RGB-D Mapping:
Using Depth Cameras for
Dense 3D Modeling of
Indoor Environments

Peter Henry!, Michael Krainin!, Evan Herbst!,
Hao Du3, Marvin Cheng!, Xiaofeng Ren?, and Dieter Fox!2

lUniversity of Washington
Computer Science & Engineering

2|STC-Pervasive Computing . >
(lntel)

3Google

The Kinect

KINECT

[Slide: PrimeSense]

PrimeSense Technology

Scene Scene Depth Image

Red Green Blue

Depth

\ T

RGB-D Data

The Goal

Align the “frames” from a Kinect to create a
single 3D map (or model) of the environment

Like this...

System Overview

RGB-D CAMERA RGB-D FEATURES RGBD-ICP C.Jlo.bal.
Optimization
RGB Sparse Features ﬂ RANSAC Point-ICIoud

+ _ Maps

Depth Dense Point Cloud ~ |Emmmmp> | |CP = =
Surfel Maps

1. Frame-to-frame alignment

2. Global Optimization (Loop Closure)

3. Map representation

RANSAC

(Random Sample Consensus)

® Visual features (from image) in 3D (from depth)

® Figure out how the camera moved by matching
these feature

Visual Features

® Detector
® Repeatable
® Stable
® |nvariances:
® |l[lumination

® Rotation
® Scale?

® Descriptor
® Discriminative
® |nvariant

[Slide: David Lowe]

SIFT Detector

(Scale Invariant Feature Transform)

o A ﬁ /____:K-) ﬂﬁ
il s
y—a >

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

[Slide: David Lowe]

Local Maxima/Minima In
Scale Space

A

L L L L L LS

Scale

, L L L L LS
L L Il e
[L eSS
L L Il e S

[Slide: David Lowe]

[Slide: Edward Rosten]

FAST Detector

(Features from Accelerated Segment Test)

F dEEEEEEE
el | | [el |
el | pl [s

Figure 1. 12 point segment test corner detection in an image patch. The highlighted
squares are the pixels used in the corner detection. The pixel at p is the centre of a
candidate corner. The arc is indicated by the dashed line passes through 12 contiguous

Detector Properties

e SIFT is invariant to illumination, translation, scale,
rotation

® FAST is not scale invariant, but is fast (~50x faster)

[Slide: David Lowe]

SIFT Descriptor

Image gradients Keypoint descriptor

Calonder Randomized Tree
Descriptor

® Use training set of keypoints (“base set”)

® Apply distortions in scale, rotation, perspective
(“view set”)

® Train randomized decision trees to classify the
Incoming keypoint

® Descriptor is the distribution across the base set

[Slide: Michael Calonder]

Keypoint Classification

I(m,) < I(m,) I(m,) > I(m,)

[Slide: Michael Calonder]

Calonder Example

R Rl B
REERER SR
il N 52

Fig. 3. The leftmost image of each row represents a patch from a test image. The
remaining images in the same row represent the patches surrounding the 10 keypoints
the test patch looks most similar to according to our Randomized Tree classifier, in
decreasing similarity order.

.-
B
4+ 2

[Slide: Michael Calonder]

Detector/Descriptor Speed

Task Time

Gaussian pyramid 1434 ms | |Task Time
DOG pyramid 277.4 ms | |Keypoint detection (est’d)| 5 ms
Feature scales 0.2362 ms| |Compute base distribution|33.21 ms
Feature orientations 91.34 ms | |Thresholding 1.217 ms
Assemble final descriptor| 339.2 ms | [Total time 39.43 ms
Total time 2142 ms

(b) GTs

(a) SIFT

What is RANSAC?

® For each feature point, find the most similar descriptor
in the other frame

® Find largest set of consistent matches

® Move the new frame to align these matches

RANSAC Detalls

® Feature Detector / Descriptor Options
o SIFT (SiftGPU)
e SURF (Sped-Up Robust Features)
e FAST Detector / Calonder Descriptor
e (All available in OpenCV)

® Matching:
® | 2 descriptor distance
® Frame-to-frame: window matching
® | oop closure: ratio-test matching

RANSAC Error Function

® Euclidean 3D Error:

T =argmm(|A |). [Proj(T(f;)) — Proj(£;)])

zGAf

RANSAC Failure Cases

Low light

Lack of visual “texture” or features

Kinect still provides depth or “shape” information

ICP
(Iterative Closest Point)

[terative Closest Point (ICP) uses shape to align
frames

Does not require the RGB image

Does need a good initial “guess”

Repeat the following two steps:

® For each point in cloud A, find the closest
corresponding point in cloud B

e Compute the transformation that best aligns this set
of corresponding pairs

|CP Variants

® Correspondence
® (Qutliers as absolute or percentage
® No many-to-one correspondences
® Reject boundary points
® Normal agreement

