CSE-571 Probabilistic Robotics

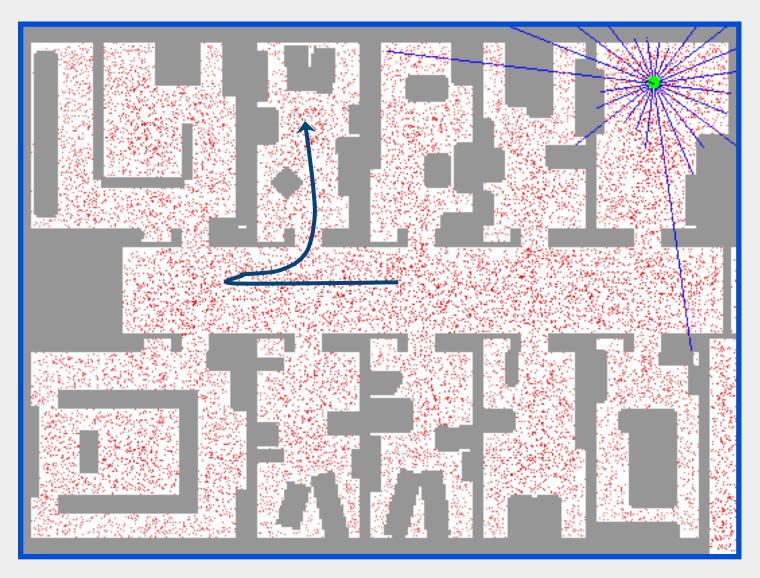
Bayes Filter Implementations

Particle filters

Motivation

- So far, we discussed the
 - Kalman filter: Gaussian, linearization problems
 - Discrete filter: high memory complexity
- Particle filters are a way to efficiently represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)

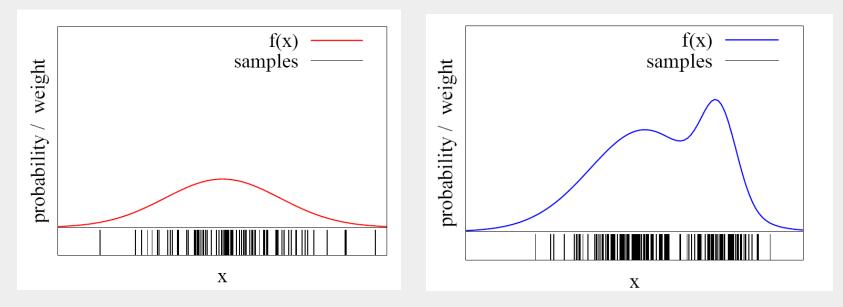


1/21/12

Probabilistic Robotics

Function Approximation

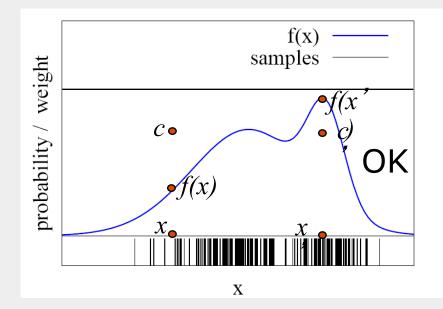
Particle sets can be used to approximate functions



- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

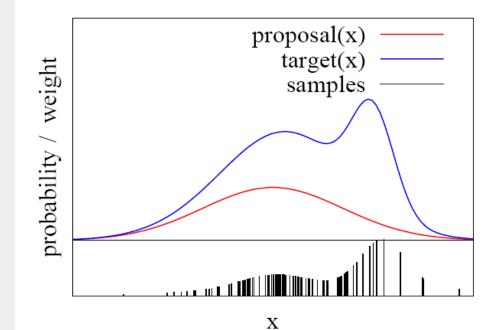
Rejection Sampling

- Let us assume that f(x) < 1 for all x
- Sample x from a uniform distribution
- Sample c from [0,1]
- if f(x) > c keep the sample otherwise
 reject the sampe

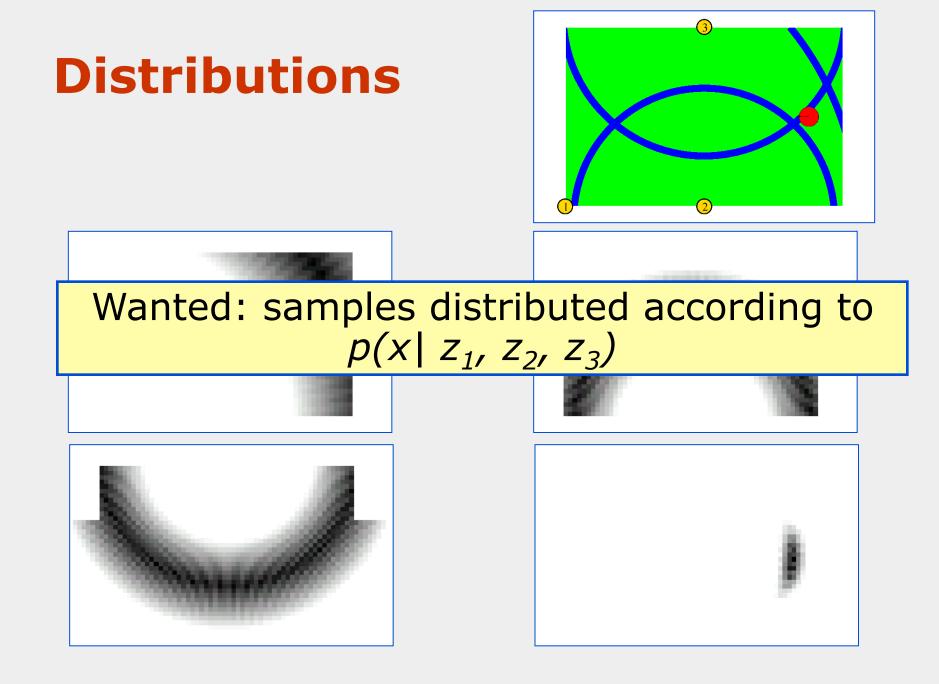


Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- *f* is often called target
- g is often called proposal

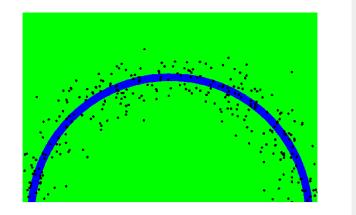


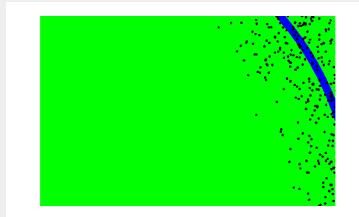
Importance Sampling with Resampling: Landmark Detection Example

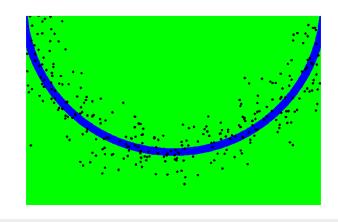


This is Easy!

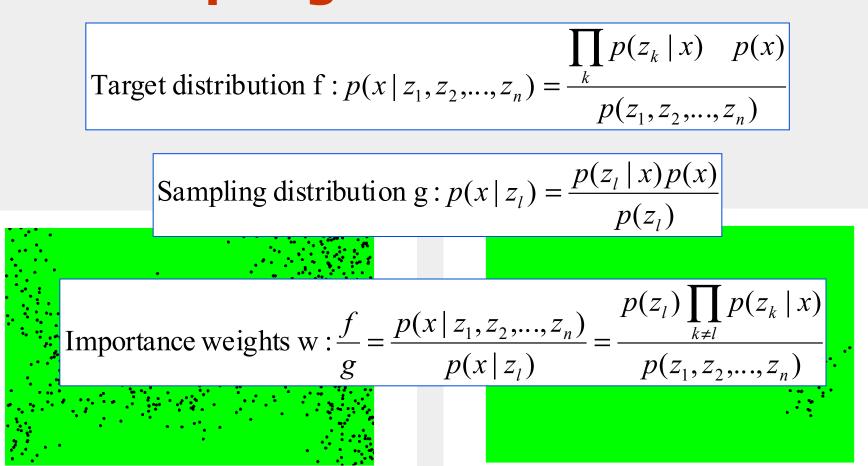
We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.







