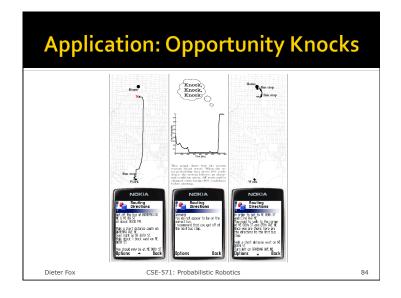












Discussion

- Particle filters are intuitive and simple
 - Support point-wise thinking (reduced uncertainty)
 - It's an art to make them work
 - Good for test implementation if system behavior is not well known
- Inefficient compared to Kalman filter
- Rao-Blackwellization
 - Only sample discrete / highly non-linear parts of state space
 - Solve remaining part analytically (KF, discrete)

Dieter Fox

CSE-571: Probabilistic Robotics