
CSE-571

Deterministic Path Planning in Robotics
Courtesy of Maxim Likhachev

University of Pennsylvania

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

•  Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

•  Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

•  Generated motion/path should (objective):
be any feasible path
minimize cost such as distance, time, energy, risk, …

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as path planning):

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Piano Movers’ problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning
Examples (of what is usually referred to as motion planning):

Planned motion for a 6DOF robot arm

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose update map update

CSE-571: Courtesy of Maxim Likhachev, CMU

Motion/Path Planning

Path/Motion Planner

Controller

path

commands

pose update map update

i.e., Bayesian update (EKF)
i.e., deterministic registration

or Bayesian update

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
•  Uncertainty can be in:

-  prior environment (i.e., door is open or closed)
-  execution (i.e., robot may slip)
-  sensing environment (i.e., seems like an obstacle but not sure)
-  pose

•  Planning approaches:
-  deterministic planning:

 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

-  planning under uncertainty:

- associate probabilities with some elements or everything
- plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
-  re-plan if unaccounted events happen

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
•  Uncertainty can be in:

-  prior environment (i.e., door is open or closed)
-  execution (i.e., robot may slip)
-  sensing environment (i.e., seems like an obstacle but not sure)
-  pose

•  Planning approaches:
-  deterministic planning:

 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

-  planning under uncertainty:

- associate probabilities with some elements or everything
- plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
-  re-plan if unaccounted events happen

re-plan every time
sensory data arrives or

robot deviates off its path

re-planning needs to be FAST

CSE-571: Courtesy of Maxim Likhachev, CMU

Example

Urban Challenge Race, CMU team, planning with Anytime D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Uncertainty and Planning
•  Uncertainty can be in:

-  prior environment (i.e., door is open or closed)
-  execution (i.e., robot may slip)
-  sensing environment (i.e., seems like an obstacle but not sure)
-  pose

•  Planning approaches:
-  deterministic planning:

 - assume some (i.e., most likely) environment, execution, pose
 - plan a single least-cost trajectory under this assumption
 - re-plan as new information arrives

-  planning under uncertainty:

- associate probabilities with some elements or everything
- plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
-  re-plan if unaccounted events happen computationally MUCH harder

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
•  Deterministic planning

-  constructing a graph
-  search with A*
-  search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
•  Deterministic planning

-  constructing a graph
-  search with A*
-  search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map
S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph search the graph
for a least-cost path
from sstart to sgoal

eight-connected grid
(one way to construct a graph)

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity and representation of

 arbitrary obstacles

discretize

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Graph construction:

- major problem with paths on the grid:
 - transitions difficult to execute on non-holonomic robots

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph

eight-connected grid

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Graph construction:

- lattice graph

action template

replicate it
online

each transition is feasible
(constructed beforehand)

outcome state is the center of the corresponding cell

CSE-571: Courtesy of Maxim Likhachev, CMU

Planning via Cell Decomposition
•  Graph construction:

- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness

action template

replicate it
online

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
•  Deterministic planning

-  constructing a graph
-  search with A*
-  search with D*

•  Planning under uncertainty
- Markov Decision Processes (MDP)
- Partially Observable Decision Processes (POMDP)

CSE-571: Courtesy of Maxim Likhachev, CMU

•  Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal

…

…

the cost of a shortest path
from sstart to s found so far

an (under) estimate of the cost
of a shortest path from s to sgoal

at any point of time:

A* Search

CSE-571: Courtesy of Maxim Likhachev, CMU

•  Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal

…

…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

CSE-571: Courtesy of Maxim Likhachev, CMU

•  Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

•  Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=0 2

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

A* Search

CSE-571: Courtesy of Maxim Likhachev, CMU

•  Is guaranteed to return an optimal path (in fact, for every
expanded state) – optimal in terms of the solution

•  Performs provably minimal number of state expansions
required to guarantee optimality – optimal in terms of the
computations

A* Search

helps with robot deviating off its path
if we search with A*

backwards (from goal to start)

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=0 2

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

… …

•  A* Search: expands states in the order of f = g+h values

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

sgoal
sstart

… …

•  A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly
running out of memory (memory: O(n))

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

•  Weighted A* Search: expands states in the order of f = g
+εh values, ε > 1 = bias towards states that are closer to
goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

•  Weighted A* Search: expands states in the order of f = g
+εh values, ε > 1 = bias towards states that are closer to
goal 20DOF simulated robotic arm

state-space size: over 1026 states

 planning with ARA* (anytime version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Effect of the Heuristic Function

•  planning in 8D (<x,y> for each foothold)
•  heuristic is Euclidean distance from the center of the body to the goal location
•  cost of edges based on kinematic stability of the robot and quality of footholds

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza

 planning with R* (randomized version of weighted A*)

CSE-571: Courtesy of Maxim Likhachev, CMU

Outline
•  Deterministic planning

-  constructing a graph
-  search with A*
-  search with D*

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)

ATRV navigating
initially-unknown environment planning map and path

•  Robot needs to re-plan whenever
–  new information arrives (partially-known environments or/and

dynamic environments)
–  robot deviates off its path

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental version of A* (D*/D* Lite)
•  Robot needs to re-plan whenever

–  new information arrives (partially-known environments or/and
dynamic environments)

–  robot deviates off its path
incremental planning (re-planning):

reuse of previous planning efforts
planning in dynamic environments

Tartanracing, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
•  Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
•  Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
•  Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is
done backwards

How to reuse these g-values from one search to
another? – incremental A*

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
•  Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be
very different for forward A*?

CSE-571: Courtesy of Maxim Likhachev, CMU

Motivation for Incremental Version of A*
•  Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Any work needs to be done if robot

deviates off its path?

CSE-571: Courtesy of Maxim Likhachev, CMU

Incremental Version of A*
•  Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Anytime Aspects

CSE-571: Courtesy of Maxim Likhachev, CMU

Anytime Aspects

CSE-571: Courtesy of Maxim Likhachev, CMU

Heuristics

CSE-571: Courtesy of Maxim Likhachev, CMU

CSE-571: Courtesy of Maxim Likhachev, CMU

Summary
•  Deterministic planning

-  constructing a graph
-  search with A*
-  search with D*

•  Planning under uncertainty
- Markov Decision Processes (MDP)
- Partially Observable Decision Processes (POMDP)

used a lot in real-time

think twice before trying to use it in real-time

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!