Importance Sampling with Resampling



Weighted samples

After resampling

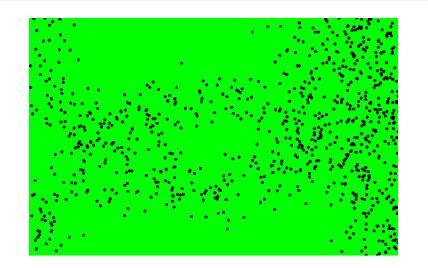
Importance Sampling with Resampling

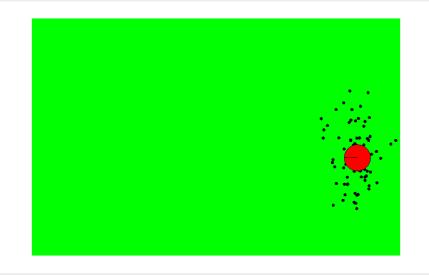
Target distribution f:
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

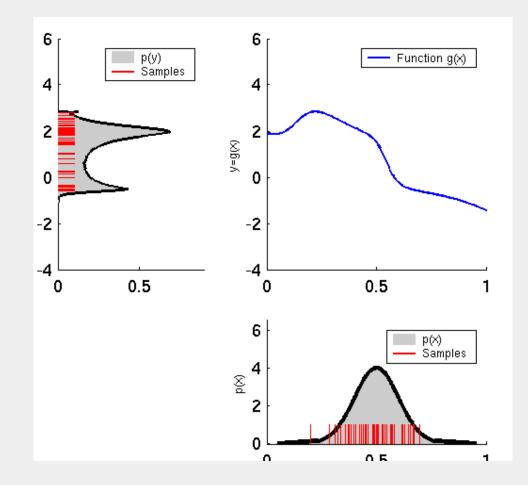




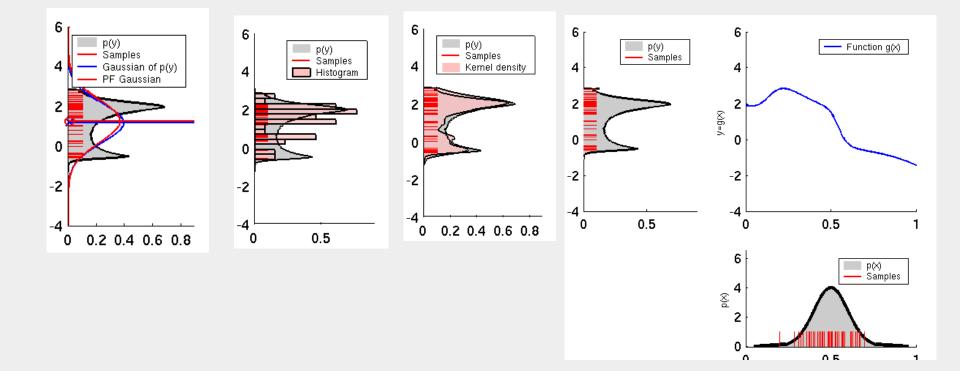
Weighted samples

After resampling

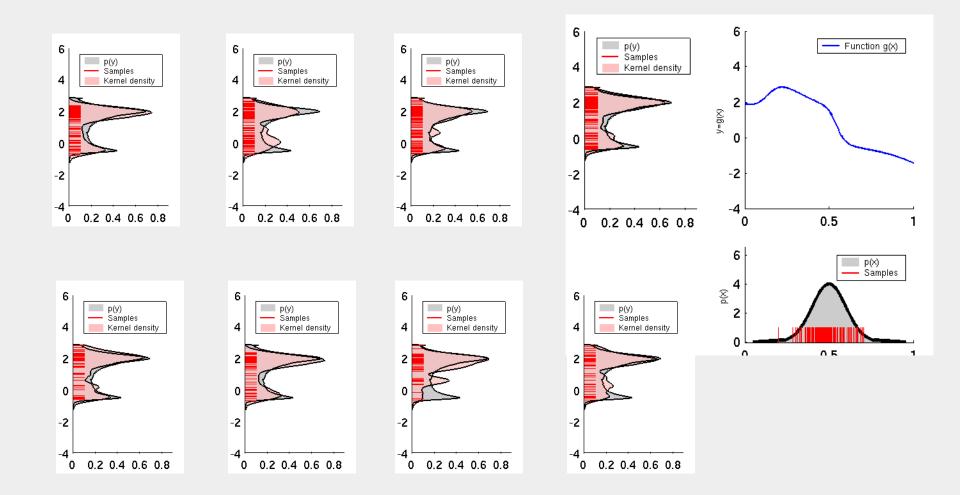
Particle Filter Projection



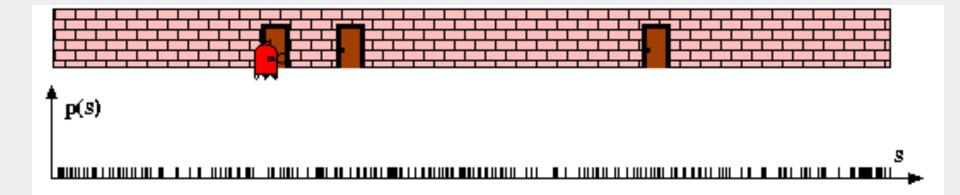
Density Extraction



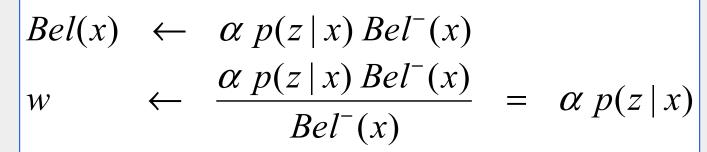
Sampling Variance

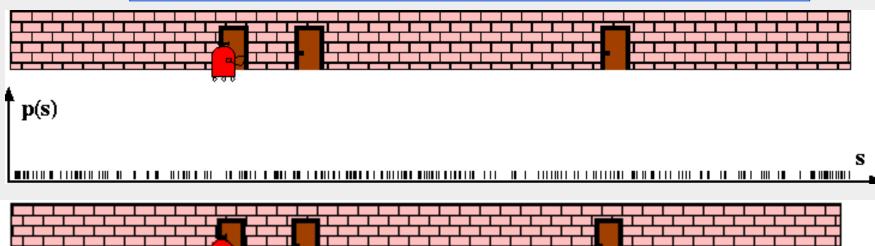


Particle Filters

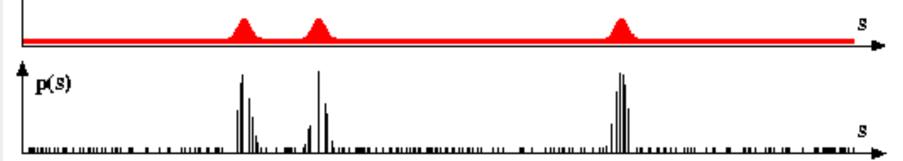


Sensor Information: Importance Sampling

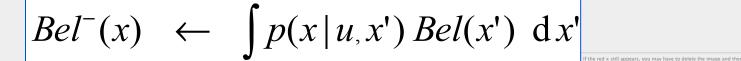




P(ols)

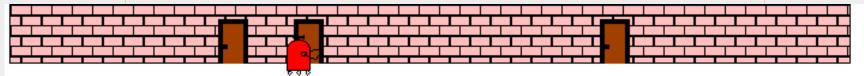


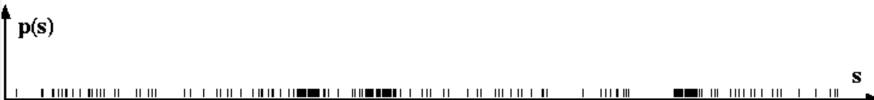
Robot Motion



p(s)

s

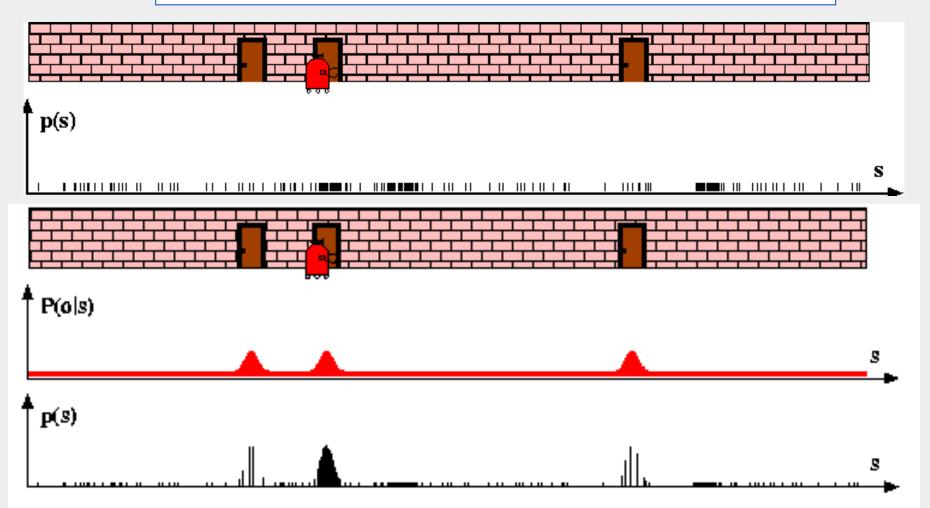




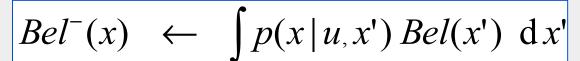
Sensor Information: Importance Sampling

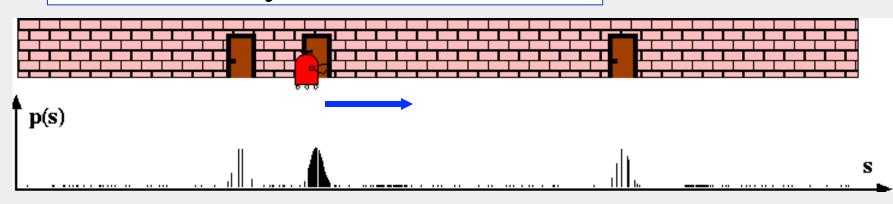
$$Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x)$$

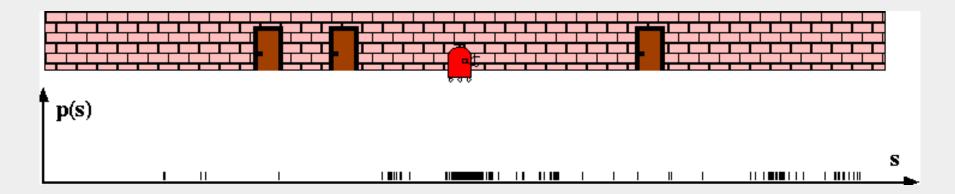
$$w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x)$$



Robot Motion







Particle Filter Algorithm

1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1} z_t$): $2. \quad S_t = \emptyset, \quad \eta = 0$ **3.** For i = 1...nGenerate new samples 4. Sample index j(i) from the discrete distribution given by w_{t-1} 5. Sample from $p(x_t | x_{t-1}, u_s)$ and u_{t-1} 6. $w_t^i = p(z_t | x_t^i)$ Compute importance weight 7. $\eta = \eta + w_t^i$ Update normalization factor 8. $S_t = S_t \cup \{< x_t^i, w_t^i > \}$ Insert **9.** For i = 1...n10. $w_t^i = w_t^i / \eta$ Normalize weights

Particle Filter Algorithm

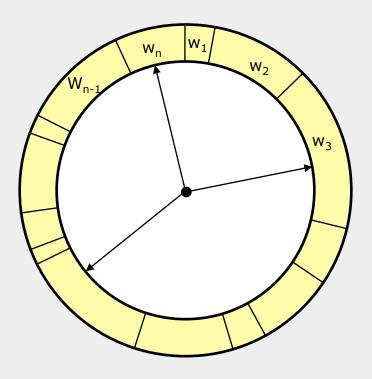
Resampling

• **Given**: Set *S* of weighted samples.

