CSE 571: Probabilistic Robotics
Assignment \#3 February 24, 2012
Due: Thursday, March 8, 2012 (noon)

Problem:

1. Consider an undiscounted MDP having three states, $(1,2,3)$, with rewards $-1,-2,0$, respectively. State 3 is a terminal state, that is, no matter what the robot does, it remains in state 3 . In states 1 and 2 there are two possible actions: a and b. The transition model is as follows:

- In state 1 , action a moves the robot to state 2 with probability 0.8 and makes the robot stay put with probability 0.2 .
- In state 2 , action a moves the robot to state 1 with probability 0.8 and makes the robot stay put with probability 0.2 .
- In either state 1 or state 2 , action b moves the robot to state 3 with probability 0.1 and makes the robot stay put with probability 0.9 .

Show the values of the three states for the first two iterations of value iteration. Assume no discount $(\gamma=1)$.
2. Implement Gaussian Process regression. The provided skeleton code and more information are on the course website.

