CSE-571

Deterministic Path Planning in Robotics

Courtesy of Maxim Likhachev

University of Pennsylvania

Motion/Path Planning

e Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

* Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Examples (of What 18 usually referred to as path planning):

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

4< _/Immovable
_—}-Obstacles V
\ E; <ﬂ

A
Goal Configuration

Start
Configuration

Piano Movers problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):

goal

L

AL

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner)

path

A

A

Controller

lcommands

map update pose update

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

" Path/Motion Planner)
path
> Controller)
lcommands
map update pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
¢ Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (i.e., most likely) environme’i?.l,j ot deviates off its path

- plan a single least-cost trajectory under - .
- re-plan as new information arrives /¢ Planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

Example

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal

i : MUCH
- re-plan if unaccounted events happencomp utationally MUCH harder

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

e Deterministic planning

- constructing a graph
- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

e Deterministic planning

- search with A*
- search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

« Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

v

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

planning map

3 ofo

: search the graph
g convert into a graph
5 > @ @ for a least-cost path
S, from s, 10 Sg,

@ start

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S, | S S
1 2 3 9 @’ @ search the graph

convert into a graph
S4 | Ss Sraph, @ @ for a least-cost path
S froms.. .tos
6

@ start

CSE-571: Courtesy of Maxim Likhachev, CMU

planning map

goal

Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

discretize

v

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

* Graph construction:

-major problem with paths on the grid:
- transitions difficult to execute on non-holonomic robots

eight-connected grid

S: DS

convert into a graph
Ss AR OS

e 8

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition

* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

Q"’ S7
C(s4s;) =100

action template
. C(5,5) =5 (549 =5

replicate it

> % O . >
online

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness "y %Sm s

action template N @

¥ ¢ s

. C(s;,85) =5

replicate it

»

online

DS

C(s,s,) =100 '
C(s4Sg) =5

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

e Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

« Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s to s

goal

h(s) -

the cost of a shortest path
from s, _tos found so far

start

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

h(s)

/

one popular heuristic function — Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal 1n terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal 1in terms of the
computations

|

()——(s)

g=2 g=J
h=2 h=1

CSE-571: Courtesy of Maxim Likhachev, CMU

A* Search

 Is guaranteed to return an optimal nath (in fact, for every

expanded state) — ("hdpS with robot deviating off its pat}‘i‘. m
if we search with A*
backwards (from goal to start)

e Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal 1in terms of the
computations

|

()——(s)

g=2 g=J
h=2 h=1

CSE-571: Courtesy of Maxim Likhachev, CMU

Efftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/4 values

CSE-571: Courtesy of Maxim Likhachev, CMU

Efftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/4 values

for large problems this results in A* quickly
running out of memory (memory.: O(n))

CSE-571: Courtesy of Maxim Likhachev, CMU

Eftect of the Heuristic Function

 Weighted A* Search: expands states in the orderof f = g
+¢eh values, ¢ > I = bias towards states that are closer to
goal

solution is always e-suboptimal.
cost(solution) < e-cost(optimal solution)

S
siart
goal

CSE-571: Courtesy of Maxim Likhachev, CMU

Efftect of the Heuristic Function

 Weighted A* Search: expands states in the orderof f = g
+¢ch values, ¢ > I = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Eftect of the Heuristic Function

* planning in 8D (<x,y> for each foothold)
 heuristic is Euclidean distance from the center of the body to the goal location
« cost of edges based on kinematic stablhty of the robot and quality of footholds

planning with R* (randomized version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline

e Deterministic planning

- constructing a graph
- search with A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRYV navigating
initially-unknown environment planning map and path

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):
— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

lartanracing, CMU
CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially

I lulololsT7T6]6l6]6[6[6]6[6[6]6
alilolnlolols 76 s 555555575
431 [10[9[8[76544 444 [a]al4
o[l o[8 76543333333
T2 I I AT SO 2 R I I e I I B
Bl ulolols8 765 a3 211 [1]2][3
131211 9 7165 [4[3 o[111253

S{a[3 {2y T [1[2]3

14 13 [1]10 65 ——4131>"| 2 [2 [2[2]3
312110 STa[3[3[3[3[3[37]3
413121110 6 |5 |44 l4 (44444
2N WEN PR WA T 65 [5[5[5[5[515[575
14113 ' N I I I I I I I e
FZ% 17177171717 17171]7
I8 [S.zmar16145-1-14 | 14 S8 [8[8[8[8[8[8[8]S

cost of least-cost paths to s, after the door turns out to be closed

Il olols[7T6 6 6]6l6]6[6]6]6]6
70 I I A0 SO N A I I e e I
G131 U[10[o[8[765444 a]aa44]4
1312 [U[10[o[8[7[6 [543 [3[3[3[3[3]3
(ool 8 76 s[al32o[o[o]>1]3
14113 11 P L O N I
14113 I 9 7165 (43 [0l 11213
STa 321 [T 1[2]3

