
Mapping and Modeling 
with RGB-D Cameras 

University of Washington 

Dieter Fox 

1 



Outline 

• Motivation 

• RGB-D Mapping: 

1. Visual Odometry (frame-to-frame alignment) 

2. Loop Closure (revisiting places) 

3. Map representation (Surfels) 

 

 

2 



Outline 

• Motivation 

• RGB-D Mapping: 

1. Visual Odometry (frame-to-frame alignment) 

2. Loop Closure (revisiting places) 

3. Map representation (Surfels) 

 

 

3 



RGB-D (Kinect-style) Cameras 

4 



5 

Multisense SL 



Velodyne & LadyBug3 

6 



• Tracking RGB-D camera motion and creating a 
3D model has applications for 

– Rich interior maps 

– Robotics 

• Localization / Mapping 

• Manipulation 

– Augmented reality 

– 3D content creation 

Motivation 

7 



Goal 

• Track the 3D motion of an RGB-D camera 

• Build a useful and accurate model of the 
environment 

8 



Outline 

• Motivation 

• RGB-D Mapping: 

1. Frame-to-frame motion (visual odometry) 

2. Revisiting places (loop closure detection) 

3. Map representation (Surfels) 

 

 

9 



`` 

RGB-D Mapping Overview 

10 

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments.  Henry et al.  ISER 2010 
RGB-D Mapping: Using Kinect-style Depth Cameras for Dense 3D Modeling of Indoor Environments.  Henry et al.  IJRR 2012 

Map 



Visual Odometry 
• Compute the motion between consecutive camera 

frames from visual feature correspondences. 

• Visual features from  RGB image have a 3D counterpart 
from depth image. 

11 



Visual Features 

• Tree bark itself not 
really distinct 

 

• Rocky ground not 
distinct 

 

• Rooftops, windows, 
lamp post fairly distinct 
and should be easier to 
match across images 

Say we have 2 images of this scene we’d like to align by matching local features 

What would be good local features (ones easy to match)? 

Courtesy: S. Seitz and R. Szeliski 



Invariant local features 
-Algorithm for finding points and representing their patches should produce 
similar results even when conditions vary 

-Buzzword is “invariance” 
– geometric invariance:  translation, rotation, scale 

– photometric invariance:  brightness, exposure, … 

Feature Descriptors 
Courtesy: S. Seitz and R. Szeliski 



Robust visual features 

14 

• Goal: Detect distinctive features, maximizing repeatability 
 
– Scale invariance 

• Robust to changes in distance 

 
– Rotation invariance 

• Robust to rotations of camera 

 
– Affine invariance 

• Robust to tilting of camera 

 
– Brightness invariance 

• Robust to minor changes in illumination 
 

– Produce small descriptors that can be compared   
using simple mathematical operations 

• (SSE) 
• Euclidean distance 



Scale Invariant Detection 

• Consider regions (e.g. circles) of different sizes 
around a point 

• Regions of corresponding sizes will look the same 
in both images 



Scale Invariant Detection 

• The problem: how do we choose corresponding 
circles independently in each image? 



Scale Invariant Detection 

• Solution: 

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales) 
 
 

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same. 



Scale Invariant Detection 

• Solution: 

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales) 
 
 

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same. 

scale = 1/2 

– For a point in one image, we can consider it as a function of region 
size (circle radius)  
 

f 

region size 

Image 1 f 

region size 

Image 2 



Scale Invariant Detection 

• Common approach: 

scale = 1/2 

f 

region size 

Image 1 f 

region size 

Image 2 

Take a local maximum of this function 

Observation: region size, for which the maximum is achieved, should 
be invariant to image scale. 

s1 s2 

Important: this scale invariant region size is 

found in each image independently! 



Scale Invariant Detection 

• A “good” function for scale detection: 
    has one stable sharp peak 

f 

region size 

bad 

f 

region size 

bad 

f 

region size 

Good ! 

• For usual images: a good function would be a one 
which responds to contrast (sharp local intensity 
change) 



Scale Invariant Detection 

• Functions for determining scale 

2 2

21 2

2
( , , )

x y

G x y e 









 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

Kernel Imagef  

Kernels: 

where Gaussian 

Note: both kernels are invariant 

to scale and rotation 

(Laplacian of Gaussians) 

(Difference of Gaussians) 



Scale Invariant Detectors 
• Harris-Laplacian1 

Find local maximum of: 

– Harris corner detector in 
space (image coordinates) 

– Laplacian in scale 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004 

scale 

x 

y 

 Harris  


 L

a
p
la

c
ia

n
 

 

• SIFT (Lowe)2 
Find local maximum of: 

– Difference of Gaussians in space 
and scale 

scale 

x 

y 

 DoG  


 D

o
G

 
 



 

Slide from Tinne Tuytelaars 

Lindeberg et al, 1996 

Slide from Tinne Tuytelaars 

Lindeberg et al., 1996 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



 

Slide from Tinne Tuytelaars 



Feature descriptors 

We now know how to detect good points 
Next question: How to match them? 
 
