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Motion/Path Planning

e Task:
find a feasible (and cost-minimal) path/motion from
the current configuration of the robot to its goal
configuration (or one of its goal configurations)

* Two types of constraints:
environmental constraints (e.g., obstacles)
dynamics/kinematics constraints of the robot

* Generated motion/path should (objective):

be any feasible path
minimize cost such as distance, time, energy, risk, ...
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Motion/Path Planning

Examples (of What 18 usually referred to as path planning):
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Motion/Path Planning
Examples (of what is usually referred to as motion planning):
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Goal Configuration

Start
Configuration

Piano Movers problem

the example above is borrowed from www.cs.cmu.edu/~awm/tutorials
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Motion/Path Planning
Examples (of what 1s usually referred to as motion planning):

goal

L

AL

Planned motion for a 6DOF robot arm
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Motion/Path Planning

Path/Motion Planner )

path

A

A

Controller

lcommands

map update pose update
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Motion/Path Planning

" Path/Motion Planner )
path
> Controller )
lcommands
map update pose update

i.e., deterministic registration

or Bayesian update i.e., Bayesian update (EKF)
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Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen
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Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)

- pose
¢ Planning approaches: re-plan every time
- deterministic planning: sensory data arrives or

- assume some (i.e., most likely) environme’i?.l,j ot deviates off its path

- plan a single least-cost trajectory under - .
- re-plan as new information arrives /¢ Planning needs to be FAST

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal
- re-plan if unaccounted events happen
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Example

Urban Challenge Race, CMU team, planning with Anytime D*
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Uncertainty and Planning

» Uncertainty can be in:
- prior environment (i.e., door 1s open or closed)
- execution (1.e., robot may slip)
- sensing environment (1.€., seems like an obstacle but not sure)
- pose

 Planning approaches:
- deterministic planning:
- assume some (i.e., most likely) environment, execution, pose

- plan a single least-cost trajectory under this assumption
- re-plan as new information arrives

- planning under uncertainty:
- associate probabilities with some elements or everything
-plan a policy that dictates what to do for each outcome of sensing/action
and minimizes expected cost-to-goal

i : MUCH
- re-plan if unaccounted events happencomp utationally MUCH harder
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Outline

e Deterministic planning

- constructing a graph
- search with A*
- search with D*
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Outline

e Deterministic planning

- search with A*
- search with D*
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Planning via Cell Decomposition

« Approximate Cell Decomposition:
- overlay uniform grid over the C-space (discretize)

discretize

v

planning map
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Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

planning map

3 ofo

: search the graph
g convert into a graph
5 > @ @ for a least-cost path
S, from s, 10 Sg,

@ start
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Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

discretize

v

eight-connected grid
(one way to construct a graph) '

S, | S S
1 2 3 9 @’ @ search the graph

convert into a graph
S4 | Ss Sraph, @ @ for a least-cost path
S froms.. .tos
6

@ start

CSE-571: Courtesy of Maxim Likhachev, CMU

planning map

goal




Planning via Cell Decomposition

« Approximate Cell Decomposition:
- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity and representation of
arbitrary obstacles

discretize

v
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Planning via Cell Decomposition

* Graph construction:

-major problem with paths on the grid:
- transitions difficult to execute on non-holonomic robots

eight-connected grid

S: DS

convert into a graph
Ss AR OS

e 8
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Planning via Cell Decomposition

* Graph construction:
- lattice graph

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

Q"’ S7
C(s4s;) =100

action template
. C(5,5) =5 (549 =5

replicate it

> % O . >
online
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Planning via Cell Decomposition
* Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness "y %Sm s

action template N @

¥ ¢ s

. C(s;,85) =5

replicate it

»

online

DS

C(s,s,) =100 '
C(s4Sg) =5
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Outline

e Deterministic planning
- constructing a graph

- search with D*

* Planning under uncertainty
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)
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A* Search

« Computes optimal g-values for relevant states

at any point of time:

an (under) estimate of the cost
of a shortest path from s to s

goal

h(s) -

the cost of a shortest path
from s, _tos found so far

start
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A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

h(s)

/

one popular heuristic function — Euclidean distance
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A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal 1n terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal 1in terms of the
computations

|

()——(s)

g=2 g=J
h=2 h=1
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A* Search

 Is guaranteed to return an optimal nath (in fact, for every

expanded state) — ("hdpS with robot deviating off its pat}‘i‘. m
if we search with A*
backwards (from goal to start)

e Performs provably minimal numoer ot state expansions
required to guarantee optimality — optimal 1in terms of the
computations

|

()——(s)

g=2 g=J
h=2 h=1
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Efftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/4 values
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Efftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/4 values

for large problems this results in A* quickly
running out of memory (memory.: O(n))
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Eftect of the Heuristic Function

 Weighted A* Search: expands states in the orderof f = g
+¢eh values, ¢ > I = bias towards states that are closer to
goal

solution is always e-suboptimal.
cost(solution) < e-cost(optimal solution)

S
siart
goal
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Efftect of the Heuristic Function

 Weighted A* Search: expands states in the orderof f = g
+¢ch values, ¢ > I = bias towards states that are closer to

goal 20DOF simulated robotic arm
state-space size: over 10%° states

planning with ARA* (anytime version of weighted A*)
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Eftect of the Heuristic Function

* planning in 8D (<x,y> for each foothold)
 heuristic is Euclidean distance from the center of the body to the goal location
« cost of edges based on kinematic stablhty of the robot and quality of footholds

planning with R* (randomized version of weighted A*)

joint work with Subhrajit Bhattacharya, Jon Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, Paul Vernaza
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Outline

e Deterministic planning

- constructing a graph
- search with A*
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

— robot deviates off its path

ATRYV navigating
initially-unknown environment planning map and path
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Incremental version of A* (D*/D* Lite)

* Robot needs to re-plan whenever

— new information arrives (partially-known environments or/and
dynamic environments)

incremental planning (re-planning):
— robot deviates off its path reuse of previous planning efforts
planning in dynamic environments

lartanracing, CMU
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially
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Motivation for Incremental Version of A*

* Reuse state values from previous searches
cost of least-cost paths to s,,, initially
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Incremental Version of A*
* Reuse state values from previous searches

initial search by backwards A* initial search by D* Lite

second search by backwards A* second search by D* Lite

nnnnn

P————
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Anytime Aspects

AN 3 % 3 % £ I
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cost

Anytime Aspects

13,000

11,000 |

9,000

7,000 '

cost = 133,736
e=3.0
# expands = 1,715

cost = 77,345
e=1.0

# expands = 14,132

0.2 | 0.4 | 0.6
time (secs)
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Heuristics

heuristic states time
expanded (secs)
h 2,019 0.06

hop 26,108  1.30
hesn 124794 3.49
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Summary

* Deterministic planning

- constructing a grapk
- search with A*
- search with D*

used a lot in real-time

think twice before trying to use it in real-time

* Planning under uncertainty  /
-Markov Decision Processes (MDP)
-Partially Observable Decision Processes (POMDP)

think three or four times before trying to use
it in real-time

Many useful approximate solvers for MDP/POMDP exist!!
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