® Error metric
® Point-to-point
® Point-to-plane
® Weight by color / normal agreement

[Image: Richard Newcombe]

Point-to-plane Error

-
\
\
\

_a' \
—‘— \
=" \
- \
\
\
\
\ \
\ \
\ \
\ \

- \ ‘
Point X '
Distance \

\
\
\ \
\ \
\ -~
\‘ ’,—-"
\ ',-’

to Plane

» e ".'- 'Ei’."'“'.:"\ -y
pes o, N b T -
el i
-4‘1 ‘ - ”“ '.";. ’.g_'
2 A -3
T, >

|CP Failure Cases

® Not enough distinctive shape

® Don’t have a close enough initial “guess”

® Here the shape is basically a simple plane...

Joint Optimization (RGBD-ICP)

O 0N A AW N =

[y
[—

o i
B =

input : source RGB-D frame F, target RGB-D frame P, previous transformation Ty,
output: Optimized relative transformation T*

F; + Extract RGB_Point _Features (F)
F, + Extract _RGB_Point Features (BA)
(T*,As) + Perform RANSAC.Alignment (F,F)

if |[As| < y then
" =T,
Ar=0

end

repeat

Ay + Compute_Closest Points (T*,P,P)
T* + Optimize Alignment (T*,As,Ay)

until (Change (T*) < 6) or (lterations > Maxlterations)

return T*

Algorithm 1: RGB-D ICP algorithm for matching two RGB-D frames.

Optimal Transformation

t

t — argmin (|A X [Proj(t(£)) — Proj(£))

IEAf

(lAd| ZWJ|(t(P]) {)"{'2)

JEA4

Two-Stage Alternative

input : source RGB-D frame P; and target RGB-D frame P,
output: optimized relative transformation T*

1 F; + Extract RGB_Point_Features (F)
2 F;, +— Extract RGB_Point Features (F)
3 (T*,Ay) + Perform RANSAC Alignment (F;, F)
4 if [As| < ythen
5 " =T,
6 Af =0
7 end
8 if |As| > ¢ then
9 return T"
10 else
11 repeat
12 A, + Compute_Closest_Points (T*,P,P)
13 T* + Optimize Alignment (T*,Afr,Ay)
14 until (Change (T*) < 0) or (lterations > Maxlterations)
15 return T"
16 end

Algorithm 2: Two-Stage RGB-D ICP algorithm for more quickly matching two RGB-D
frames.

Experiments
® Reprojection error is better for RANSAC:

EE-RANSAC

RE-RANSAC

Mean inliers per frame

60.3

116.7

® Errors for variations of the algorithm:

RE-RANSAC|EE-RANSAC| ICP | RGBD-ICP |Two-Stage RGBD-ICP
Intel-Day |0.11 (£0.05) [0.16 (£0.07) [0.15 (£0.05)[0.10 (£0.04)| 0.11 (£0.05)
Intel-Night| 1.09 (£0.88) [1.15 (£0.89) [0.17 (£0.06)[0.15 (£0.08)] 0.15 (£0.09)

® Timing for variations of the algorithm:

RE-RANSAC[EE-RANSAC| ICP | RGBD-ICP [Two-Stage RGBD-ICP
Intel-Day |0.21 (£0.03) [0.20 (£0.05) [0.72 (£0.73)[0.48 (£0.10)| _ 0.21 (£0.03)
Intel-Night| 0.20 (£0.05) [0.20 (£0.05) [0.43 (£0.64)[0.57 (£0.47)[0.37 (£0.63)

B =T

Loop Closure

® Sequential alignments accumulate error

® Revisiting a previous location results in an
Inconsistent map

Loop Closure Detection

® Detect by running RANSAC against previous frames

® Pre-filter options (for efficiency):
® Only a subset of frames (keyframes)
® Only keyframes with similar estimated 3D pose

® Place recognition using vocabulary tree

® Scalable recognition with a vocabulary tree, David Nister
and Henrik Stewenius, 2006

® Post-filter (avoid false positives)

® Estimate maximum expected drift and reject
detections changing pose too greatly

Loop Closure Correction (TORO)

® TORO [Grisetti 2007, 2009]:
® Constraints between camera locations in pose graph
e Maximum likelihood global camera poses

" -

[Slide: Cyrill Stachniss]

Stochastic Gradient Descent

" Minimize the error individually for each constraint
(Decomposition of the problem into sub-problems)

" Solve one step of each sub-problem
® Solutions might be contradictory

" The magnitude of the correction decreases with
each iteration

" The individual solutions are merged and via the
learning rate converge to an equilibrium

