

Mapping and Modeling with RGB-D Cameras

University of Washington Dieter Fox

Outline

- Motivation
- RGB-D Mapping:
 - 1. Visual Odometry (frame-to-frame alignment)
 - 2. Loop Closure (revisiting places)
 - 3. Map representation (Surfels)

Outline

- Motivation
- RGB-D Mapping:
 - 1. Visual Odometry (frame-to-frame alignment)
 - 2. Loop Closure (revisiting places)
 - 3. Map representation (Surfels)

RGB-D (Kinect-style) Cameras

Multisense SL

Warmington Interact Select TO)	vay Cool - 20 Hose Estimate		_				_			_	_	_	
100	9.8												
4													
	A Date of the local division of the local di												
and the second													
200		-											
presides.	10.00												
 Clobal Operation Datalogramic Colum Foord France Target France Sciobal Status, OK Datalogram 	■ 0, 0, C	-											
	-Fixed Froms	-											
Ol. Odometry (Odometry) Olive J - Anethern (eductor) Olive Triange (eductor)		-3											
All Communication Silverse Closer (Print Clayell)	-	- 10											
 p8. Rebotikodal (Rebotikodal) p9. (mage (mage) p. (const	R												
02. Oslumetry (Oslumetry) unulace and it plays position in Music Information	nnav, nng e Orlenen ryenssen ga												
(Adu) Percent	Shuft shie												

Velodyne & LadyBug3

Motivation

- Tracking RGB-D camera motion and creating a 3D model has applications for
 - Rich interior maps
 - Robotics
 - Localization / Mapping
 - Manipulation
 - Augmented reality
 - 3D content creation

Goal

- Track the 3D motion of an RGB-D camera
- Build a useful and accurate model of the environment

Outline

- Motivation
- RGB-D Mapping:
 - 1. Frame-to-frame motion (visual odometry)
 - 2. Revisiting places (loop closure detection)
 - 3. Map representation (Surfels)

RGB-D Mapping Overview

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments. Henry et al. ISER 2010 *RGB-D Mapping: Using Kinect-style Depth Cameras for Dense 3D Modeling of Indoor Environments.* Henry et al. IJRR 2012

Visual Odometry

- Compute the motion between consecutive camera frames from visual feature correspondences.
- Visual features from RGB image have a 3D counterpart from depth image.

Visual Features

- Tree bark itself not really distinct
- Rocky ground not distinct
- Rooftops, windows, lamp post fairly distinct and should be easier to match across images

Say we have 2 images of this scene we'd like to align by matching local features What would be good local features (ones easy to match)?

Courtesy: S. Seitz and R. Szeliski

Invariant local features

-Algorithm for finding points and representing their patches should produce similar results even when conditions vary

-Buzzword is "invariance"

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

Robust visual features

- Goal: Detect distinctive features, maximizing repeatability
 - Scale invariance
 - Robust to changes in distance
 - Rotation invariance
 - Robust to rotations of camera
 - Affine invariance
 - Robust to tilting of camera
 - Brightness invariance
 - Robust to minor changes in illumination
 - Produce small descriptors that can be compared using simple mathematical operations
 - (SSE)
 - Euclidean distance

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

• The problem: how do we choose corresponding circles *independently* in each image?

- Solution:
 - Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

- Solution:
 - Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 For a point in one image, we can consider it as a function of region size (circle radius)

Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is achieved, should be *invariant* to image scale.

Important: this scale invariant region size is found in each image independently!

• A "good" function for scale detection: has one stable sharp peak

 For usual images: a good function would be a one which responds to contrast (sharp local intensity change)

Functions for determining scale

$$f = \text{Kernel} * \text{Image}$$

Kernels:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian of Gaussians)
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)
where Gaussian

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Note: both kernels are invariant to *scale* and *rotation*

- Harris-Laplacian¹ Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

• SIFT (Lowe)²

Find local maximum of:

