
CSE-571 
Probabilistic Robotics 

 
Planning and Control: 

 
Markov Decision Processes 



Problem Classes 

• Deterministic vs. stochastic actions 

• Full vs. partial observability 



Deterministic, fully observable 



Stochastic, Fully Observable 



Stochastic, Partially Observable 



Markov Decision Process (MDP) 
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Markov Decision Process (MDP) 

•  Given: 
•  States x 
•  Actions u 
•  Transition probabilities p(x’|u,x) 
•  Reward / payoff function r(x,u) 

•  Wanted: 
•  Policy p(x) that maximizes the future 

expected reward 



Rewards and Policies 
•  Policy (general case): 

•  Policy (fully observable case): 

•  Expected cumulative payoff: 

•  T=1: greedy policy 
•  T>1: finite horizon case, typically no discount 
•  T=infty: infinite-horizon case, finite reward if discount < 1 
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Policies contd. 
•  Expected cumulative payoff of policy: 

•  Optimal policy: 

•  1-step optimal policy: 

•  Value function of 1-step optimal policy: 
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2-step Policies 
• Optimal policy: 

• Value function: 

π 2 (x) = argmax
u

r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

V2 (x) = γ maxu r(x,u)+ V1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



T-step Policies 
• Optimal policy: 

• Value function: 

πT (x) = argmax
u

r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

VT (x) = γ maxu r(x,u)+ VT −1(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



Infinite Horizon 

• Optimal policy: 

• Bellman equation 

• Fix point is optimal policy 

• Necessary and sufficient condition 

V∞(x) = γ maxu r(x,u)+ V∞(x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



Value Iteration 
•  for all x do 

•  endfor 

•  repeat until convergence 
•  for all x do 

•  endfor 
•  endrepeat 

V̂ (x)←γ max
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦

min)(ˆ rxV ←

π (x) = argmax
u

r(x,u)+ V̂ (x ')p(x ' | u, x)dx '∫⎡
⎣

⎤
⎦



Value Function and Policy 
• Each step takes O(|A| |S|) time. 
• Number of iterations required is 

polynomial in |S|, |A|, 1/(1-gamma) 



Value Iteration for Motion 
Planning 
(assumes knowledge of robot’s location) 



Frontier-based Exploration 
•  Every unknown location is a target point. 



Manipulator Control 

Arm with two joints        Configuration space 



Manipulator Control Path 

State space            Configuration space 



Manipulator Control Path 

State space            Configuration space 



POMDPs 
•  In POMDPs we apply the very same idea as in 

MDPs. 

•  Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states. 

•  Let b be the belief of the agent about the state 
under consideration. 

•  POMDPs compute a value function over belief 
space: 



An Illustrative Example 
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The Parameters of the Example 
•  The actions u1 and u2 are terminal actions. 
•  The action u3 is a sensing action that potentially 

leads to a state transition. 
•  The horizon is finite and no discount. 



Payoff in POMDPs 
•  In MDPs, the payoff (or return) depended on 

the state of the system. 
•  In POMDPs, however, the true state is not 

exactly known. 
•  Therefore, we compute the expected payoff:  



Payoffs in Our Example (2) 



Increasing the Time Horizon 
•  Assume the robot can make an observation before 

deciding on an action.   

V1(b) 



Graphical Representation of V2(b) 
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POMDP Summary 
• POMDPs compute the optimal action in 

partially observable, stochastic domains. 
• For finite horizon problems, the resulting 

value functions are piecewise linear and 
convex.  

•  In each iteration the number of linear 
constraints grows exponentially. 

• POMDPs so far have only been applied 
successfully to very small state spaces 
with small numbers of possible 
observations and actions.  


