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CSE-571 
Probabilistic Robotics 

 
Fast-SLAM Mapping 

 

Particle Filters 

¨  Represent belief by random samples 
¨  Estimation of non-Gaussian, nonlinear processes 

¨  Sampling Importance Resampling (SIR) principle 
¤ Draw the new generation of particles 
¤ Assign an importance weight to each particle 
¤  Resampling  

¨  Typical application scenarios are  
tracking, localization, … 

Dependencies 

¨  Is there a dependency between the dimensions of 
the state space? 

¨  If so, can we use the dependency to solve the 
problem more efficiently? 

¨  In the SLAM context 
¤ The map depends on the poses of the robot. 
¤ We know how to build a map given the position of the 

sensor is known. 

Particle Filter Algorithm 

1.  Sample the particles from the proposal distribution 

2.  Compute the importance weights 

 

3.  Resampling: Draw sample    with probability      
and repeat      times 

Courtesy: C. Stachniss 
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Particle Representation 

¨  A set of weighted samples 

¨  Think of a sample as one hypothesis about the state 
¨  For feature-based SLAM: 

poses landmarks 

Courtesy: C. Stachniss 

Dimensionality Problem 
Particle filters are effective in low dimensional spaces 
as the likely regions of the state space need to be 
covered with samples. 

high-dimensional 

Courtesy: C. Stachniss 

Can We Exploit Dependencies Between 
the Different Dimensions of the State 

Space? 

Courtesy: C. Stachniss 

If We Know the Poses of the Robot, 
Mapping is Easy! 

Courtesy: C. Stachniss 
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Key Idea 

If we use the particle set only to model the robot’s path, 
each sample is a path hypothesis. For each sample, we 
can compute an individual map of landmarks. 

Courtesy: C. Stachniss 

Rao-Blackwellization 

¨  Factorization to exploit dependencies between 
variables: 

¨  If                can be computed efficiently, represent 
only           with samples and compute                for 
every sample 

Courtesy: C. Stachniss 

Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

Courtesy: C. Stachniss 
K. Murphy, Bayesian map learning in dynamic environments, In Proc. 
Advances in Neural Information Processing Systems, 1999 

Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 
poses map observations & movements 

path posterior map posterior 

Courtesy: C. Stachniss 

First introduced for SLAM by Murphy in 1999 
K. Murphy, Bayesian map learning in dynamic environments, In Proc. 
Advances in Neural Information Processing Systems, 1999 
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Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 

Landmarks are conditionally  
independent given the poses 

First exploited in FastSLAM by Montemerlo et al., 2002 
Courtesy: C. Stachniss 

Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 

First exploited in FastSLAM by Montemerlo et al., 2002 
Courtesy: C. Stachniss 

Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 

2-dimensional EKFs! 

First exploited in FastSLAM by Montemerlo et al., 2002 
Courtesy: C. Stachniss 

Rao-Blackwellization for SLAM 

¨  Factorization of the SLAM posterior 

particle filter similar to MCL 

First exploited in FastSLAM by Montemerlo et al., 2002 
Courtesy: C. Stachniss 

2-dimensional EKFs! 
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Modeling the Robot’s Path 

¨  Sample-based representation for 

¨  Each sample is a path hypothesis 

¨  Past poses of a sample are not revised 
¨  No need to maintain past poses in the sample set 

starting location, 
typically (0,0,0) 

pose hypothesis 
at time t=1 

Courtesy: C. Stachniss 

FastSLAM 
¨  Proposed by Montemerlo et al. in 2002 
¨  Each landmark is represented by a 2x2 EKF 
¨  Each particle therefore has to maintain M individual 

EKFs 

Landmark 1 Landmark 2 Landmark M … 

Landmark 1 Landmark 2 Landmark M … 
Particle 
1 

Landmark 1 Landmark 2 Landmark M … 
Particle 
2 

Particle 
N 

…
 

FastSLAM – Action Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 
2x2 EKF 

Landmark 2 
2x2 EKF 

Courtesy: M. Montemerlo 

FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 
2x2 EKF 

Landmark 2 
2x2 EKF 

Courtesy: M. Montemerlo 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Weight = 0.8 

Weight = 0.4 

Weight = 0.1 

Courtesy: M. Montemerlo 

FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Update map  
of particle 1 

Update map  
of particle 2 

Update map  
of particle 3 

Courtesy: M. Montemerlo 

Key Steps of FastSLAM 1.0 

¨  Extend the path posterior by sampling a new pose 
for each sample  

¨  Compute particle weight 
 

¨  Update belief of observed landmarks 
(EKF update rule) 

¨  Resample  

innovation covariance 

exp. observation 

Courtesy: C. Stachniss 

FastSLAM  in Action 

Courtesy: M. Montemerlo 
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FastSLAM – Video – All Maps FastSLAM – Video – “Best” particle in 
terms of Mode of the Posterior 

FastSLAM – Video – “Best” particle in 
terms of Cum Log Prob Data Association Problem 

¨  Which observation belongs to which landmark? 