 Difference of Gaussians in space and scale

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

Lindeberg et al., 1996

 $f(I_{i_1\dots i_m}(x,\sigma))$

 $f(I_{i_1\dots i_m}(x,\sigma))$

 $f(I_{i_1\dots i_m}(x,\sigma))$

 $f(I_{i_1\dots i_m}(x,\sigma))$

 $f(I_{i_1\dots i_m}(x,\sigma))$

 $f(I_{i_1\dots i_m}(x,\sigma))$

Slide from Tinne Tuytelaars $f(I_{i_1...i_m}(x', \sigma'))$

Normalize: rescale to fixed size

Feature descriptors

We now know how to detect good points Next question: **How to match them?**

Feature descriptors

We now know how to detect good points Next question: **How to match them?**

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Courtesy: S. Seitz and R. Szeliski

Invariance

- Suppose we are comparing two images I_1 and I_2
 - I₂ may be a transformed version of I₁
 - What kinds of transformations are we likely to encounter in practice?

Invariance

- Suppose we are comparing two images I_1 and I_2
 - I_2 may be a transformed version of I_1
 - What kinds of transformations are we likely to encounter in practice?
 - Translation, 2D rotation, scale

Invariance

- Suppose we are comparing two images I_1 and I_2
 - I_2 may be a transformed version of I_1
 - What kinds of transformations are we likely to encounter in practice?
 - Translation, 2D rotation, scale
- Descritpors can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (2D rotation, scale, shear)
 - Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

- 1. Make sure your *detector* is invariant
 - SIFT is invariant to translation, rotation and scale
- 2. Design an invariant feature *descriptor*
 - A descriptor captures the information in a region around the detected feature point
Scale Invariant Feature Transform

- Algorithm outline:
 - Detect interest points
 - For each interest point
 - Determine dominant orientation
 - Build histograms of gradient directions
 - Output feature *descriptor*

Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute gradient for each pixel
- Throw out weak gradient magnitudes
- Create histogram of surviving gradient orientations

Adapted from slide by David Lowe

SIFT keypoint descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - <u>http://www.vlfeat.org</u>
 - <u>http://www.cs.unc.edu/~ccwu/siftgpu/</u>

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance

Feature distance

- How to define the difference between two features f1, f2?
 - Simple approach is SSD(f1, f2)
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

Feature distance

- How to define the difference between two features f1, f2?
 - Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2')
 - f2 is best SSD match to f1 in I2
 - f2' is 2nd best SSD match to f1 in I2
 - gives small values for ambiguous matches

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

More Features

• FAST

• GFTT

- SURF
- ORB
- STAR

- MSER
- KAZE

http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opency-feature-detection-algorithms/

• A-KAZE

Are descriptors unique?

Are descriptors unique?

No, they can be matched to wrong features, generating outliers.

Dealing with outliers

- Fit a geometric transformation to a small subset of all possible matches.
- Possible strategies:
 - RANSAC
 - Incremental alignment
 - Hough transform

Strategy: RANSAC

- RANSAC loop:
- 1. Randomly select a *seed group* of matches
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated</u> <u>Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Simple Example

• Fitting a straight line

Main Idea

- Select 2 points at random
- Fit a line
- "Support" = number of inliers
- Line with most inliers wins

Why will this work ?

Best Line has most support

• More support -> better fit

RANSAC example: Translation

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Slide: A. Efros

RANSAC: General Case

- Objective:
 - Robust fit of a model to data S
- Algorithm
 - Randomly select s points
 - Instantiate a model
 - Get consensus set S_i
 - If |S_i|>T, terminate and return model
 - Repeat for N trials, return model with max $|S_i|$

How many samples ?

- We want: at least one sample with all inliers
 - Can't guarantee: probability p
 - e.g., *p* = 0.99
- Let e = % of outliers, and s = # of required data points to fit model
- With probability p, we want at least one trial with all inliers:
 1 P(N trials with at least one outlier) ≥ p
- Hence, the required number of trials is ?

 $N \ge \log(1-p)/\log(1-(1-e)^{s})$

RANSAC: Line Fitting

Adaptive RANSAC

- $N = \infty$, sample_count = 0.
- While $N > \text{sample_count Repeat}$
 - Choose a sample and count the number of inliers.
 - Set $\epsilon = 1 (\text{number of inliers})/(\text{total number of points})$
 - Set N from ϵ and (3.18) with p = 0.99.
 - Increment the sample-count by 1.
- Terminate.

Algorithm 3.5. Adaptive algorithm for determining the number of RANSAC samples.