S I I I I I I e

STal3[3[3[3[3[37]5

S1a 4444444

SIS[5[5[5[5[5[57>5

cl6l6lo6l6l6l6]6]6

717777177717

s s 8[8[8[8[8[8[%

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially

4131121111101 918|766 [6]6]6]6]61|6]| 616
141131121110/ 9 |87 |6 |5 |5]|]5]|5]5]5]151515
14113 1121111101 9 18 [76 151414141414 [141]1414
4113112111110 9 18 [7 [6 151413131313 ([3[313
1411312111019)87 6514321212 [2]21]3
1411312]11(10] 91 8] 7651413211 | 11213
1411312)11 9 71605 1413 [2 | 1hsgoq 1213
Slal3 2l T[1[2]3
14113 11 Foy oy Sty 3= | 2 1 2 12 1213
1411312111 51431302 L2 L2l 2 |3
1411312)11 6 | 2 i
413121111 These costs are optimal g-values if search is
14113 [12]12]]2

done backwards

F 3
18 [s i 16-=15--14| 14

cost of least-cost paths to s

goal after the door turns out to be closed

1411311211 (10}9 1817 [6]6[6|6]6]61[16161]61]6
141131211110} 9 [8 |7 |6 |5 [5]5[5]5[5]15([51]5
141131211109 [8|7 |6 [5[4]4]14]14]14]14]141]4
14113121110} 9)87 |6 |54 [3]33 ([3]3]31]3
4113j12j11j1019 876|514)3)2 1212]2]21]3
14 [13 11 9 |8y F6Spdpr 3t 1 1 11213
14 |13 |1 9 7165 14131211 |Scel 1213
S14(3 1211 (1T ([1]21]3
S 1413121212 121213
5141331333313
51414141414 141414
SIS[S|S]S5S[S5S[S5]S51]5
6 1616]6]6[6]6]6]6
7171 7171717171717
8 [8181818818 ([81]8

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially

4131121111101 918|766 [6]6]6]6]61|6]| 616
141131121110/ 9 |87 |6 |5 |5]|]5]|5]5]5]151515
14113 1121111101 9 18 [76 151414141414 [141]1414
4113112111110 9 18 [7 [6 151413131313 ([3[313
411312]11j1ol 918176543 [2]12]12[2]21]3
1411312]11(10] 91 8] 7651413211 | 11213
14 {13 [12] 11 9 71605 1413 [2 | 1hsgoq 1213
Slaf3]2laqyT[1[2]3
14113 11 9 Foy oy Sty 3= | 2 1 2 12 1213
1411312)11 9 5431312 21 21213
1411312)11 1 6 | 2 i
14131211111 These costs are optimal g-values if search is
14 | 13 '

Fg done backwards
18 Scrarty 16 1 15 1 l4| 14 :.

How to reuse these g-values from one search to
another? — incremental A™*

cost of least-cost paths to s

14[13[12]11]10]9 |8 176
14113 [12]11]10]9 [8 7|6
14131211109 [8 |7 1]6
1411311211110 9 | 81716
14113112111 110}1 9[8[7|6
14 [13 11 9 |8 T 16
14 |13 |1 9 7 16 Sgoal

f

(o] RN (@)Y (O] EE (UR] | W] Pt SR (ol [N LB BEN B) (@

[o2e] BN} (@) L] L] L4) L) L) (O (W) L4 B L] L) (W (@)

[o2e] DN (@)} (4] FEN FEN PN PR EE B B B BEN (9] @)Y

(2] BN (@)Y (W] =N (9¥] [F¥] [F%) (J¥] (V] (F¥]) (%] NN 7] ‘o))
(o] BN] (@) (97] N (U] [(9] | (O] ({0] 161 ((S) [F¥] FiN (W) (@]

[o7e] BN] (@) (W] BN (OB | 3] [9] (R 7) (S]] | SO} LUS] NEN)] (o
(v2e] EN] (@)} LW/] Wi (U5] (U6] (U] LUV]) (U] LUS) U) NEN)] [d

