# CSE-571 Probabilistic Robotics

#### **Planning and Control:**

#### **Markov Decision Processes**

#### **Problem Classes**

• Deterministic vs. stochastic actions

• Full vs. partial observability

#### **Deterministic, fully observable**



### **Stochastic, Fully Observable**





#### **Stochastic, Partially Observable**



#### Markov Decision Process (MDP)



## Markov Decision Process (MDP)

- Given:
- States *x*
- Actions *u*
- Transition probabilities p(x'|u,x)
- Reward / payoff function r(x,u)

#### • Wanted:

 Policy p(x) that maximizes the future expected reward

#### **Rewards and Policies**

• Policy (general case):

$$\pi: \quad z_{1:t-1}, u_{1:t-1} \rightarrow u_t$$

• Policy (fully observable case):

$$\pi: x_t \rightarrow u_t$$

• Expected cumulative payoff:

$$R_T = E \quad \left[\sum_{\tau=1}^T \ \gamma^\tau r_{t+\tau}\right]$$

- T=1: greedy policy
- T>1: finite horizon case, typically no discount
- T=infty: infinite-horizon case, finite reward if discount < 1

### **Policies contd.**

• Expected cumulative payoff of policy:

$$R_{T}^{\pi}(x_{t}) = E \left[ \sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} | u_{t+\tau} = \pi \left( z_{1:t+\tau-1} u_{1:t+\tau-1} \right) \right]$$

Optimal policy:

$$\pi^* = \operatorname*{argmax}_{\pi} R_T^{\pi}(x_t)$$
  
1-step optimal policy:

$$\pi_1(x) = \operatorname{argmax} r(x, u)$$

• Value function of 1-step optimal policy:

$$V_1(x) = \gamma \max_u r(x, u)$$

### **2-step Policies**

Optimal policy:

$$\pi_2(x) = \underset{u}{\operatorname{argmax}} \left[ r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$$

• Value function:

$$V_2(x) = \gamma \max_u \left[ r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$$

#### **T-step Policies**

• Optimal policy:

$$\pi_{T}(x) = \underset{u}{\operatorname{argmax}} \left[ r(x,u) + \int V_{T-1}(x') p(x' | u, x) dx' \right]$$

• Value function:

$$V_T(x) = \gamma \max_u \left[ r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right]$$

## **Infinite Horizon**

Optimal policy:

$$V_{\infty}(x) = \gamma \max_{u} \left[ r(x,u) + \int V_{\infty}(x') p(x'|u,x) dx' \right]$$

- Bellman equation
- Fix point is optimal policy
- Necessary and sufficient condition

## **Value Iteration**

- for all x do  $\hat{V}(x) \leftarrow r_{\min}$
- endfor
- repeat until convergence
  - for all x do

$$\hat{V}(x) \leftarrow \gamma \max_{u} \left[ r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right]$$

- endfor
- endrepeat

$$\pi(x) = \underset{u}{\operatorname{argmax}} \quad \left[ r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right]$$

#### **Value Function and Policy**

- Each step takes O(|A| |S|) time.
- Number of iterations required is polynomial in |S|, |A|, 1/(1-gamma)



#### Value Iteration for Motion Planning (assumes knowledge of robot's location)





#### **Frontier-based Exploration**

Every unknown location is a target point.





#### **Manipulator Control**



Arm with two joints



#### Configuration space

## **Manipulator Control Path**





#### State space

#### Configuration space

## **Manipulator Control Path**



State space



#### Configuration space

#### POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let *b* be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_u \left[ r(b,u) + \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

## **An Illustrative Example**



#### **The Parameters of the Example**

- The actions  $u_1$  and  $u_2$  are terminal actions.
- The action u<sub>3</sub> is a sensing action that potentially leads to a state transition.
- The horizon is finite and no discount.

$$r(x_{1}, u_{1}) = -100 \qquad r(x_{2}, u_{1}) = +100$$

$$r(x_{1}, u_{2}) = +100 \qquad r(x_{2}, u_{2}) = -50$$

$$r(x_{1}, u_{3}) = -1 \qquad r(x_{2}, u_{3}) = -1$$

$$p(x'_{1}|x_{1}, u_{3}) = 0.2 \qquad p(x'_{2}|x_{1}, u_{3}) = 0.8$$

$$p(x'_{1}|x_{2}, u_{3}) = 0.8 \qquad p(z'_{2}|x_{2}, u_{3}) = 0.2$$

$$p(z_{1}|x_{1}) = 0.7 \qquad p(z_{2}|x_{1}) = 0.3$$

$$p(z_{1}|x_{2}) = 0.3 \qquad p(z_{2}|x_{2}) = 0.7$$

## **Payoff in POMDPs**

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the **expected payoff**:

$$r(b, u_1) = -100 p_1 + 100 p_2$$
  
= -100 p\_1 + 100 (1 - p\_1)  
$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$
  
$$r(b, u_3) = -1$$

## **Payoffs in Our Example (2)**



#### **Increasing the Time Horizon**

Assume the robot can make an observation before deciding on an action.



### **Graphical Representation of** V<sub>2</sub>(b)



#### **POMDP Summary**

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.