 
 
 
 
 
  

 
 
 

? 

Courtesy: S. Seitz and R. Szeliski 



Feature descriptors 

We now know how to detect good points 
Next question: How to match them? 
 
 

 
 
 
 
 
 

? 

Courtesy: S. Seitz and R. Szeliski 

Point descriptor should be: 

1. Invariant 

2. Distinctive 



Invariance 

• Suppose we are comparing two images I1 and I2 

– I2 may be a transformed version of I1 

– What kinds of transformations are we likely to encounter in practice? 



Invariance 

• Suppose we are comparing two images I1 and I2 

– I2 may be a transformed version of I1 

– What kinds of transformations are we likely to encounter in practice? 

• Translation, 2D rotation, scale 

 



Invariance 

• Suppose we are comparing two images I1 and I2 

– I2 may be a transformed version of I1 

– What kinds of transformations are we likely to encounter in practice? 

• Translation, 2D rotation, scale 

 

• Descritpors can usually also handle 
– Limited 3D rotations (SIFT works up to about 60 degrees) 

– Limited affine transformations (2D rotation, scale, shear) 

– Limited illumination/contrast changes 



How to achieve invariance 

Need both of the following: 

1. Make sure your detector is invariant 

– SIFT is invariant to translation, rotation and scale 

2.  Design an invariant feature descriptor 

– A descriptor captures the information in a region 
around the detected feature point 



Scale Invariant Feature Transform 

37 

• Algorithm outline: 

– Detect interest points 

– For each interest point 

• Determine dominant orientation 

• Build histograms of gradient directions 

• Output feature descriptor 



Basic idea: 

• Take 16x16 square window around detected feature 

• Compute gradient for each pixel 

• Throw out weak gradient magnitudes 

• Create histogram of surviving gradient orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2 

angle histogram 



SIFT keypoint descriptor 
Full version 

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) 

• Compute an orientation histogram for each cell 

• 16 cells * 8 orientations = 128 dimensional descriptor 

 

 

Adapted from slide by David Lowe 



Properties of SIFT 
Extraordinarily robust matching technique 

– Can handle changes in viewpoint 
• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 
• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Lots of code available 
• http://www.vlfeat.org 

• http://www.cs.unc.edu/~ccwu/siftgpu/ 

http://www.vlfeat.org/
http://www.cs.unc.edu/~ccwu/siftgpu/


Feature matching 

Given a feature in I1, how to find the best match in I2? 

1. Define distance function that compares two 
descriptors 

2. Test all the features in I2, find the one with min 
distance 



Feature distance 
• How to define the difference between two features f1, f2? 

– Simple approach is SSD(f1, f2)  

• sum of square differences between entries of the two descriptors 

• can give good scores to very ambiguous (bad) matches  

f1 f2 

I1 I2 



Feature distance 
• How to define the difference between two features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

• f2 is best SSD match to f1 in I2 

• f2’  is  2nd best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2
' 



Lots of applications 

Features are used for: 

– Image alignment (e.g., mosaics) 

– 3D reconstruction 

– Motion tracking 

– Object recognition 

– Indexing and database retrieval 

– Robot navigation 

– … other 



More Features 

• FAST  

• GFTT 

• SURF 

• ORB 

• STAR  

• MSER 

• KAZE 

• A-KAZE 

45 

http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/ 

http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/
http://computer-vision-talks.com/articles/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/


Are descriptors unique? 

46 



47 

No, they can be matched to wrong features, generating 
outliers. 

Are descriptors unique? 



Dealing with outliers 

• Fit a geometric transformation to a small 
subset of all possible matches. 

• Possible strategies: 

– RANSAC 

– Incremental alignment 

– Hough transform 



Strategy: RANSAC 

• RANSAC loop: 
1. Randomly select a seed group of matches 

2. Compute transformation from seed group 

3. Find inliers to this transformation  

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation 
on all of the inliers 

• Keep the transformation with the largest 
number of inliers 

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated 
Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.  

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


Simple Example 

• Fitting a straight line 



Main Idea 

• Select 2 points at random 

• Fit a line 

• “Support” = number of inliers 

• Line with most inliers wins 



Why will this work ? 



Best Line has most support 

• More support -> better fit 

 



RANSAC example: Translation 

Putative matches 

Slide: A. Efros 



Select one match, count inliers 

Slide: A. Efros 

RANSAC example: Translation 



Find “average” translation vector 

Slide: A. Efros 

RANSAC example: Translation 



RANSAC: General Case 

• Objective: 

– Robust fit of a model to data S 

• Algorithm 

– Randomly select s points 

– Instantiate a model 

– Get consensus set Si 

– If |Si|>T, terminate and return model 

– Repeat for N trials, return model with max |Si| 



How many samples ? 

