
CSE-571

AI-based Mobile Robotics

Planning and Control:

Markov Decision Processes

Planning

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Full vs. Partial satisfaction

Fully

vs.

Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

Stochastic

Discrete
vs.

Continuous
Outcomes

Predictable vs. Unpredictable

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Full

Fully

Observable

Perfect

Predictable

Discrete

Deterministic

Stochastic Planning

What action

next?

Percepts Actions

Environment

Static

Full

Fully

Observable

Perfect

Stochastic

Unpredictable

Discrete

Deterministic, fully observable

Stochastic, Fully Observable

Stochastic, Partially Observable

Markov Decision Process (MDP)

 S: A set of states

 A: A set of actions

 Pr(s’|s,a): transition model

 C(s,a,s’): cost model

 G: set of goals

 s0: start state

 : discount factor

 R(s,a,s’): reward model

Role of Discount Factor ()

 Keep the total reward/total cost finite

• useful for infinite horizon problems

• sometimes indefinite horizon: if there are deadends

 Intuition (economics):

• Money today is worth more than money tomorrow.

 Total reward: r1 + r2 + 2r3 + …

 Total cost: c1 + c2 + 2c3 + …

Objective of a Fully Observable MDP

 Find a policy : S → A

 which optimises

• minimises expected cost to reach a goal

• maximises expected reward

• maximises expected (reward-cost)

 given a ____ horizon

• finite

• infinite

• indefinite

 assuming full observability

discounted

or

undiscount.

Examples of MDPs

 Goal-directed, Indefinite Horizon, Cost Minimisation MDP

• <S, A, Pr, C, G, s0>

 Infinite Horizon, Discounted Reward Maximisation MDP

• <S, A, Pr, R, >

• Reward = t
trt

 Goal-directed, Finite Horizon, Prob. Maximisation MDP

• <S, A, Pr, G, s0, T>

 <S, A, Pr, C, G, s0>

 Define J*(s) {optimal cost} as the minimum

expected cost to reach a goal from this state.

 J* should satisfy the following equation:

Bellman Equations for MDP1

Q*(s,a)

 <S, A, Pr, R, s0, >

 Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

 V* should satisfy the following equation:

Bellman Equations for MDP2

 Given an estimate of V* function (say Vn)

 Backup Vn function at state s

• calculate a new estimate (Vn+1) :

 Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a) (greedy action)

Bellman Backup

Bellman Backup

V0= 20

V0= 2

V0= 3

Q1(s,a1) = 20 + 5
Q1(s,a2) = 20 + 0.9£ 2

+ 0.1£ 3

Q1(s,a3) = 4 + 3

max

V1= 25

agreedy = a1

20
a2

a1

a3

s0

s1

s2

s3

?

Value iteration [Bellman’57]

 assign an arbitrary assignment of V0 to each non-goal state.

 repeat

• for all states s

compute Vn+1(s) by Bellman backup at s.

 until maxs |Vn+1(s) – Vn(s)| <

Iteration n+1

Residual(s)

-convergence

Complexity of value iteration

 One iteration takes O(|A||S|2) time.

 Number of iterations required

• poly(|S|,|A|,1/(1-γ))

 Overall:

• the algorithm is polynomial in state space

• thus exponential in number of state variables.

Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

Markov Decision Process (MDP)

s2

s3

s4
s5

s1

0.7

0.3

0.9

0.1

0.3

0.3

0.4

0.99

0.01

0.2

0.8 r=-10

r=20

r=0

r=1

r=0

Value Function and Policy

 Value residual and policy residual

Changing the Search Space

 Value Iteration

• Search in value space

• Compute the resulting policy

 Policy Iteration [Howard’60]

• Search in policy space

• Compute the resulting value

Policy iteration [Howard’60]

 assign an arbitrary assignment of 0 to each state.

 repeat

• compute Vn+1: the evaluation of n

• for all states s

compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

 until n+1 = n

Advantage

 searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence faster.

 all other properties follow!

costly: O(n3)

approximate

by value iteration

using fixed policy

Modified

Policy Iteration

LP Formulation

minimise s2SV*(s)

under constraints:

for every s, a

V*(s) ≥ R(s) + s’2SPr(s’|a,s)V*(s’)

A big LP. So other tricks used to solve it!

=

NnAa

t
n annV

n ')(

1),,|'Pr(max)(xx
x

Xx'

x'x'x'xx' dVRnan t
nn)()()',,,|Pr(''

Hybrid Markov decision process:

Markov state = (n, x), where n is the discrete component

(set of fluents) and .

Bellman’s equation:

lx

Hybrid MDPs

=

NnAa

t
n annV

n ')(

1),,|'Pr(max)(xx
x

Xx'

x'x'x'xx' dVRnan t
nn)()()',,,|Pr(''

Hybrid Markov decision process:

Markov state = (n, x), where n is the discrete component

(set of fluents) and .

Bellman’s equation:

lx

Hybrid MDPs

discrete-discrete

constant-discrete
[Feng et.al.’04]

constant-constant
[Li&Littman’05]

Convolutions

Result of convolutions

discrete constant linear

discrete discrete constant linear

constant constant linear quadratic

linear linear quadratic cubic

value function

p
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n
ct

io
n

Value Iteration for Motion Planning
(assumes knowledge of robot’s location)

Frontier-based Exploration

• Every unknown location is a target point.

