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Reinforcement Learning
for
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Manipulator Control



Reinforcement Learning
® Same setting as MDP

® Passive:

e PO
un

e RO
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icy given, transition model and reward are
Known

pot wants to learn value function for the given

icy

e Similar to policy evaluation, but without
knowledge of transitions and reward

® Active:
e Robot also has to learn optimal policy



Direct Utility Estimation

e Fach trial gives a reward for the visited
states _ _

V.(s)=E Z Y R(s,)|sy=s,7

| =0

® Determine average over many trials

® Problem: Doesn’t use knowledge about
state connections

V(s)= R(s)+ max 7/2 p(s'|s,a) V(s')



Temporal Difference Learning

® Make use of observed transitions

® Uses difference in utilities between
successive states

V(s) <V (s)+a(R(s)+ yV(s')—V(s))

® | earning rate a has to decrease with
number of visits to a state

® Does not require / estimate explicit
transition model

e Still assumes policy is given



Active Reinforcement Learning

® First learn model, then use Bellman equation
V(s)= R(s)+ max 7/2 p(s'|s,a) V(s')

® Use this model to perform optimal policy
® Problem?

® Robot must trade off exploration (try new
actions/states) and exploitation (follow
current policy)



Q-Learning

® Model-free: learn action-value function
e Equilibrium for Q-values:

Q(a,S)=R(S)+7/Z p(s'la,s) max a',s')

V(s)= R(s)+ max 7/2 p(s'|s,a) V(s")

e Updates:

Oa,s) & Ola,s)+a (R(s)+y max Xa',s')—-0(a,5))



RL for Active Sensing




Active Sensing

¢ Sensors have limited coverage & range

¢ Question: Where to move / point sensors?

¢ Typical scenario: Uncertainty in only one type of
state variable |

¢ Robot location [Fox et al., 98; Kroese & Bunschoten, 99;
Roy & Thrun 99]

+ Object / target location(s) [Denzler & Brown, 02; Kreuchner
et al., 04, Chung et al., 04]

¢ Predominant approach:
Minimize expected uncertainty (entropy)



Active Sensing in Multi-State
Domains

¢ Uncertainty in multiple, different state variables
Robocup: robot & ball location, relative goal location, ...

¢ \Which uncertainties should be minimized?

¢ Importance of uncertainties changes over time.

+ Ball location has to be known very accurately before a kick.

+ Accuracy not important if ball is on other side of the field.

+ Has to consider sequence of sensing actions!

¢ RoboCup: typically use hand-coded strategies.



Converting Beliefs to Augmented
States
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Projected Uncertainty
(Goal Orientation)

~




Why Reinforcement Learning?

o No accurate model of the robot and the
environment.

o Particularly difficult to assess how
(projected) entropies evolve over time.

¢ Possible to simulate robot and noise in
actions and observations.



Least-squares Policy Iteration

¢ Model-free approach

o Approximates Q-function by linear
function of state features

Q" (s,a) = Q”(S,a;w) = Z@. (s,a) w,

¢ No discretization needed

o No iterative procedure needed for policy
evaluation

¢ Off-policy: can re-use samples
[Lagoudakis and Parr " 01, 03]



Application:
Active Sensing for Goal Scoring

o Task: AIBO trying to score goals

¢ Sensing actions: look at ball, or the
goals, or the markers

¢ Fixed motion control policy: Uses
most likely states to dock the robot

to the ball, then kicks the ball into
the goal.

¢ Find sensing strategy that “best”
supports the given control policy.




