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Sensors for Mobile Robots 
•  Contact sensors: Bumpers 
•  Internal sensors 

•  Accelerometers (spring-mounted masses) 
•  Gyroscopes (spinning mass, laser light) 
•  Compasses, inclinometers (earth magnetic field, gravity) 

•  Proximity sensors 
•  Sonar (time of flight) 
•  Radar (phase and frequency) 
•  Laser range-finders (triangulation, tof, phase) 
•  Infrared (intensity) 

•  Visual sensors: Cameras, depth cameras 

•  Satellite-based sensors: GPS 



IMU on Slotcar 
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Proximity Sensors 

•  The central task is to determine P(z|x), i.e. the 
probability of a measurement z given that the 
robot is at position x. 

•  Question: Where do the probabilities come from? 
•  Approach: Let’s try to explain a measurement. 
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Beam-based Sensor Model 

• Scan z consists of K measurements. 

• Individual measurements are 
independent given the robot position. 
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Beam-based Sensor Model 
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Proximity Measurement 

• Measurement can be caused by … 
•  a known obstacle. 
•  cross-talk. 
•  an unexpected obstacle (people, furniture, …). 
•  missing all obstacles (total reflection, glass, …). 

• Noise is due to uncertainty … 
•  in measuring distance to known obstacle. 
•  in position of known obstacles. 
•  in position of additional obstacles. 
•  whether obstacle is missed. 
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Beam-based Proximity Model 
Measurement noise 
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Beam-based Proximity Model 
Random measurement Max range 
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Mixture Density 
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How can we determine the model parameters? 
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Raw Sensor Data 
Measured distances for expected distance of 300 cm.  

Sonar Laser 
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Approximation 

• Maximize log likelihood of the data 

• Search parameter space. 

• EM to find mixture parameters	


• Assign measurements to densities. 
• Estimate densities using assignments. 
• Reassign measurements. 

)|( expzzP
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Approximation Results 

Sonar 

Laser 

300cm 400cm 
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Example 

z P(z|x,m) 
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Summary Beam-based Model 
•  Assumes independence between beams. 

•  Justification? 
•  Overconfident! 

•  Models physical causes for measurements. 
•  Mixture of densities for these causes. 

•  Implementation 
•  Learn parameters based on real data. 
•  Different models should be learned for different angles at 

which the sensor beam hits the obstacle. 
•  Determine expected distances by ray-tracing. 
•  Expected distances can be pre-processed. 
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Scan-based Model 

• Beam-based model is … 
• not smooth for small obstacles and at 

edges. 
• not very efficient. 

• Idea: Instead of following along the 
beam, just check the end point. 
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Scan-based Model 

• Probability is a mixture of … 
• a Gaussian distribution with mean at 

distance to closest obstacle, 
• a uniform distribution for random 

measurements, and  
• a small uniform distribution for max 

range measurements. 
• Again, independence between 

different components is assumed. 



CSE-571 -  Probabilistic Robotics 1/10/12 19 

Example 

P(z|x,m) 

Map m 

Likelihood field 
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San Jose Tech Museum 

Occupancy grid map Likelihood field 
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Scan Matching 

• Extract likelihood field from scan and 
use it to match different scan. 
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Scan Matching 

• Extract likelihood field from first scan 
and use it to match second scan. 

~0.01 sec 
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Properties of Scan-based Model 

• Highly efficient, uses 2D tables only. 
• Smooth w.r.t. to small changes in robot 

position. 

• Allows gradient descent, scan matching. 

•  Ignores physical properties of beams. 

• Works for sonars? 
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Additional Models of Proximity Sensors 

• Map matching (sonar,laser): generate 
small, local maps from sensor data and 
match local maps against global model. 

• Scan matching (laser): map is represented 
by scan endpoints, match scan into this 
map using ICP, correlation. 

• Features (sonar, laser, vision): Extract 
features such as doors, hallways from 
sensor data. 
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Landmarks 

• Active beacons (e.g. radio, GPS) 
• Passive (e.g. visual, retro-reflective) 
• Standard approach is triangulation 

• Sensor provides 
• distance, or 
• bearing, or 
• distance and bearing. 
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Distance and Bearing 
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Probabilistic Model 
1.  Algorithm landmark_detection_model(z,x,m): 

 

2.   	



3.    

 

4.    
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Distributions 
for P(z|x) 
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Summary of Sensor Models 
•  Explicitly modeling uncertainty in sensing is key to 

robustness. 
•  In many cases, good models can be found by the following 

approach: 
1.  Determine parametric model of noise free measurement. 
2.  Analyze sources of noise. 
3.  Add adequate noise to parameters (eventually mix in densities 

for noise). 
4.  Learn (and verify) parameters by fitting model to data. 
5.  Likelihood of measurement is given by “probabilistically 

comparing” the actual with the expected measurement. 
•  This holds for motion models as well. 
•  It is extremely important to be aware of the underlying 

assumptions! 