• We want: at least one sample with all inliers  

– Can’t guarantee: probability p 

– e.g., p = 0.99 

• Let e = % of outliers, and s = # of required data points to fit 
model 

• With probability p, we want at least one trial with all inliers: 
  1 - P(N trials with at least one outlier) ≥ p 

• Hence, the required number of trials is ? 

      

     N ≥ log(1-p)/log(1-(1-e)s) 

 

 

 



RANSAC: Line Fitting 



Adaptive RANSAC 

 

• Eliminates the guess of outlier ratio 



RANSAC pros and cons 

• Pros 
– Simple and general 

– Applicable to many different problems 

– Often works well in practice 

• Cons 
– Lots of parameters to tune 

– Can’t always get a good initialization of the model 
based on the minimum number of samples 

– Sometimes too many iterations are required 

– Can fail for extremely low inlier ratios 



Visual Odometry 
• Compute the motion between consecutive camera 

frames from visual feature correspondences. 

• Visual features from  RGB image have a 3D counterpart 
from depth image. 

• Three 3D-3D correspondences constrain the motion. 

62 



Visual Odometry Failure Cases 

63 

• Low light, lack of visual texture or features 



Visual Odometry Failure Cases 

64 

• Low light, lack of visual texture or features 

• Poor distribution of features across image 



Visual Odometry Failure Cases 

65 

• Low light, lack of visual texture or features 

• Poor distribution of features across image 

• RGB-D camera still provides shape information  



ICP (Iterative Closest Point) 

• Iteratively align frames based on shape 

• Needs a good initial estimate of the pose 

66 



ICP Failure Cases 

67 

• Not enough distinctive shape 

• Don’t have a close enough initial “guess”  

• Here the shape is basically a simple plane… 



Optimal Transformation 

• Jointly minimize feature reprojection and ICP: 

69 

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments.  Henry et al.  ISER 2010 
RGB-D Mapping: Using Kinect-style Depth Cameras for Dense 3D Modeling of Indoor Environments.  Henry et al.  IJRR 2012 



Outline 

• Motivation 

• RGB-D Mapping: 

1. Frame-to-frame motion (visual odometry) 

2. Revisiting places (loop closure detection) 

3. Map representation (Surfels) 

 

 

70 



Loop Closure 

• Sequential alignments accumulate error 

• Revisiting a previous location results in an 
inconsistent map 

71 



Loop Closure Detection 

• Detect by running RANSAC against previous frames 

• Pre-filter options (for efficiency): 
– Only a subset of frames (keyframes) 

– Only keyframes with similar estimated 3D pose 

– Place recognition using vocabulary tree 
• Scalable recognition with a vocabulary tree, David Nister and 

Henrik Stewenius, 2006 

• Post-filter (avoid false positives) 
– Estimate maximum expected drift and reject detections 

changing pose too greatly 

 
72 



73 



Loop Closure Correction (TORO) 

• TORO [Grisetti 2007, 2009]: 

– Constraints between camera locations in pose graph 

– Maximum likelihood global camera poses 

74 



Loop Closure Correction: 
Bundle Adjustment 

75 

[Image: Manolis Lourakis] 



A Second Comparison 

76 
TORO SBA 



Timing 

77 



Overlay 1 

78 



Overlay 2 

79 



Map Representation: Surfels 

• Surface Elements [Pfister 2000, Weise 2009, Krainin 2010] 

– Points parameterized with a normal and a radius 

– Describe circular discs in 3D (≈ellipse in image space) 

– Set of surfels can be used to approximate 3D surface 
 

80 



Map Representation: Surfels 

• Surface Elements [Pfister 2000, Weise 2009, Krainin 2010] 

• Circular surface patches 

• Accumulate color/orientation/size information 

• Incremental, independent updates 

• Incorporate occlusion reasoning 

• 750 million points reduced to 9 million surfels 

81 



82 750 million points 9 million surfels 



83 



84 



Application: Quadcopter 

85 

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Huang, Bachrach, Henry, Krainin, Maturana, Fox, Roy.  ISRR 2011 
 
Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Bachrach, Prentice, He, Henry, 
Huang, Krainin, Maturana, Fox, Roy et al.  IJRR 2012 
 



86 



87 



88 



Application: 
Interactive Mapping 

• Allow anyone to construct a 3D map with an 
RGB-D camera 

• Detect lack of features, guide user to correct 
errors 

• Show map progress to assist completion 

• Example applications 
– Localization 

– Measurements 

– Virtual flythrough / furniture shopping 

89 
Interactive 3D Modeling of Indoor Environments with a Consumer Depth Camera. Du, Henry, Ren, Cheng, Goldman, Seitz, Fox.  UbiComp 2011 



90 



Larger Maps 





Mapping and Modeling 
with RGB-D Cameras 

University of Washington 

Dieter Fox 

93 