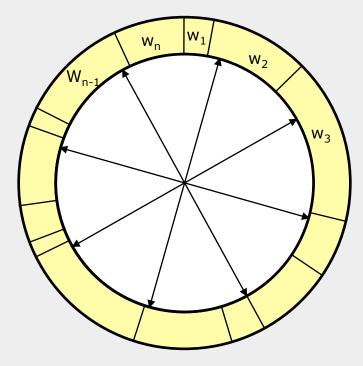
• Wanted : Random sample, where the probability of drawing x_i is given by w_i .

• Typically done *n* times with replacement to generate new sample set *S*'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

- 1. Algorithm **systematic_resampling**(*S*,*n*):
- 2. $S' = \emptyset, c_1 = w^1$ 3. For i = 2...n4. $c_i = c_{i-1} + w^i$ 5. $u_1 \sim U[0, n^{-1}], i = 1$

Generate cdf

Initialize threshold

6. For j = 1...n7. While $(u_j > c_i)$ 8. i = i+19. $S' = S' \cup \{ < x^i, n^{-1} > \}$ 10. $u_j = u_j + n^{-1}$

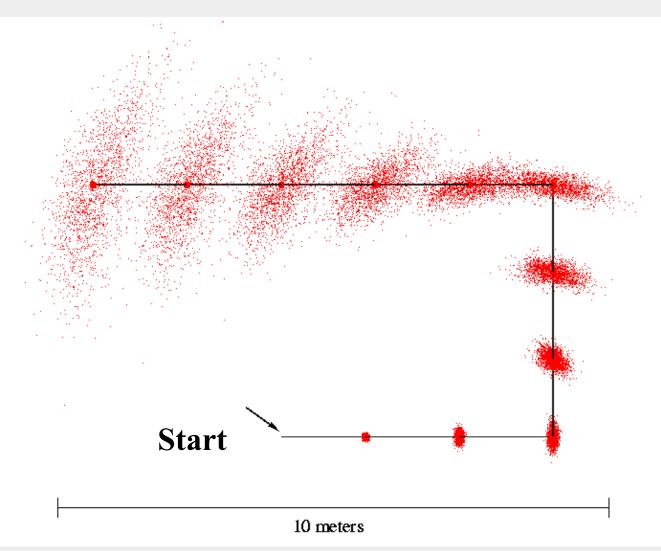
Draw samples ... Skip until next threshold reached

Insert Increment threshold

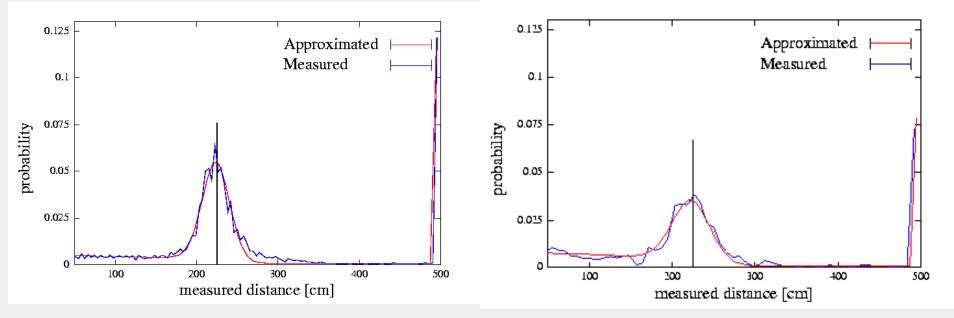
11. Return S'