¨  More than one possible association 
¨  Potential data associations depend on the pose of 

the robot  

Courtesy: M. Montemerlo 
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Particles Support for Multi-Hypotheses 
Data Association 

¨  Decisions on a per-particle 
basis 
 

¨  Robot pose error is factored 
out of data association 
decisions 

Courtesy: M. Montemerlo 

Per-Particle Data Association 

Was the observation 
generated by the red 
or by the blue  
landmark? 

P(observation | red) = 0.3 P(observation | blue) = 0.7 

Courtesy: M. Montemerlo 

Per-Particle Data Association 

P(observation | red) = 0.3 P(observation | blue) = 0.7 

§  Two options for per-particle data association 
§  Pick the most probable match 
§  Pick a random association weighted by the observation likelihoods 

§  If the probability for an assignment is too low, generate a new 
landmark 

Was the observation 
generated by the red 
or by the blue  
landmark? 

Courtesy: M. Montemerlo 

Results – Victoria Park 

¨  4 km traverse 
¨  < 2.5 m RMS 

position error 
¨  100 particles 

Blue = GPS 
Yellow = FastSLAM 

Courtesy: M. Montemerlo 
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Results – Victoria Park (Video) 

Courtesy: M. Montemerlo 

Results (Sample Size) 

Courtesy: M. Montemerlo 

Results (Motion Uncertainty) 

Courtesy: M. Montemerlo 

Techniques to Reduce the 
Number of Particles Needed 

•  Better proposals (put the particles in 
the right place in the prediction 
step). 

•  Avoid particle depletion (re-sample 
only when needed).  
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Generating better Proposals 

• Use scan-matching to compute highly 
accurate odometry measurements 
from consecutive range scans.  

• Use the improved odometry in the 
prediction step to get highly accurate 
proposal distributions. 

Motion Model for Scan Matching 

α'

β'

d'

final pose
α

d

measured pose
β

initial pose

path

Raw Odometry 
Scan Matching 

Graphical Model for Mapping 
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Rao-Blackwellized Mapping with 
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Loop Closure Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 

Rao-Blackwellized Mapping with 
Scan-Matching 
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Rao-Blackwellized Mapping with 
Scan-Matching 
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Example (Intel Lab) 

§  15 particles 
§  four times faster 

than real-time 
P4, 2.8GHz 

§  5cm resolution 
during scan 
matching 

§  1cm resolution in 
final map 

Work by Grisetti et al. 
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Outdoor Campus Map 
§  30 particles 
§  250x250m2 

§  1.75 km 
(odometry) 

§  20cm resolution 
during scan 
matching 

§  30cm resolution 
in final map 

Work by Grisetti et al. 

§  30 particles 
§  250x250m2 

§  1.088 miles 
(odometry) 

§  20cm resolution 
during scan 
matching 

§  30cm resolution 
in final map 

FastSLAM 1.0 

¨  FastSLAM 1.0 uses the motion model as the 
proposal distribution 

¨  Is there a better distribution to sample from? 

[Montemerlo et al., 2002] Courtesy: C. Stachniss 

Weakness of FastSLAM 1.0 

¨  Proposal Distribution ¨  Importance weighting 

FastSLAM 1.0 to FastSLAM 2.0 

¨  FastSLAM 1.0 uses the motion model as the 
proposal distribution 

¨  FastSLAM 2.0 considers also the measurements 
during sampling 

¨  Especially useful if an accurate sensor is used 
(compared to the motion noise) 

[Montemerlo et al., 2003] Courtesy: C. Stachniss 
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FastSLAM 2.0 (Informally) 

¨  FastSLAM 2.0 samples from 

¨  Results in a more peaked proposal distribution 
¨  Less particles are required 
¨  More robust and accurate 
¨  But more complex… 
 

[Montemerlo et al., 2003] Courtesy: C. Stachniss 

FastSLAM Problems 

¨  How to determine the sample size? 
¨  Particle deprivation, especially when closing 

(multiple) loops 

FastSLAM 1.0 FastSLAM 2.0 
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DP-SLAM: High-Res Fast-SLAM 
via History Sharing  

Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s  

scale: 3cm 

Consistency 
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Results obtained with  
DP-SLAM 2.0 (offline) 

Eliazar & Parr, 04 

Close up 

End courtesy of Eliazar & Parr 

FastSLAM Summary 

¨  Particle filter-based SLAM 
¨  Rao-Blackwellization: model the robot’s path by 

sampling and compute the landmarks given the 
poses 

¨  Allow for per-particle data association 
¨  FastSLAM 1.0 and 2.0 differ in the proposal 

distribution 
¨  Complexity  

Courtesy: C. Stachniss 

Literature 

FastSLAM 
¨  Thrun et al.: “Probabilistic Robotics”, Chapter 

13.1-13.3 + 13.8 (see errata!) 
¨  Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A 

Factored Solution to the Simultaneous Localization 
and Mapping Problem, 2002 

¨  Montemerlo and Thrun: Simultaneous Localization and 
Mapping with Unknown Data Association Using 
FastSLAM, 2003 

Courtesy: C. Stachniss 


