CSE-571
Probabilistic Robotics

Bayes Filter Implementations

Particle filters

Motivation

= So far, we discussed the
= Kalman filter: Gaussian, linearization problems

= Particle filters are a way to efficiently represent
non-Gaussian distributions

= Basic principle
® Set of state hypotheses (“particles”)
® Survival-of-the-fittest

Sample-based Localization (sonar)
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Function Approximation

= Particle sets can be used to approximate densities
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®= The more particles fall into an interval, the higher
the probability of that interval

®" How to draw samples form a function/distribution? .




Rejection Sampling

Let us assume that fix)<=1 for all x
Sample x from a uniform distribution
Sample ¢ from [0,1]

if fix) > ¢ keep the sample
otherwise reject the sampe
f(x)
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Importance Sampling Principle

= We can even use a different distribution g to
generate samples from f

® By introducing an importance weight w, we can
account for the “differences between g and f”

Importance Sampling with Resampling:
Landmark Detection Example

"w=f/g
) proposal(x)
= fis often called = target(x)
.eo samples
target g
= g is often called =
proposal 2
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Wanted: samples distributed according to

p(x| z,, 25, 23)




This is Easy!

We can draw samples from p(x|z,) by adding
noise to the detection parameters.

Importance Sampling with
Resampling
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Target distribution f : p(x|z,,z,,...,2,) =
(2,250, 2,)

p(z | X)p(x)

Sampling distribution g: p(x|z,) =
p(z)

p(z) Hp(zk [x)
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Importance weights w :i G )

g p(x|z) P(2,255.,2,)

Importance Sampling with
Resampling

Weighted samples After resampling

Resampling

® Given: Set S of weighted samples.
e Wanted : Random sample, where the

probability of drawing x; is given by w;.

® Typically done n times with replacement to
generate new sample set S’.




Resampling

® Roulette wheel
® Binary search, n log n

® Stochastic universal sampling

e Systematic resampling

® Linear time complexity

® Easy to implement, low variance

Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. 8'=@,c,=w'

3. For i=2...n Generate cdf

4. ¢, =c +w

5. u ~U[0,n'],i=1 Initialize threshold

6. For j=1...n Draw samples ...

7. While (u; >¢;) Skip until next threshold reached
8. i=i+l

9. s=sulkxnts] Insert

10. u, =u;+ n Increment threshold

11. Return S’

Also called stochastic universal sampling

Particle Filters

Sensor Information: Importance Sampling
Bel(x) <« «a p(z]|x) Bel (x)
o p(z]| x) Bel (x)

w — —Bel’(x) = ap(z|x)
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Robot Motion
‘Bel’(x) «— jp(x|u,x’)Bel(x’) dx!
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Sensor Information: Importance Sampling
Bel(x) « o p(z|x)Bel (x)
a p(z|x) Bel (x)

w «— —Bel_(x) = ap(zlx)
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Robot Motion

Bel (x) « Jp(x|u,x’)BeZ(x’) d x|

[ p(s) -_—

Particle Filter Algorithm
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1. Algorithm particle_filter( S, ;, u,; z,):

2. §,=0, n=0

3. For i=1l...n Generate new samples

4 Sample index j(i) from the discrete distribution given by w,,
5. Sample x! from p(x, |x,_,u,_,) using x/{ and u,_,

6 w = p(z, | x)) Compute importance weight
7. n=n+ Wf Update normalization factor
8. S, =8, ui<x,w >} Insert

9. For i=l...n

10.  w=w/n Normalize weights




Particle Filter Algorithm

Bel (x,) =1 p(z,]x,) Jp(x, | X5t y) Bel (x,) dx,

L draw xi,_, from Bel(X,_,)
draw x/, from p(x,| x' ,u,)
Importance factor for x/:
; _target distribution
" proposal distribution
= 77 p(zt |x1) p(xz |xt—15uz—1) Bel (‘xl—l)

p(x, | x_,u,) Bel (x._)
o< p(z,|x,)

Motion Model Reminder

10 meters

Proximity Sensor Model Reminder
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Laser sensor Sonar sensor
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Using Ceiling Maps for Localization

41 [Dellaert et al. 99]
Vision-based Localization Under a Light
Measurement z: P(zlx):
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Next to a Light

Measurement z:

P(z|x):

Elsewhere

Measurement z: P(zlv):

Global Localization Using Vision

Recovery from Failure
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Localization for AIBO robots

WiFi Sensor Model

Variance

[Ferris-Haehnel-Fox: RSS-06]

Hybrid Model for People Tracking

Tracking Example
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Adaptive Sampling
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KLD-Sampling Sonar

Adapt number of particles on the fly based
on statistical approximation measure

KLD-Sampling Laser

Particle Filter Projection
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Density Extraction
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Sampling Variance

CSE-571
Probabilistic Robotics

Bayes Filter Implementations

Discrete filters
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Discrete Bayes Filter Algorithm

Algorithm Discrete_Bayes_filter( Bel(x),d ):
=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
n=n+ Bel'(x)
For all x do
Bel'(x)=1"Bel'(x)
Else if d is an action data item u then
For all x do
Bel'(x)= ZP(x |u,x") Bel(x")
Return Bel’(x)
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Piecewise Constant
Representation

<X**ﬁ

(0,0,0)
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Grid-based Localization

10/16/15 CSE-571 - Probabilistic Robotics 63

Robot position (A)

Sonars and Y.
Occupancy Grid Map | &

\ Robot position (B)
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Tree-based Representation

Idea: Represent density using a variant of Octrees
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Tree-based Representations

e Efficient in space and time
e Multi-resolution
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Topological Localization

XAVIER:

Corridor Navigation

July 1996

School of Computer Science
Carnegic Mellon University
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Localization Algorithms - Comparison
Kalman Multi- Topological Grid-based Particle
filter hypothesis maps (fixed/variable) filter
tracking
Sensors Gaussian | Gaussian Features Non-Gaussian Non-
Gaussian
Posterior Gaussian | Multi-modal | Piecewise Piecewise Samples
constant constant
Efficiency (memory) ++ ++ ++ -/o +/++
Efficiency (time) ++ ++ ++ o/+ HIy TS
Implementation + o e +/0 TFar
Accuracy ++ ++ = +/++ ++
Robustness = + + ++ +/++
Global No Yes Yes Yes Yes
localization
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