Also called stochastic universal sampling

Motion Model Reminder

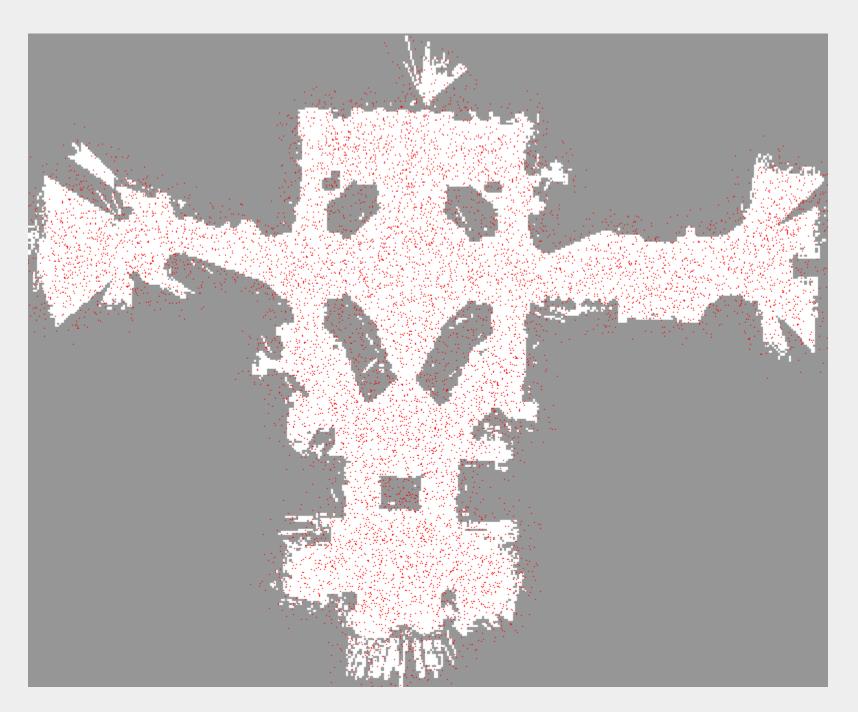


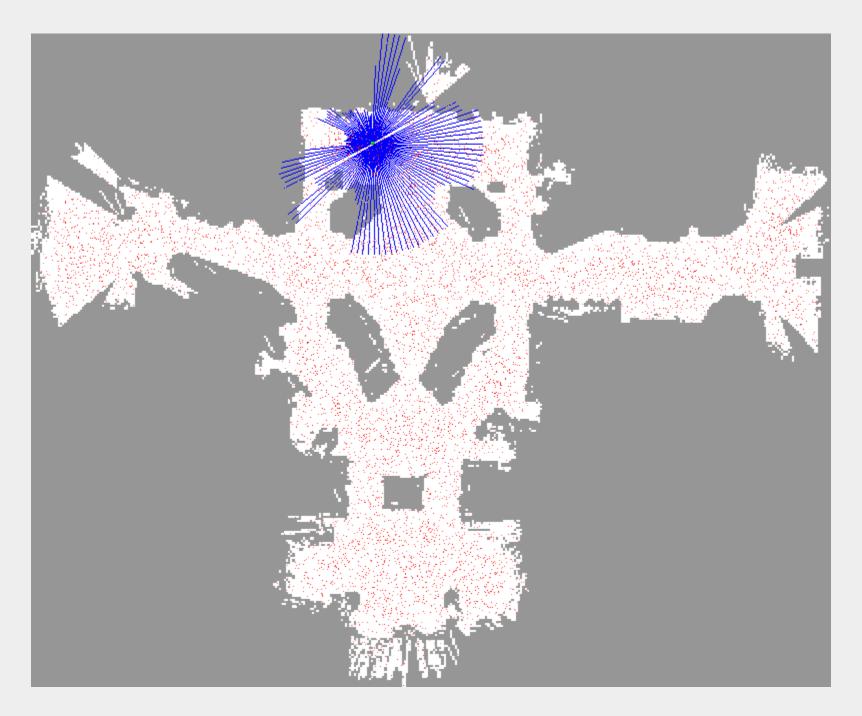
Proximity Sensor Model Reminder

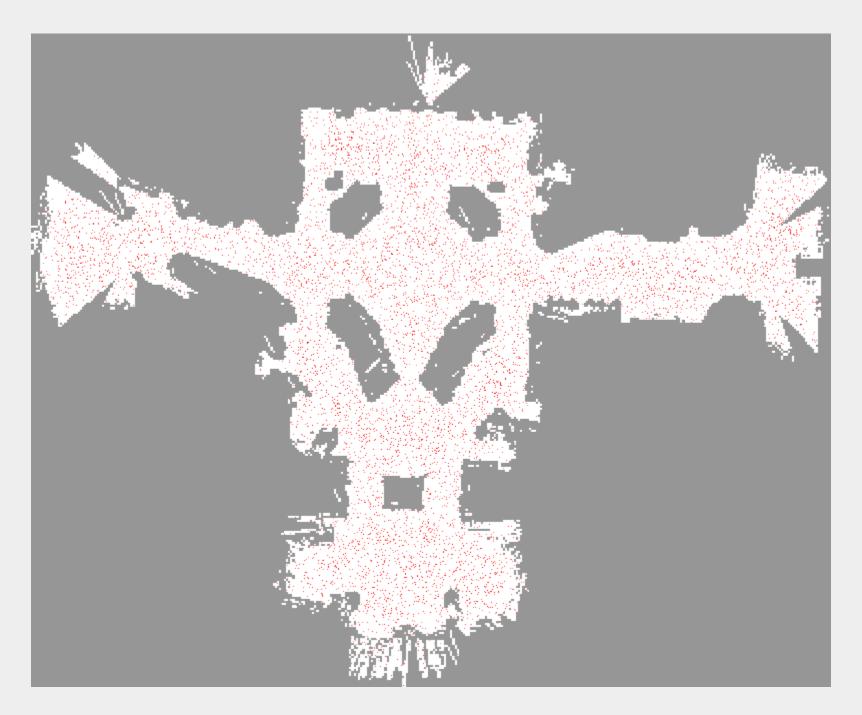


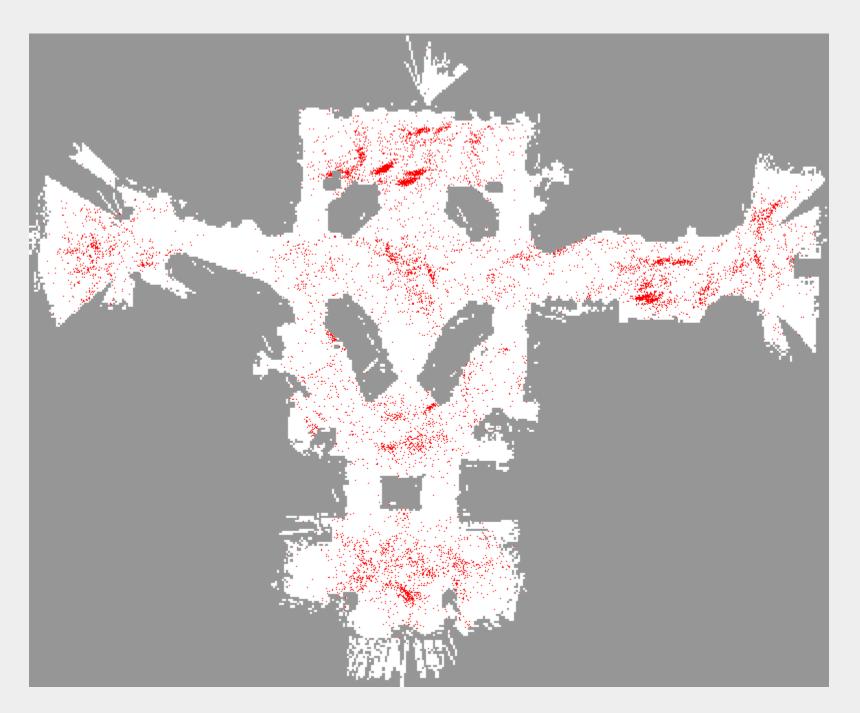
Laser sensor

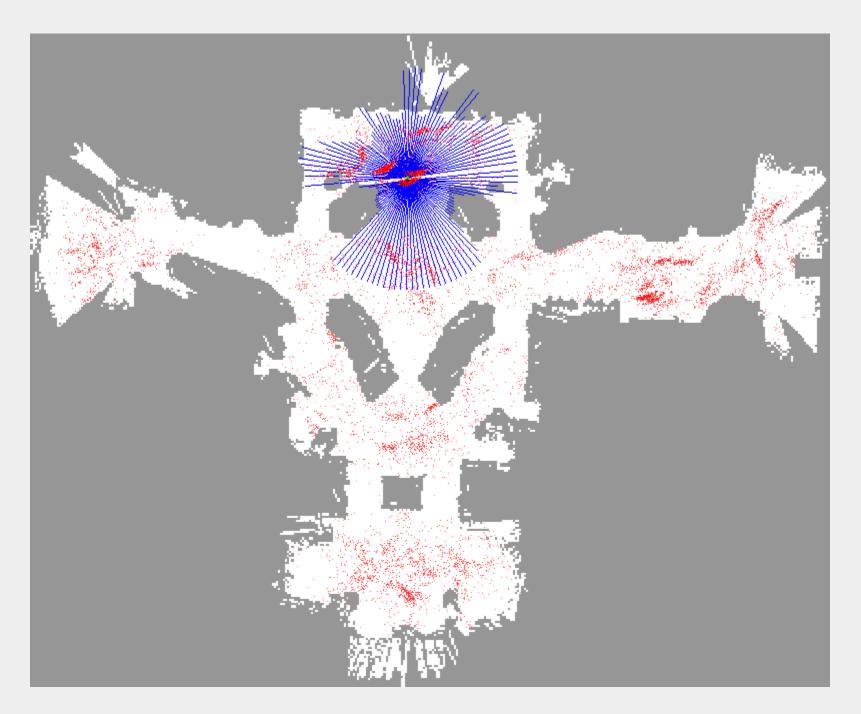
Sonar sensor