SRS SEEE

\ U 4

[First introduced in the SLAM community by Olson et al., ’06]

[Slide: Cyrill Stachniss]

Preconditioned SGD

" Minimize the error individually for each constraint
(Decomposition of the problem into sub-problems)

® Solve one step of each sub-problem

" Solutions might be contradictory

" A solution is found when an equilibrium is reached
" Update rule for a single constraint:

Previous solution|Hessian | | Information matrix
I

t+1 _ 1t 1—1 /'
}f — X ?\ . H *inQ]Zr]Z

Current solution |Learning rate |Jacobian |residual

[First introduced in the SLAM community by Olson et al., '06]

[Slide: Cyrill Stachniss]

Node Parameterization

" How to represent the node in the graph?

= Key question: which parts need to be
updated for a single constraint update?

" This are to the “sub-problems” in SGD

" Transform the problem into a different space so

that:
® the structure of the problem is exploited.
® the calculations become easier and faster.

parameters | | poses

X = g(pj —p=g (%) x* = argmin Ze}i(x)TjSegi(x)
1,]
Mapping function transformed problem

[Slide: Cyrill Stachniss]
Tree Parameterization

" Use a spanning tree!

- . [Slide: Cyrill Stachniss]
Stochastic Gradient Descent using

the Tree Parameterization

" Using a tree parameterization we decompose the
problem in many small sub-problems which are
either:

® constraints on the tree (“open loop”)
" constraints not in the tree (“a loop closure”)

" Each SGD equation independently solves one
sub-problem at a time

" The solutions are integrated via the learning rate

Pj p;

[Slide: Cyrill Stachniss]
Computation of the Update Step

" 3D rotations lead to a highly nonlinear
system.

" Update the poses directly according to the
SGD equation may lead to poor convergence.

" This effect increases with the connectivity of
the graph.

" Key idea in the SGD update:
AX =)\ - H_lJ};jSrﬁ
Distribute a fraction of the residual along

the parameters so that the error of that
constraint is reduced.

[Slide: Cyrill Stachniss]

Computation of the Update Step

Update in the “spirit” of the SGD:
Smoothly deform the path along the
constraints so that the error is reduced.

ITANT OF S ®
Q o Q

C
Q) Distribute the | * éD Distribute the
rotational error p translational

error
D P,

[Slide: Cyrill Stachniss]

Summary of the Algorithm

" Decompose the problem according to the
tree parameterization

" Loop

® Select a constraint
" Randomly

" Alternative: sample inverse proportional to
the number of nodes involved in the update

" Compute the nodes involved in the update
®" Nodes according to the parameterization tree

® Reduce the error for this sub-problem
® Reduce the rotational error (slerp)
" Reduce the translational error

[Image: Manolis Lourakis]

Bundle Adjustment

////\\‘\ NN

Y.) vilP

- rOj(Ci,pj) — (ﬁ,ﬁ,d—)lz
. ci€Cpjep -

T

r—

[Image: Manolis Lourakis]

Sparse Bundle Adjustment

Iy :

3 |

Sparse Sparse Bundle Adjustment
Kurt Konolige, 2010

® Two kinds of sparsity:

® Primary structure (connections only between cameras
and points)

® Secondary structure (connections between cameras
are sparse as well)

® |ntegrates an efficient method for setting up the
linear subproblem with recent advances in direct
sparse Cholesky solvers

* |mplementation available in ROS

® Nonlinear least squares, optimized iteratively

Bundle Adjustment with
RGB-D ICP

® |CP-only constraints and RGB-D ICP constraints
don’t use (only) common feature points

® Solution:
e Sample points in a grid in image space

® Corresponding points in other frame according to
relative pose

® Filter based on distance and normal angle threshold

® Add remaining points as though they were feature
points

® Avoids disconnected SBA system

SBA Points

Mary Fafus
One Code

A Second Comparison

12

10

Seconds
(@)

= TORO

-| &—a SBA -
N R ¥ N VN VNV S VR S v >3 - |

0 200 400 600 800 1000 1200 1400 1600

Frames

Resulting Map

Experiments: Overlay 1
T W] - '

L

T

Experiments: Overlay 2

Map Representation: Surfels

e Surface Elements [Pfister 2000, Weise 2009, Krainin 2010]
® Circular surface patches

® Accumulate color / orientation / size information

®* |ncremental, independent updates

® |[ncorporate occlusion reasoning

® 750 million points reduced to 9 million surfels

B Many Fages ks : i ’ N\ Many Fages
% One Code 1\ One (ode

P

Many Fages
One (ode

Application: Quadrocopter

® Collaboration with Albert Huang, Abe Bacharach,
and Nicholas Roy from MIT

lﬁ .7‘ :’-“ »*-a, r?

a-ﬂ‘ - 5'

? .
Al"lz: E.