[ore] BN (@) (W] BN LWRY | 3] [Pl ol RS2 LURT RSN () (¢

[o)s] BN] (@)Y (W] WSS (U9 | SO [Py T | RO [US] NN (Y (o

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially

dlBTeTuliolols 766666666 6]6
alisfolliololsT7 el sTsTs{ssTss]sTs
A0 o876 5 [alalalalalalala
a3l ll10l o876 543333 [3[3]3
278 I IV I S TO B N I A I A T 2 N I e
a3l lldolol 876543211 [1[2]3
12113 1211 0 7165432111273

Slal3 ol T [1[2]3
1413 1l A e o e e I il N I I P B
1413 12 [11 STa 3313313373
413121110 6 I slalalalTalalalala
1413 Gl[s[s[5TsTsT=T=T=T3
14113 (6 [<

Would # of changed g-values be
cost of least-cost paths 10 s, very different for forward A*?

14113]12[11]10] 9
141131211110
14 [13[12]11]10
14113 [12]11]10

8
8
8
8
8
8

14 [13 11
14 |13]1

7
7
7
7
7
7
7

9
9
9
14113 112]11]110] 9
9
9

&

f

[o2e] EN | (@) (W] BN (UR]) | S8 [y ST Tl | RS LS BN ()]

(o] N (o)) (W21 (W) (9} L) L) (W) 1) (W2 L] L] (7 (@)
ore] DN (o)) (] EES FE PR B R R B EE BE] (@)

o] (8] (=) (W] PN (3% [18] (18] 18] 8] (6] [#%] Iy O}
oo\lomhwuwu»ww.h.mi

[o2e] BN (@) (W] BN LUR] | 397 [P [l ol [RS) LUS] BN ()]

[07s] BN (@) (W] F=N (F¥] (V] (%) (JV] (V] (V] (F¥] NN 7Y 4
(o] BN (@)} (97] N (UF] [18] | (O] {0] 161 [NS] [FF] FiN (9}
[o7<] D] (o)) (W] FN (9] [5] [SS (y WE (9] (99 I Y

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially

141131 12111[10/9 8171661616161 6]6161]616
1411312]11]10[9 | 8|76]5 |5 |5[5]5]15([5]515
1411312111019 817|654 44141441414
1411312111019)18 |7 65141331313 ([3]31]3
141131211110l 9181761151432 1212]2]2]3
411312)11(10]J 918765143 2] 1]1f]1]21]3
14113 [12]11 9 71605 1413 [2 | 1hsgoq 1213

[9 | S{413 121441111213
14113 11|10 ooy 3= | 2 | 2 | 21213
14113112]11]10 5141313313 [3]31]3
1411312]11]10 716151441414 14([41414
141131121111 716151 st =s ")
14] 13 7

Any work needs to be done if robot
cost of least-cost paths to >, deviates Off ILS path ?
_

14113]12[11]10] 9
141131211110
14 [13[12]11]10
14113 [12]11]10

8
8
8
8
8
8

14 [13 11
14 |13]1

7
7
7
7
7
7

9
9
9
14113 112]11]110] 9
9
9

&

f

[o2e] BN (@) (W] BN LWR] | §] [y SR ol | RS) LUR] BN ()]

[o2e] BN} (@) L] L] L4) L) L) (O (W) L4 B L] L) (W (@)

[re] DN (@)} (4] PR EEN BN PR EEN AN B B PR 4] (@)

[07e] EN] (@)Y (W] WiN) (UF]] | 0] [NS] | RS (W] | NS} L8] NEN ()]
m\]o\»’lhd’ﬁ#’&)u)ﬁ\})#\h‘

[o2e] BN (@) (W] BN LUR] | 397 [P [l ol [RS) LUS] BN ()]

[0s] ON] (@) (W] NN (F¥] (V] (%) (JV] (V] (F¥]) (U¥] NiN 7Y ¢
(o] BN (@)} (97] N (UF] [18] | (O] {0] 161 [NS] [FF] FiN (9}
[o7<] D] (o)) (W] FN (9] [5] [SS (y WE (9] (99 I Y

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

nnnnn

P————

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

AN 3 % 3 % £ I

CSE-571: Courtesy of Maxim Likhachev, CMU

cost

Anytime Aspects

13,000

11,000 |

9,000

7,000 '

cost = 133,736
e=3.0
expands = 1,715

cost = 77,345
e=1.0

expands = 14,132

0.2 | 0.4 | 0.6
time (secs)

CSE-571: Courtesy of Maxim Likhachev, CMU

Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hop 26,108 1.30
hesn 124794 3.49

CSE-571: Courtesy of Maxim Likhachev, CMU

Summary

* Deterministic planning

- constructing a grapk
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

CSE-571: Courtesy of Maxim Likhachev, CMU