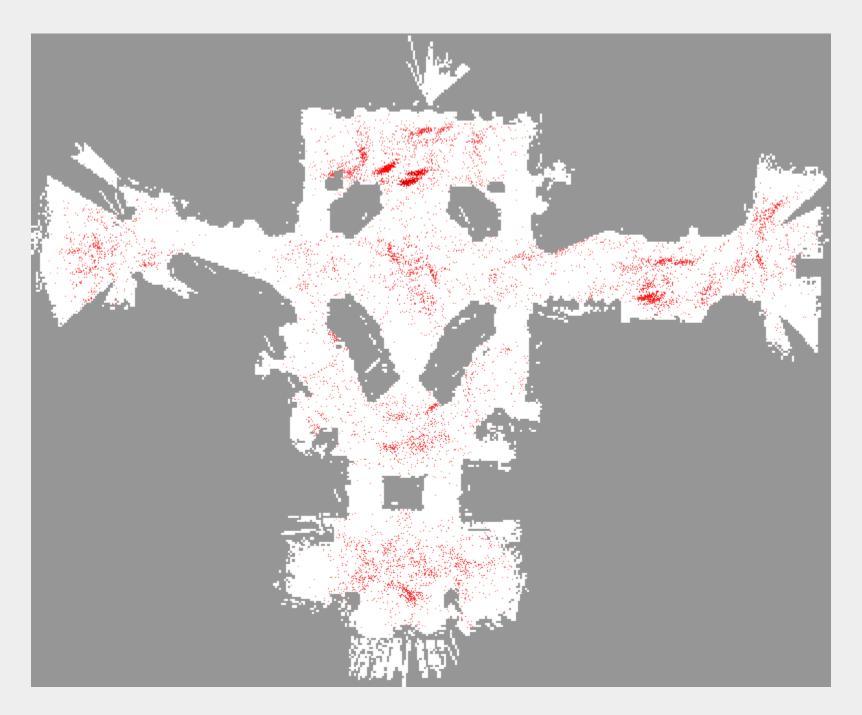


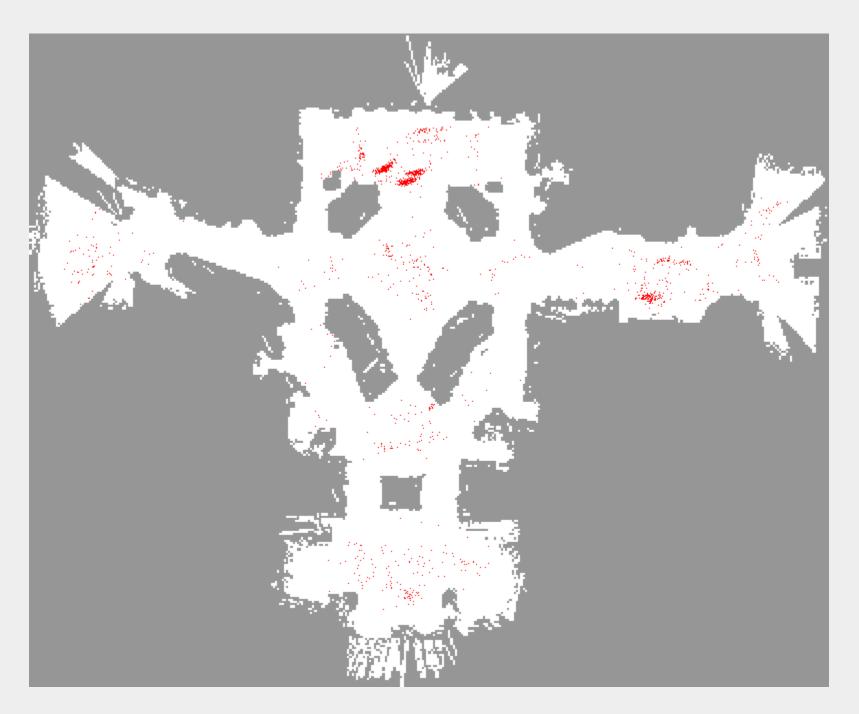


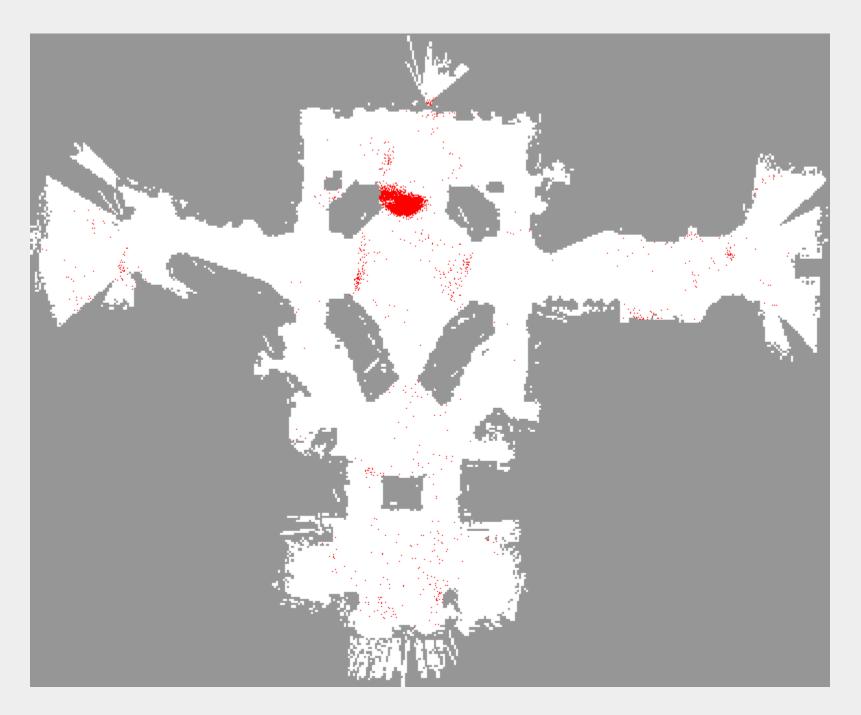


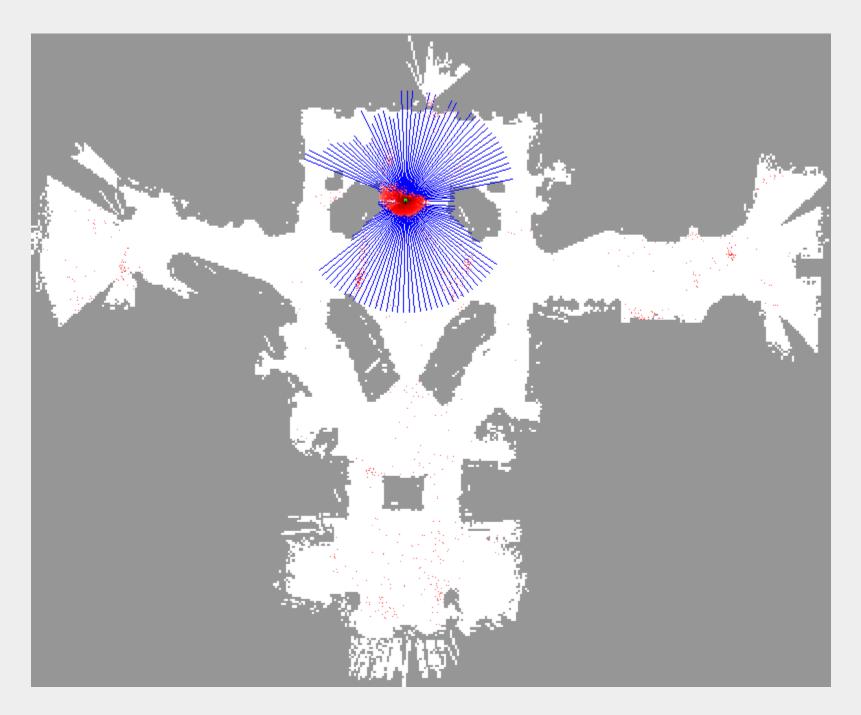


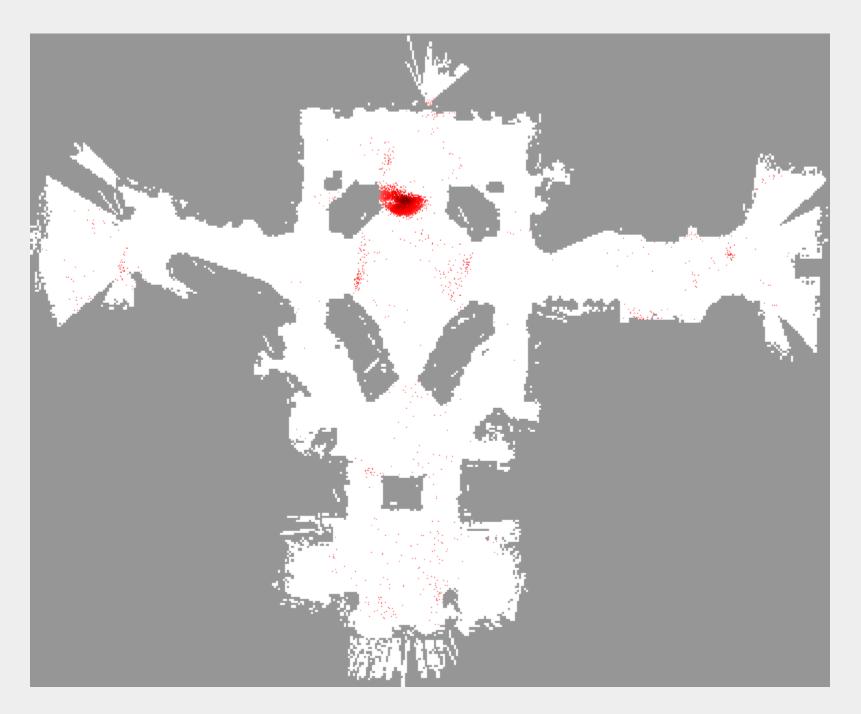


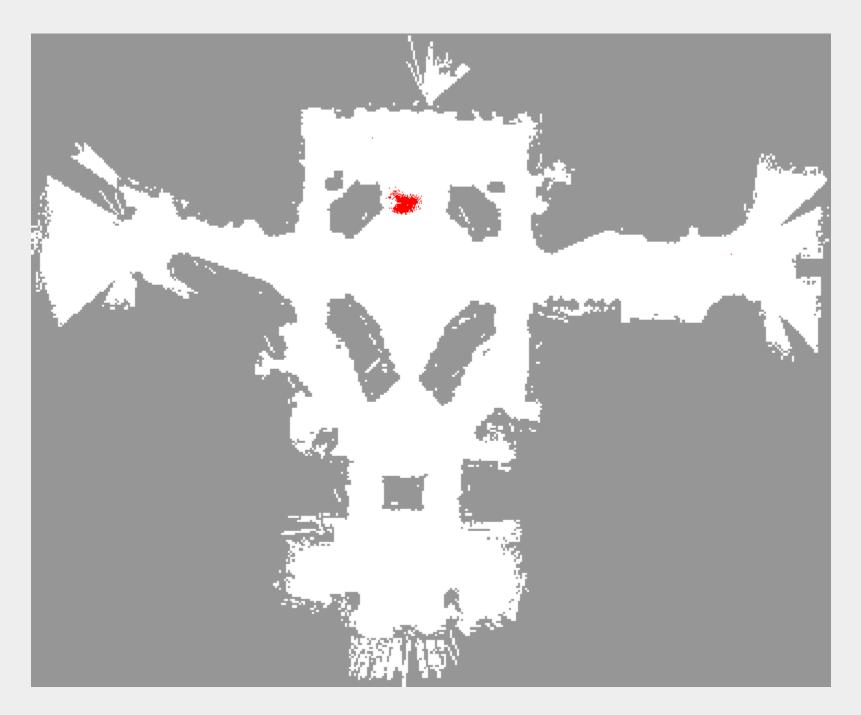


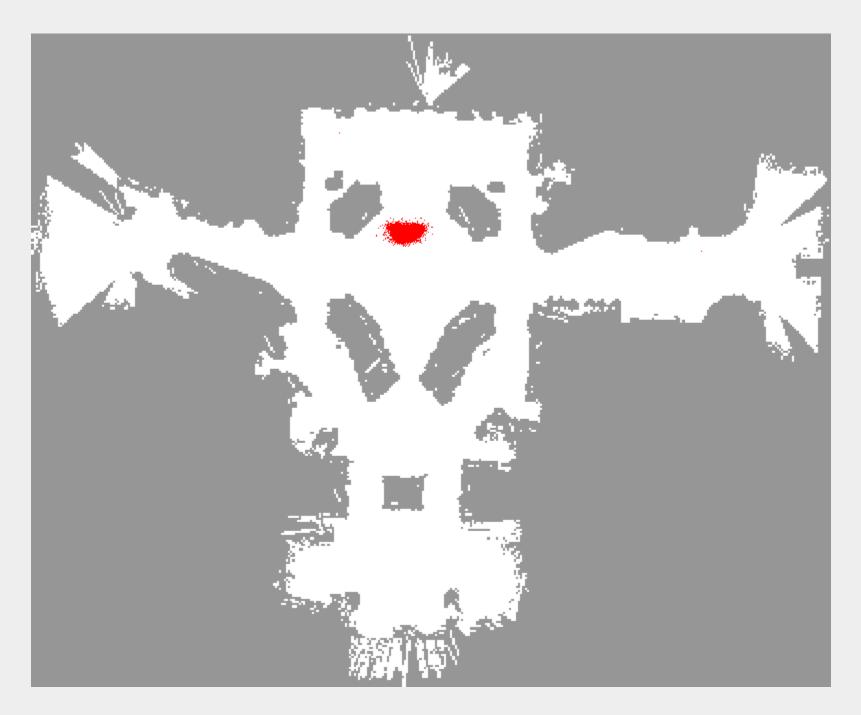


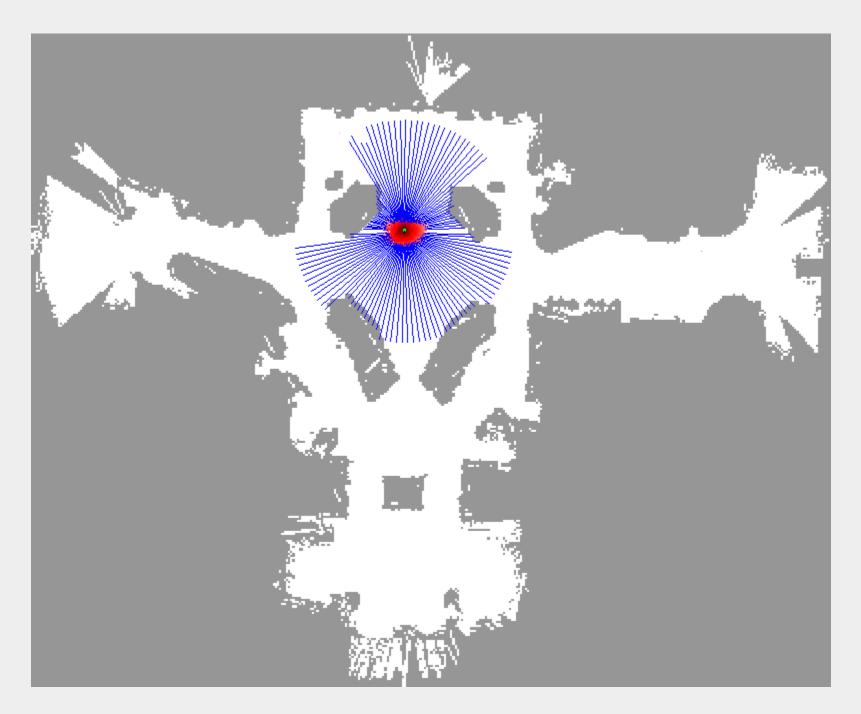