__=- -

/' / '

Occupancy Map

1 W SeRT 0 NAN oM 20 Mo Bl mate

Dackgroond Coke (54T
Spresensar frame

Taiget Hame o o

¥
7
Y
B4

12, ingant image (Camare)
Digays 41 Image Bom 4 canmmri, weil D vt b works cenere betdnd i

Application:
Interactive Mapping

® Allow anyone to construct maps with a Kinect

e Uses for these maps
® | ocalization

® Measurements

® Remodeling

® Buy new furniture

® \ideo game levels???

Counter i [087
Counter W | { 3]
Fridge H | 1 67
Fridge w [073
RO H e 06
Room L s 73
Room W | ' 71

0.00 1.00 2.00 3.00 4.00 5.00
Meters

= Map
& World

2.54

Hall H
= 243

000 5.00

1241
11.97 - Map
* World

10.00 15.00 20.00 2500 3000 3500 40.00 45.00
Meters

Conclusion

Kinect-style depth cameras have recently become
available as consumer products

RGB-D Mapping can generate rich 3D maps using these
cameras

RGBD-ICP combines visual and shape information for
robust frame-to-frame alignment

Global consistency achieved via loop closure detection
and optimization (RANSAC, TORO, SBA)

Surfels provide a compact map representation

ROS + OpenCV are powerful tools to enable these
applications

Open Questions

® Which are the best features to use?
® How to find more loop closure constraints between frames?

* What is the right representation (point clouds, surfels, meshes,
volumetric, geometric primitives, objects)?

® How to generate increasingly photorealistic maps?
e Autonomous exploration for map completeness?

® (Can we use these rich 3D maps for semantic mapping?

® Global optimization with g20
® o20: A General Framework for Graph Optimization. Kummerle et al., ICRA, 2011.

® Allows both pose-graph and SBA optimization, along with possible new error
functions

Related Work

e [Davison et al, PAMI 2007] (monocular)
[Konolige et al, [JR 2010] (stereo)

[Pollefeys et al, [JCV 2007] (multi-view stereo)
[Borrmann et al, RAS 2008] (3D laser) T s
[May et al, JFR 2009] (ToF sensor) “ME P B8

® [oop Closure Detection
® [Nister et al, CVPR 2006]
® [Paul et al, ICRA 2010]

® Photo collections
® [Snavely et al, SIGGRAPH 2006]
® [Furukawa et al, ICCV 2009]

References (Ours)

RGB-D Ma,o{o/n Using Kinect-style Depth Cameras for Dense 3D
Modeling of Indoor Environments. Peter Henry, Michael Krainin,
Evan Herbst, Xiaofeng Ren, Dieter Fox. [JRR, 2012 (to appear)

Interactive 3D Modeling of Indoor Environments with a Consumer
Depth Camera. Hao Du, Peter Henry, Xiaofeng Ren, Marvin
ggﬂg’ Dan B Goldman Steven Seitz, Dieter Fox. Ub|Comp,

Visual Odometry and Mapping for Autonomous F//%ht Using an RGB-D
Camera. Albert S. Huang, Abraham Bachrach, Peter Henry,
Michael Krainin, Daniel Maturana, Dieter Fox. ISRR, 2011

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of
Indoor Environments. Peter Henry, Michael Krainin, Evan Herbst,
Xiaofeng Ren, Dieter Fox. ISER, 2010.

References (Others)

SIFT:
e Distinctive image features from scale-invariant keypoints. David Lowe, IJCV 2004

FAST:
® Machine learning for high-speed corner detection. Edward Rosten, Tom Drummond, ECCV 2006

Calonder Descriptor:

e Keypoint signatures for fast learning and recognition. Michael Calonder, Vincent Lepetit, Pascal
Fua, ECCV 2008

TORO:

® A tree parameterization for efficiently computing maximum likelihood maps usinlg gSradient
descent. Giorgio Grisetti, Cyrill Stachniss, Slawomir Grzonka, Wolfram Burgard, RSS 2007

® Nonlinear Constraint Network Optimization for Efficient Map Learning. Giorgio Grisetti, Cyrill
Stachniss, Wolfram Burgard, Transactions on Intelligent Transportation Systems, 2009

sSBA:
® Sparse Sparse Bundle Adjustment, Kurt Konolige, BMVC 2010

Links

® www.cs.washington.edu/robotics/projects/rgbd-3d-
mapping/

® WWW.ros.org

® The following have nice ROS integration but also
work separately:

® http://opencv.willowgarage.com/wiki/
® http://www.pointclouds.org/

® www.cs.washington.edu/homes/peter/

* peter@cs.washington.edu

