CSE 571: Probabilistic Robotics

Assignment \#2
Assigned: January 12, 2012
Due: Thursday, January 26 (noon, start of class)

Problem:

1. Let X and Y denote two random variables that are jointly Gaussian:

$$
\begin{aligned}
p(x, y) & =\mathcal{N}\left(\mu^{*}, \Sigma\right) \\
& =\operatorname{det}(2 \pi \Sigma)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left((x, y)^{T}-\mu^{*}\right)^{T} \Sigma^{-1}\left((x, y)^{T}-\mu^{*}\right)\right\}
\end{aligned}
$$

where $\mu^{*}=\left(\mu_{x}^{*}, \mu_{y}^{*}\right)^{T}$ and $\Sigma=\left(\begin{array}{cc}\sigma_{x}^{2} & \sigma_{x y}^{2} \\ \sigma_{x y}^{2} & \sigma_{y}^{2}\end{array}\right)$ are the mean and covariance, respectively. Show that conditioning on Y results in a Gaussian over X :

$$
\begin{aligned}
p(x \mid y) & =\mathcal{N}\left(\mu, \sigma^{2}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}
\end{aligned}
$$

with $\mu=\mu_{x}^{*}+\frac{\sigma_{x y}^{2}}{\sigma_{y}^{2}}\left(y-\mu_{y}^{*}\right)$ and $\sigma^{2}=\sigma_{x}^{2}-\frac{\sigma_{x y}^{4}}{\sigma_{y}^{2}}$.
2. Implement landmark based robot localization using an EKF and a particle filter. You will turn in your code and a writeup analyzing its performance. For the matlab/octave code package and a more detailed description of the programming part of the assignment and the requirements of the writeup, see the link from the course website calendar.