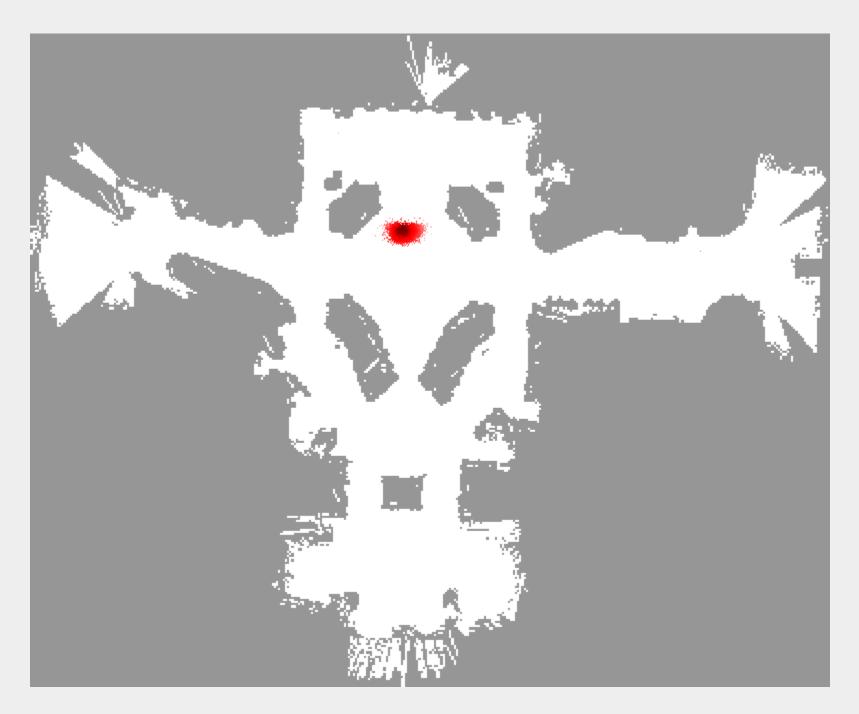


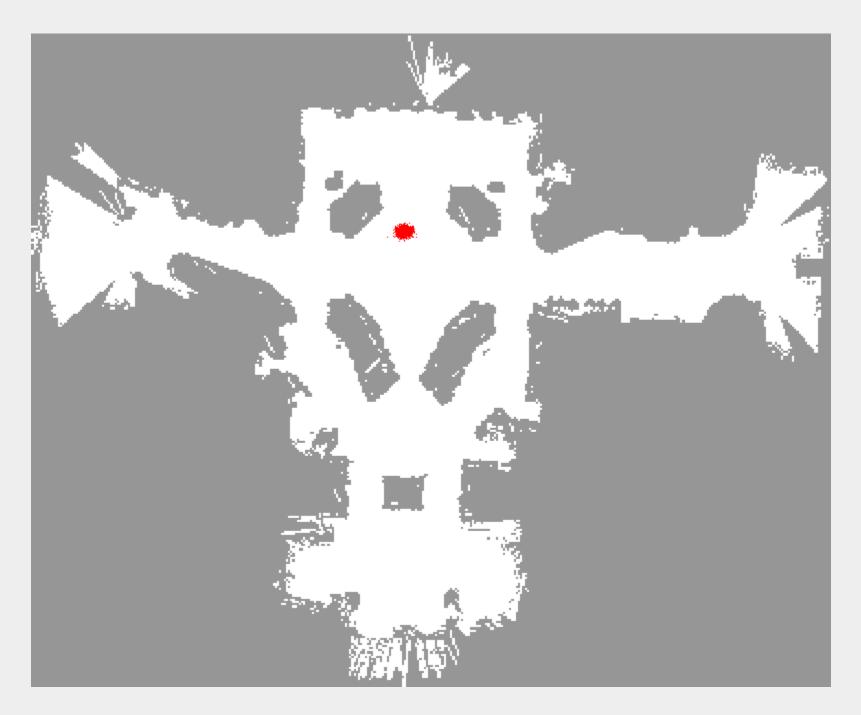


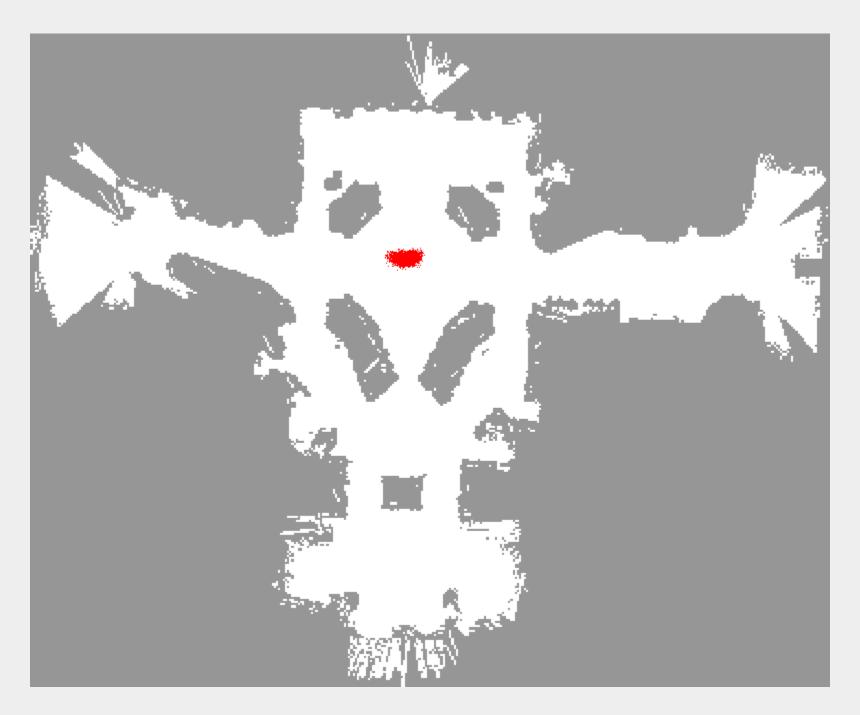


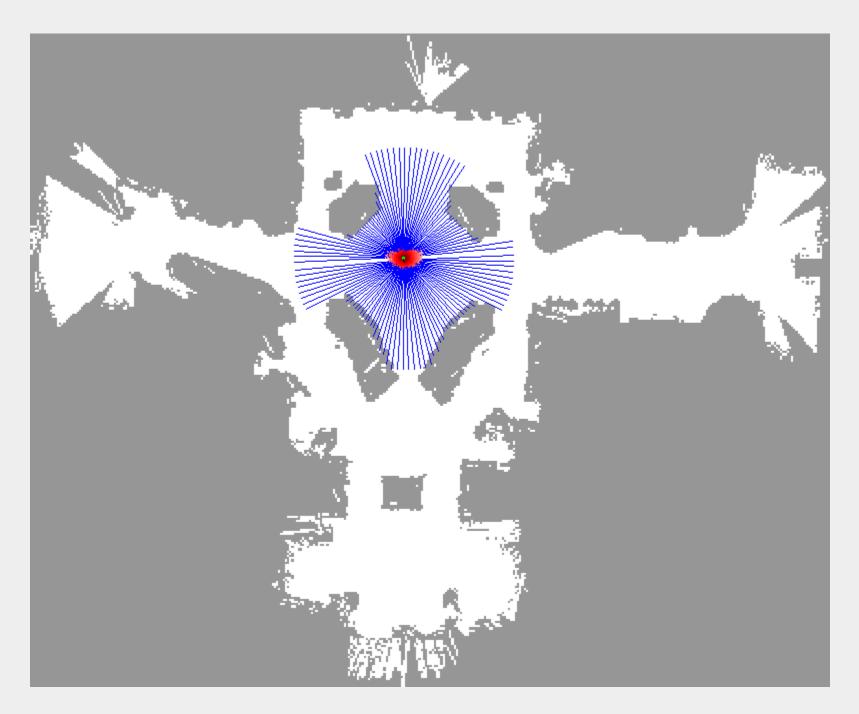


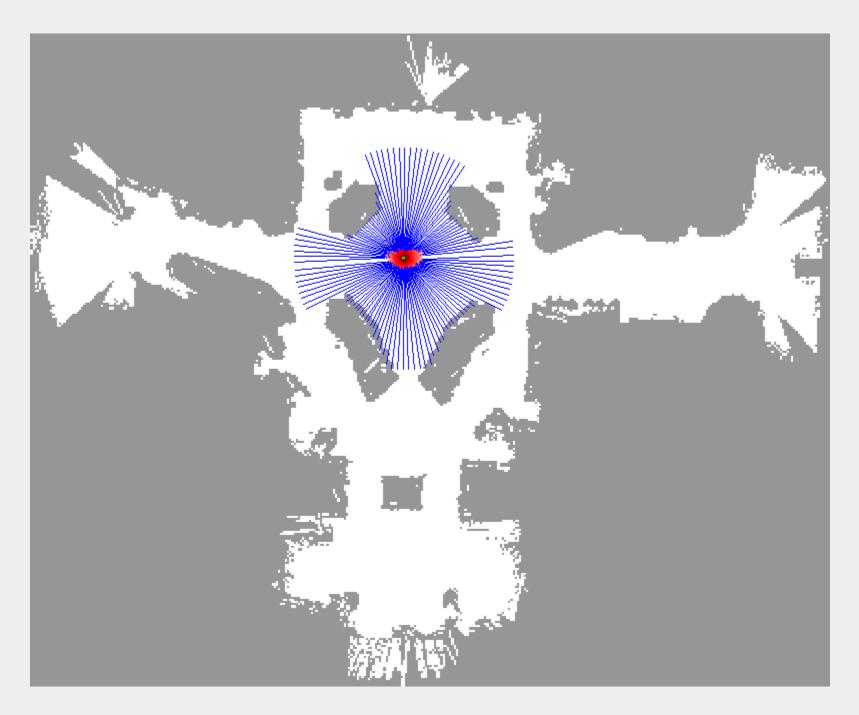




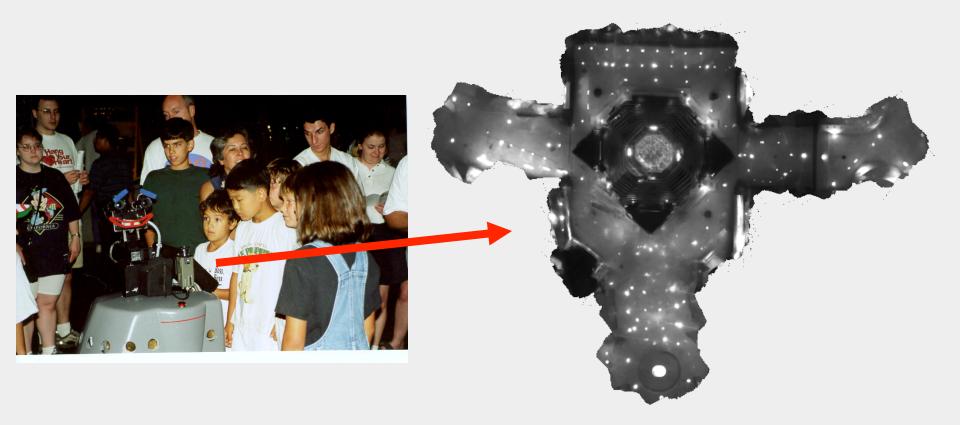






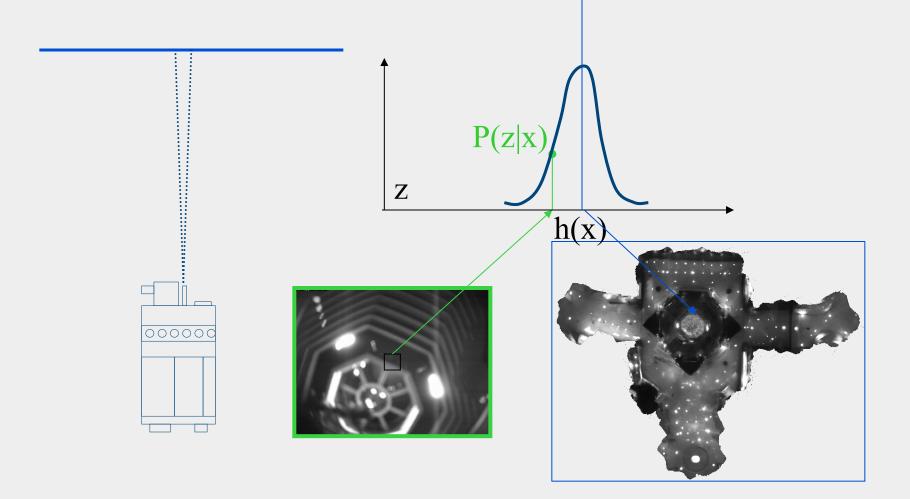