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Lots of parameters to tune
 - Can't always get a good initialization of the model based on the minimum number of samples
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios

Visual Odometry

- Compute the motion between consecutive camera frames from visual feature correspondences.
- Visual features from RGB image have a 3D counterpart from depth image.
- Three 3D-3D correspondences constrain the motion.

Visual Odometry Failure Cases

• Low light, lack of visual texture or features

Visual Odometry Failure Cases

- Low light, lack of visual texture or features
- Poor distribution of features across image

Visual Odometry Failure Cases

- Low light, lack of visual texture or features
- Poor distribution of features across image
- RGB-D camera still provides shape information

ICP (Iterative Closest Point)

- Iteratively align frames based on shape
- Needs a good initial estimate of the pose

ICP Failure Cases

- Not enough distinctive shape
- Don't have a close enough initial "guess"
- Here the shape is basically a simple plane...

Optimal Transformation

• Jointly minimize feature reprojection and ICP:

$$\begin{split} \mathbf{t}^* &= \operatorname*{argmin}_{\mathbf{t}} \left[\left(\frac{1}{|A_f|} \sum_{i \in A_f} \left| \operatorname{Proj}(\mathbf{t}(f_s^i)) - \operatorname{Proj}(f_t^i) \right|^2 \right) \right. \\ &+ \beta \left(\frac{1}{|A_d|} \sum_{j \in A_d} w_j \left| (\mathbf{t}(p_s^j) - p_t^j) \cdot n_t^j \right|^2 \right) \right] \end{split}$$

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments. Henry et al. ISER 2010 *RGB-D Mapping: Using Kinect-style Depth Cameras for Dense 3D Modeling of Indoor Environments.* Henry et al. IJRR 2012

Outline

- Motivation
- RGB-D Mapping:
 - 1. Frame-to-frame motion (visual odometry)
 - 2. Revisiting places (loop closure detection)
 - 3. Map representation (Surfels)

Loop Closure

- Sequential alignments accumulate error
- Revisiting a previous location results in an inconsistent map

Loop Closure Detection

- Detect by running RANSAC against previous frames
- Pre-filter options (for efficiency):
 - Only a subset of frames (keyframes)
 - Only keyframes with similar estimated 3D pose
 - Place recognition using vocabulary tree
 - Scalable recognition with a vocabulary tree, David Nister and Henrik Stewenius, 2006
- Post-filter (avoid false positives)
 - Estimate maximum expected drift and reject detections changing pose too greatly

Loop Closure Correction (TORO)

- TORO [Grisetti 2007, 2009]:
 - Constraints between camera locations in *pose graph*
 - Maximum likelihood global camera poses

[Image: Manolis Lourakis]

Loop Closure Correction: Bundle Adjustment

 $\sum_{c_i \in C} \sum_{p_j \in P} v_{ij} |Proj(c_i, p_j) - (\bar{u}, \bar{v}, \bar{d})|^2$

A Second Comparison

SBA

Timing

Overlay 1

Overlay 2

Map Representation: Surfels

- Surface Elements [Pfister 2000, Weise 2009, Krainin 2010]
 - Points parameterized with a normal and a radius
 - Describe circular discs in 3D (≈ellipse in image space)
 - Set of surfels can be used to approximate 3D surface

Map Representation: Surfels

- Surface Elements [Pfister 2000, Weise 2009, Krainin 2010]
- Circular surface patches
- Accumulate color/orientation/size information
- Incremental, independent updates
- Incorporate occlusion reasoning
- 750 million points reduced to 9 million surfels

750 million points

9 million surfels

Application: Quadcopter

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Huang, Bachrach, Henry, Krainin, Maturana, Fox, Roy. ISRR 2011

Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Bachrach, Prentice, He, Henry, Huang, Krainin, Maturana, Fox, Roy et al. IJRR 2012

Melle Datama Select 20 National 20 Powersham

Add Retriet Manage_

Application: Interactive Mapping

- Allow anyone to construct a 3D map with an RGB-D camera
- Detect lack of features, guide user to correct errors
- Show map progress to assist completion
- Example applications
 - Localization
 - Measurements
 - Virtual flythrough / furniture shopping

Larger Maps

Mapping and Modeling with RGB-D Cameras

University of Washington Dieter Fox