Micro Air Vehicle Flight

Courtesy of Nicholas Roy

Asctec Pelican •1000g payload •70cm tip to tip dimension •10-15min flight time MAR HUIL

Laser Odometry

- Scan-matching algorithm
 - Finding optimal rigid body transform between scans

Laser Odometry

- Scan-matching algorithm
 - Finding optimal rigid body transform between scans

Overview

- Flight in GPS-denied environments
- Path planning

Motion Planning

Motion Planning in High Dimensional Configuration Spaces

6DOF Planning

State vs. Information Space

Motion Planning in Information Space

- Need $u_{0:T}$ such that $p(x|u_{0:T}) = p(x')$
- Possible solution: sample waypoints, use forward simulation to compute full posterior

Example Belief Roadmap

Problem: Edge Construction Initial Conditions $u_{0:T}, Z_{0:T}$ $u_{0:T}, Z_{0:T}$ 2

- Need to perform forward simulation (and belief prediction) along each edge for every start state
- Computing minimum cost path of 30 edges: ≈100 seconds

Multi-Step Update as One-Step

EKF Covariance Update

Control:
$$\overline{\Sigma}_t = G\Sigma_{t-1}G^T + R$$

Measurement: $\Sigma_t = (\overline{\Sigma}_t^{-1} + HQ^{-1}H^T)^{-1}$

The Belief Roadmap Algorithm

Simulated Ranging On MIT Campus

Simulated Ranging On MIT Campus

Improving Sampling

Uniform Sampling

Sensor Uncertainty Field

Improving Sampling

Uniform Sampling

Sensor-Uncertainty Sampling

Improving Sampling

Overview

- Flight in GPS-denied environments
- Path planning
- Exploration

Autonomous Navigation

Autonomous Entry

Overview

- Flight in GPS-denied environments
- Path planning
- Exploration
- Fixed-wing Flight

Predicting State Uncertainty

 Kalman covariance predicts uncertainty of posterior state estimate

Predicting State Uncertainty

• Kalman covariance fails to predict full uncertainty

Predicting State Uncertainty Continued

• Gives us a distribution over trajectories for all realizations of process and sensor noise:

 "robot knows that it will know where it is, it just doesn't know where that will be"

Summary

- Robust, long-term autonomy in large-scale environments
- Planning algorithms for worlds in which we have limited knowledge of the state, model of the system, or a map of the world
- Key Issue: Control of Information
- Technical approaches:
 - Understanding how information propagates
 - Machine learning