Using Ceiling Maps for Localization



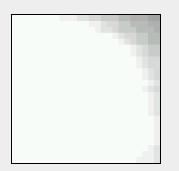
[Dellaert et al. 99]

Vision-based Localization

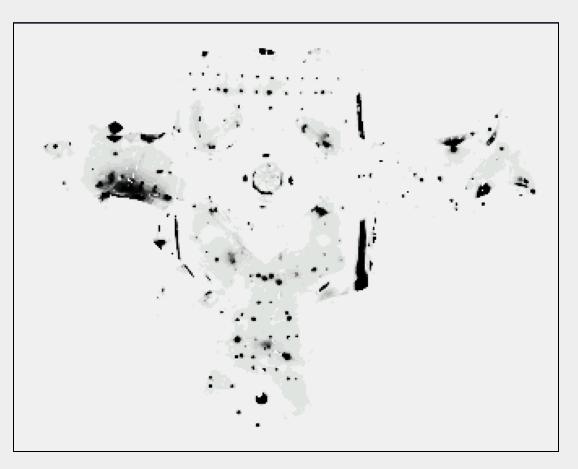


Under a Light

Measurement z:

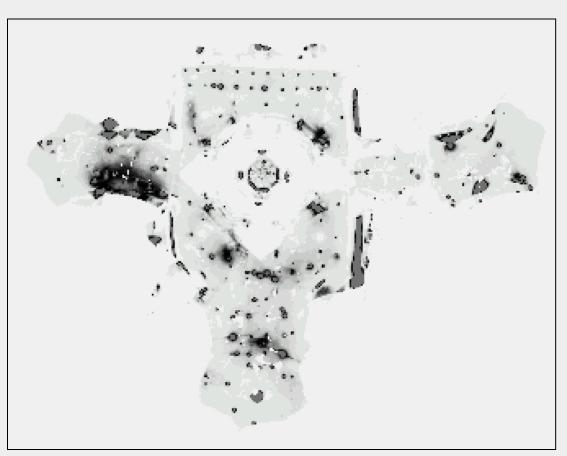


P(z|x):



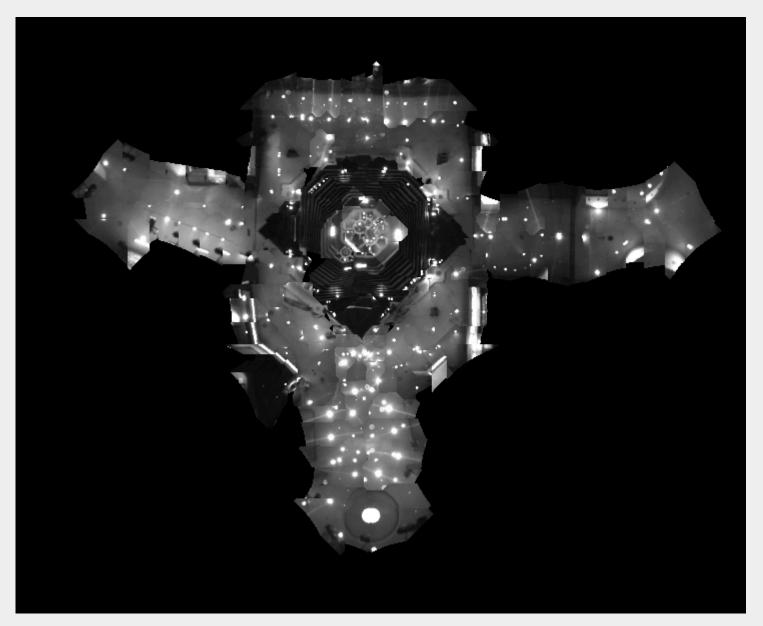
Next to a Light

Measurement z:

