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Reinforcement Learning 

for  
Active Sensing 

Manipulator Control 



Reinforcement Learning 
• Same setting as MDP 

• Passive:  
•  Policy given, transition model and reward are 

unknown 
•  Robot wants to learn value function for the given 

policy 
•  Similar to policy evaluation, but without 

knowledge of transitions and reward 

• Active: 
•  Robot also has to learn optimal policy 



Direct Utility Estimation 
• Each trial gives a reward for the visited 

states 

• Determine average over many trials 

• Problem: Doesn’t use knowledge about 
state connections   
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Temporal Difference Learning 
• Make use of observed transitions 

• Uses difference in utilities between 
successive states 

• Learning rate a  has to decrease with 
number of visits to a state 

• Does not require / estimate explicit 
transition model 

• Still assumes policy is given  
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Active Reinforcement Learning 
• First learn model, then use Bellman equation 

• Use this model to perform optimal policy 

• Problem? 

• Robot must trade off exploration (try new 
actions/states) and exploitation (follow 
current policy) 
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Q-Learning 
• Model-free: learn action-value function 
• Equilibrium for Q-values: 

• Updates: 
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RL for Active Sensing 



Active Sensing	

u  Sensors have limited coverage & range 

u  Question: Where to move / point sensors? 

u  Typical scenario: Uncertainty in only one type of 
state variable 

u  Robot location [Fox et al., 98; Kroese & Bunschoten, 99;  
                                     Roy & Thrun 99] 

u  Object / target location(s) [Denzler & Brown, 02; Kreuchner  
                                                            et al., 04, Chung et al., 04] 

u  Predominant approach:  
Minimize expected uncertainty (entropy) 



Active Sensing in Multi-State 
Domains	

u  Uncertainty in multiple, different state variables  
Robocup: robot & ball location, relative goal location, … 

u  Which uncertainties should be minimized? 

u  Importance of uncertainties changes over time. 
u  Ball location has to be known very accurately before a kick.  

u  Accuracy not important if ball is on other side of the field. 

u  Has to consider sequence of sensing actions! 

u  RoboCup: typically use hand-coded strategies. 



Converting Beliefs to Augmented 
States 

Augmented state Belief 

Uncertainty  
variables 

State variables 



Projected Uncertainty  
(Goal Orientation) 

g q r q 
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Goal 



Why Reinforcement Learning? 

u  No accurate model of the robot and the 
environment. 

u  Particularly difficult to assess how 
(projected) entropies evolve over time. 

u  Possible to simulate robot and noise in 
actions and observations. 



Least-squares Policy Iteration 

 
u  Model-free approach 
u  Approximates Q-function by linear 

function of state features 

u  No discretization needed 
u  No iterative procedure needed for policy 

evaluation 
u  Off-policy: can re-use samples 

[Lagoudakis and Parr ’01,’03] 
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Goal

Marker

Robot

Ball

Application: 
Active Sensing for Goal Scoring 

u  Task: AIBO trying to score goals 
u  Sensing actions: look at ball, or the 

goals, or the markers 
u  Fixed motion control policy: Uses 

most likely states to dock the robot 
to the ball, then kicks the ball into 
the goal. 

u  Find sensing strategy that “best” 
supports the given control policy. 



Augmented State Space and 
Features 

§ State variables: 
§  Distance to ball 
§  Ball Orientation 

§ Uncertainty variables: 
§  Ent. of ball location 
§  Ent. of robot location 
§  Ent. of goal orientation 

§ Features:  
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Experiments 

u  Strategy learned from simulation 
u  Episode ends when: 