Augmented State Space and
Features

m State variables:
= Distance to ball
= Ball Orientation

= Uncertainty variables:
= Ent. of ball location
= Ent. of robot location
= Ent. of goal orientation

Goal

" Features:

o(s,a,d,) = <‘Hb
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Experiments

o+ Strategy learned from simulation

¢ Episode ends when:
. Scores (reward +5)
. Misses (reward 1.5 -0.1)
. Loses track of the ball (reward -5)

. Fails to dock / accidentally kicks the ball
away (reward -5)

o Applied to real robot
¢ Compared with 2 hand-coded
strategies
. Panning: robot periodically scans

. Pointing: robot periodically looks up at
markers/goals



Rewards (simulation)
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Success Ratio (simulation)
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Learned Strategy

o Initially, robot learns to dock (only looks
at ball)

¢ Then, robot learns to look at goal and
markers

¢ Robot looks at ball when docking

+ Briefly before docking, adjusts by looking
at the goal

¢ Prefers looking at the goal instead of
markers for location information



Results on Real Robots

® 45 episodes of goal kicking

Goals Misses | Avg. Miss Kick
Distance Failures
Learned 31 10 6+0.3cm 4
Pointing 22 19 9+2.2cm 4
Panning 15 21 22£9.4cm 9




Adding Opponents

Goal

Additional features: ball velocity, knowledge about other robots



Learning With Opponents
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+ Robot learned to look at ball when opponent is
close to it. Thereby avoids losing track of it.



Summary

" |Learned effective sensing strategies
that make good trade-offs between
uncertainties

= Results on a real robot show
improvements over carefully tuned,
hand-coded strategies

= Augmented-MDP (with projections)
good approximation for RL

= |SPI well suited for RL on augmented
state spaces



Policy Search

® \Works directly on parameterized
representation of policy

e Compute gradient of expected reward
wrt. policy parameters

® Get gradient analytically or empirical
via sampling (simulation)



PILCO: Probabilistic Inference
for Learning Control

® Model-based policy search

® | earn Gaussian process dynamics
model

® Goal-directed exploration
- no "motor babbling” required

® Consider model uncertainties
- robustness to model errors

® Extremely data efficient



PILCO: Overview

policy search

init. ¢ (random) d4d learn GP policy evaluation .J(0)
—— t —— .
apply random actions record data dynamics model policy gradient d.J/df

—» update 0

? t

: H*
apply policy 7(6*)

to robot

* Cost function given
* Policy: mapping from state to control
* Rollout: plan using current policy and GP model

* Policy parameter update via CG/BFGS



Model Learning and Approximate
Inference

Gaussian Process Approximate Inference
Forward Model for Policy Learning
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* Probabilistic GP model * Long-term planning requires approximate
consistently describes inference: moment matching

model uncertainties * Model uncertainties are integrated out
analytically (opposed toMC [Bagnell-00])

Elxy = Eqy,_, | E¢[f(@i—1,m(24-1,0))|x¢—1]]
By [Vilf (omr, w1, 0))|@e—1])] +Va,_, [ Ef[f (w1, m(24-1,0))|2¢—1]]



Demo: Standard Benchmark
Problem

Swing pendulum up
and balance in
inverted position

Learn nonlinear
control from scratch

4D state space, 300
controll parameters

7 trials/17.5 sec
experience

Control freq.: 10 Hz

trial #1 (random actions)




Data Efficiency in Comparison
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* Gray bars: balancing only
* Learning from scratch
* Also applied to unicycle, double pendulum



Controlling a Low-Cost Robotic
Manipulator

Low-cost system ($500 for
robot arm and Kinect)

Very noisy

No sensor information about
robot’s joint configuration used

Goal: Learn to stack tower of 5
blocks from scratch

Kinect camera for tracking
block in end-effector

State: coordinates (3D) of

block center (from Kinect
camera)

4 controlled DoF

20 learning trials for stacking 5
blocks (5 seconds long each
Account for system noise, e.q.,
— Robot arm

— Image processing




Collision Avoidance
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* Use valuable prior information about obstacles if
available

* Incorporation into planning - penalize in cost
function



Collision Avoidance Results

] Training runs (durin
Experimental Setup learning) with collisions
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* Cautious learning and exploration (rather safe than risky-successful)

* Learning slightly slower, but with significantly fewer collisions during
training

* Average collision reduction (during training): 32.5% > 0.5%