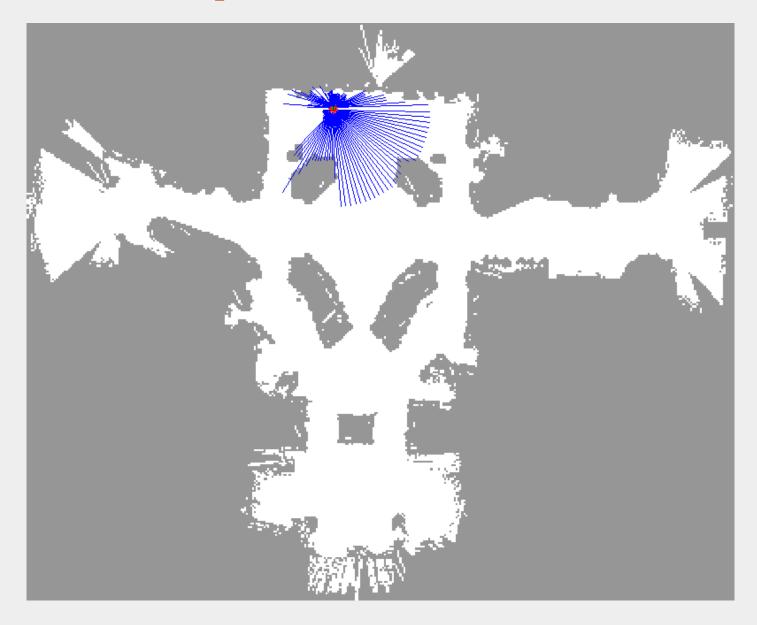


Measurement z:

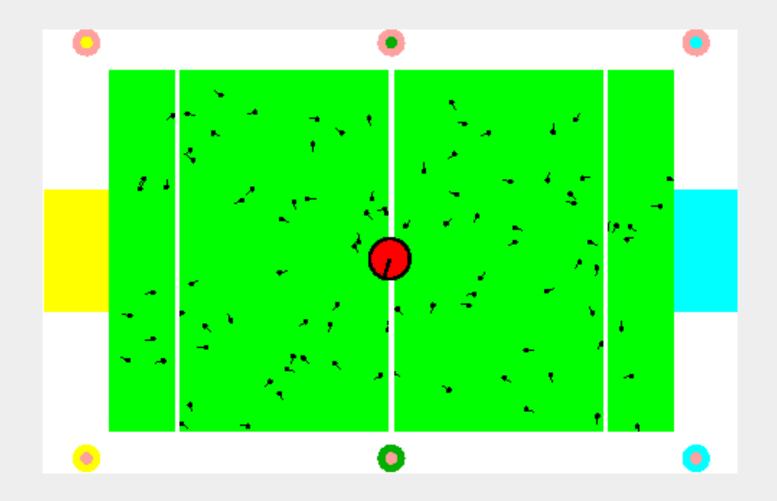
Global Localization Using Vision



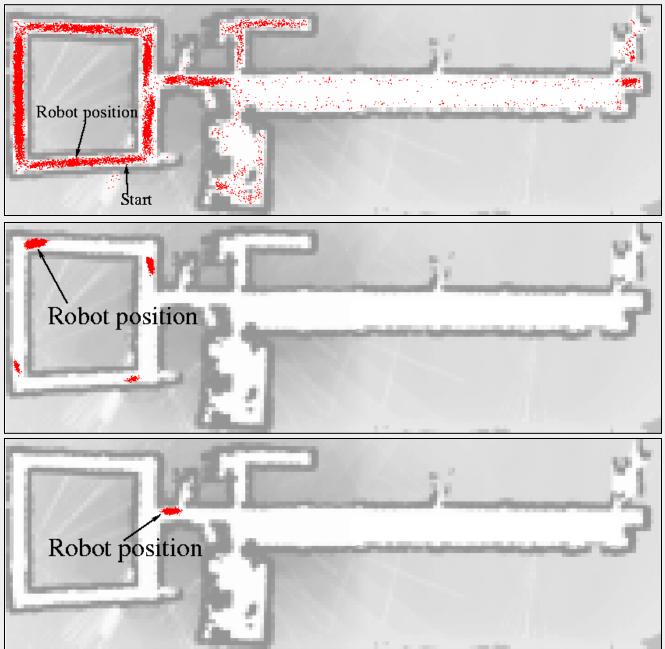
Recovery from Failure



Localization for AIBO robots



Adaptive Sampling



KLD-sampling

• Idea:

- Assume we know the true belief.
- Represent this belief as a multinomial distribution.
- Determine number of samples such that we can guarantee that, with probability (1- d), the KL-distance between the true posterior and the sample-based approximation is less than *e*.

• Observation:

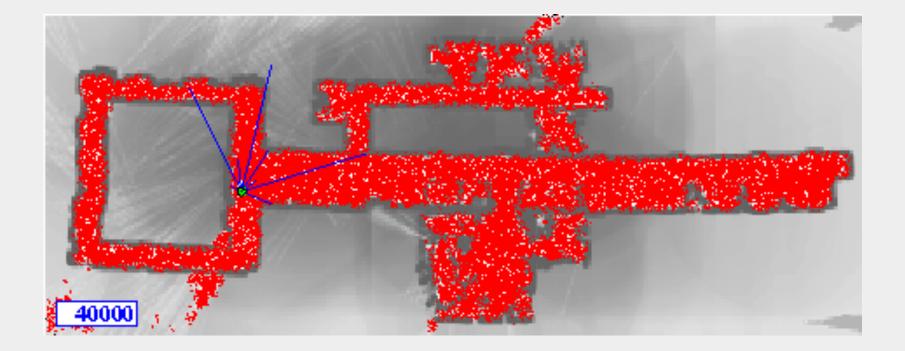
• For fixed *d* and *e*, number of samples only depends on number *k* of bins with support:

$$n = \frac{1}{2\varepsilon} X^{2}(k-1, 1-\delta) \cong \frac{k-1}{2\varepsilon} \left\{ 1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta} \right\}^{3}$$

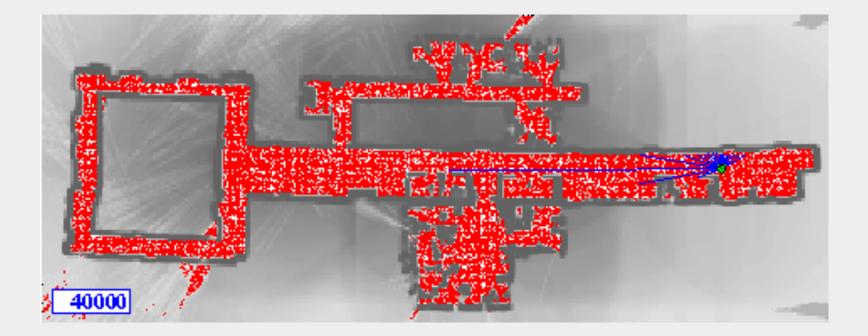
Adaptive Particle Filter Algorithm

1. Algorithm adaptive_particle_filter(S_{t-1} , $u_{t-1} z_{t} \Delta, \varepsilon, \delta$): **2.** $S_t = \emptyset$, $\alpha = 0$, n = 0, k = 0, $b = \emptyset$ **3. Do** Generate new samples Sample index j(n) from the discrete distribution given by w_{t-1} 4. Sample x_t^n from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(n)}$ and u_{t-1} 5. $W_t^n = p(z_t \mid x_t^n)$ 6. Compute importance weight $\eta = \eta + w_t^n$ 7. Update normalization factor 8. $S_t = S_t \cup \{< x_t^n, w_t^n > \}$ Insert 9. If $(x_t^n \text{ falls into an empty bin } b)$ Update bins with support 10. k=k+1, b = non-empty11. n=n+112. While $(n < \frac{1}{2\varepsilon} X^2 (k-1, 1-\delta))$ **13. For** i = 1...n14. $w_t^i = w_t^i / \eta$ Normalize weights

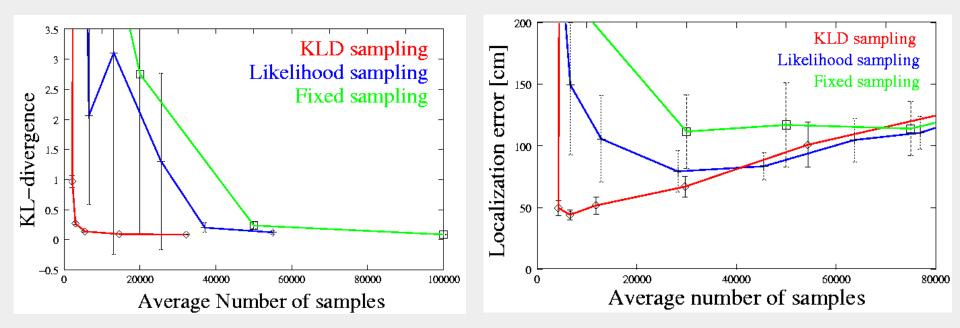
Example Run Sonar



Example Run Laser



Evaluation



Localization Algorithms - Comparison

	Kalman filter	Multi- hypothesis tracking	Topological maps	Grid-based (fixed/variable)	Particle filter
Sensors	Gaussian	Gaussian	Features	Non-Gaussian	Non- Gaussian
Posterior	Gaussian	Multi-modal	Piecewise constant	Piecewise constant	Samples
Efficiency (memory)	++	++	++	-/0	+/++
Efficiency (time)	++	++	++	o/+	+/++
Implementation	+	0	+	+/0	++
Accuracy	++	++	-	+/++	++
Robustness	-	+	+	++	+/++
Global localization	No	Yes	Yes	Yes	Yes