•  Scores (reward +5) 
•  Misses (reward 1.5 – 0.1) 
•  Loses track of the ball (reward -5) 
•  Fails to dock / accidentally kicks the ball 

away (reward -5) 
u  Applied to real robot 
u  Compared with 2 hand-coded 

strategies 
•  Panning: robot periodically scans 
•  Pointing: robot periodically looks up at 

markers/goals 



Rewards (simulation) 
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Success Ratio (simulation) 
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Learned Strategy	

u  Initially, robot learns to dock (only looks 
at ball) 

u  Then, robot learns to look at goal and 
markers 

u  Robot looks at ball when docking 
u  Briefly before docking, adjusts by looking 

at the goal 
u  Prefers looking at the goal instead of 

markers for location information	



 
Results on Real Robots 

•   45 episodes of goal kicking 

Goals Misses Avg. Miss 
Distance 

Kick 
Failures 

Learned 31 10 6±0.3cm 4 

Pointing 22 19 9±2.2cm 
 

4 

Panning 15 21 22±9.4cm 
	

9 



Adding Opponents 

Ball

Robot

Goal

Opponent

do

uo bv

Additional features: ball velocity, knowledge about other robots 



Learning With Opponents 
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Learned with pre-trained data 
Learned from scratch 

Pre-trained 

u  Robot learned to look at ball when opponent is 
close to it. Thereby avoids losing track of it.	



Summary 

§  Learned effective sensing strategies 
that make good trade-offs between 
uncertainties  

§  Results on a real robot show  
improvements over carefully tuned, 
hand-coded strategies 

§  Augmented-MDP (with projections) 
good approximation for RL 

§  LSPI well suited for RL on augmented 
state spaces 



Policy Search 
• Works directly on parameterized 

representation of policy 
• Compute gradient of expected reward 

wrt. policy parameters 
• Get gradient analytically or empirical 

via sampling (simulation) 



PILCO: Probabilistic Inference 
for Learning Control 
• Model-based policy search 
• Learn Gaussian process dynamics 

model 
• Goal-directed exploration  
à no “motor babbling” required 

• Consider model uncertainties  
à robustness to model errors 

• Extremely data efficient 



PILCO: Overview 

•  Cost function given 
•  Policy: mapping from state to control 

•  Rollout: plan using current policy and GP model 
•  Policy parameter update via CG/BFGS 



Model Learning and Approximate 
Inference 
Gaussian Process 
Forward Model 
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Approximate Inference 
for Policy Learning  

•  Probabilistic GP model 
consistently describes  
model uncertainties 

•  Long-term planning requires approximate 
inference: moment matching 

•  Model uncertainties are integrated out  
analytically (opposed toMC [Bagnell-00]) 



Demo: Standard Benchmark 
Problem 

•  Swing pendulum up 
and balance in 
inverted position 

•  Learn nonlinear 
control from scratch 

•  4D state space, 300 
controll parameters 

•  7 trials/17.5 sec 
experience 

•  Control freq.: 10 Hz 
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Data Efficiency in Comparison 
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•  Gray bars: balancing only 
•  Learning from scratch 

•  Also applied to unicycle, double pendulum 



Controlling a Low-Cost Robotic 
Manipulator 

•  Low-cost system ($500 for 
robot arm and Kinect) 

•  Very noisy 
•  No sensor information about 

robot’s joint configuration used 
•  Goal: Learn to stack tower of 5 

blocks from scratch 
•  Kinect camera for tracking 

block in end-effector 
•  State: coordinates (3D) of 

block center (from Kinect 
camera) 

•  4 controlled DoF 
•  20 learning trials for stacking 5 

blocks (5 seconds long each) 
•  Account for system noise, e.g., 

–  Robot arm 
–  Image processing 



Collision Avoidance 
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•  Use valuable prior information about obstacles if 
available 

•  Incorporation into planning à penalize in cost 
function 



Collision Avoidance Results 
Experimental Setup 

Training runs (during 
learning) with collisions 

•  Cautious learning and exploration (rather safe than risky-successful) 
•  Learning slightly slower, but with significantly fewer collisions during 

training 
•  Average collision reduction (during training): 32.5% à 0.5% 