Manipulator Control

Arm with two joints Configuration space

Manipulator Control Path

State space Configuration space

Manipulator Control Path

State space Configuration space

Collision Avoidance via Planning

 Potential field methods have local minima

 Perform efficient path planning in the local perceptual

space

 Path costs depend on length and closeness to

obstacles

[Konolige, Gradient method]

Paths and Costs

 Path is list of points P={p1, p2,… pk}

 pk is only point in goal set

 Cost of path is separable into intrinsic cost at each point
along with adjacency cost of moving from one point to
the next

• Adjacency cost typically Euclidean distance

• Intrinsic cost typically occupancy, distance to obstacle

 =
i

ii

i

i ppApIPF),()()(1

Navigation Function

• Assignment of potential field value to every
element in configuration space [Latombe, 91].

• Goal set is always downhill, no local minima.

• Navigation function of a point is cost of minimal
cost path that starts at that point.

)(min k
P

k PFN
k

=

Computation of Navigation Function

• Initialization

• Points in goal set 0 cost

• All other points infinite cost

• Active list goal set

• Repeat

• Take point from active list and update neighbors

• If cost changes, add the point to the active list

• Until active list is empty

Challenges

 Where do we get the state space from?

 Where do we get the model from?

 What happens when the world is slightly

different?

 Where does reward come from?

 Continuous state variables

 Continuous action space

How to solve larger problems?

 If deterministic problem

• Use dijkstra’s algorithm

 If no back-edge

• Use backward Bellman updates

 Prioritize Bellman updates

• to maximize information flow

 If known initial state

• Use dynamic programming + heuristic search

• LAO*, RTDP and variants

 Divide an MDP into sub-MDPs are solve the hierarchy

 Aggregate states with similar values

 Relational MDPs

Approximations: n-step lookahead

 n=1 : greedy

• 1(s) = argmaxa R(s,a)

 n-step lookahead

• n(s) = argmaxa Vn(s)

Approximation: Incremental approaches

Deterministic planner

deterministic relaxation

Stochastic simulation

Identify weakness

plan

Solve/Merge

Approximations: Planning and Replanning

Deterministic planner

deterministic relaxation

Execute the action

plan
send the state reached

SA-1

CSE-571
AI-based Mobile Robotics

Planning and Control:

(1) Reinforcement Learning

(2) Partially Observable
Markov Decision Processes

Reinforcement Learning

 Still have an MDP

• Still looking for policy

 New twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• And what actions do

 Must actually try actions and states out to learn

Model based methods

 Visit different states, perform different actions

 Estimate Pr and R

 Once model built, do planning using V.I. or

other methods

 Cons: require _huge_ amounts of data

Model free methods

 TD learning

 Directly learn Q*(s,a) values

 sample = R(s,a,s’) + maxa’Qn(s’,a’)

 Nudge the old estimate towards the new sample

 Qn+1(s,a) Ã (1-)Qn(s,a) + [sample]

Properties

 Converges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly

Exploration vs. Exploitation

 -greedy

• Each time step flip a coin

• With prob , action randomly

• With prob 1- take the current greedy action

 Lower over time to increase exploitation as

more learning has happened

Q-learning

 Problems

• Too many states to visit during learning

• Q(s,a) is a BIG table

 We want to generalize from small set of training

examples

 Solutions

• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning

Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Root

Take GiveNavigate(loc)

DeliverFetch

Extend-arm Extend-armGrab Release

MoveeMovewMovesMoven

Children of a

unordered

Children of a

task are

unordered

MAXQ Decomposition

 Augment the state s by adding the subtask i: [s,i].

 Define C([s,i],j) as the reward received in i after j

finishes.

 Q([s,Fetch],Navigate(prr)) =

V([s,Navigate(prr)])+C([s,Fetch],Navigate(prr))

 Express V in terms of C

 Learn C, instead of learning Q

Reward received Reward received

while navigating

Reward received Reward received

after navigation

MAXQ Decomposition (contd)

 State Abstraction

• Finding irrelevant actions

• Finding funnel actions

POMDPs: Recall example

Partially Observable Markov Decision Processes

29.11.2007
CSE-571- AI-based Mobile

Robotics 54

POMDPs

 In POMDPs we apply the very same idea as in
MDPs.

 Since the state is not observable, the agent has
to make its decisions based on the belief state
which is a posterior distribution over states.

 Let b be the belief of the agent about the state

under consideration.

 POMDPs compute a value function over belief
space:

29.11.2007
CSE-571- AI-based Mobile

Robotics 55

Problems

 Each belief is a probability distribution, thus,
each value in a POMDP is a function of an
entire probability distribution.

 This is problematic, since probability
distributions are continuous.

 Additionally, we have to deal with the huge
complexity of belief spaces.

 For finite worlds with finite state, action, and
measurement spaces and finite horizons,
however, we can effectively represent the
value functions by piecewise linear
functions.

29.11.2007
CSE-571- AI-based Mobile

Robotics 56

An Illustrative Example

2x1x 3u

8.0

2z

1z

3u

2.0

8.0

2.0

7.0

3.0

3.0

7.0

measurements action u3 state x2

payoff

measurements

1u 2u 1u 2u

100 50100 100

actions u1, u2

payoff

state x1

1z

2z

29.11.2007
CSE-571- AI-based Mobile

Robotics 57

The Parameters of the Example

 The actions u1 and u2 are terminal actions.

 The action u3 is a sensing action that potentially

leads to a state transition.

 The horizon is finite and =1.

29.11.2007
CSE-571- AI-based Mobile

Robotics 58

Payoff in POMDPs

 In MDPs, the payoff (or return)
depended on the state of the
system.

 In POMDPs, however, the true state
is not exactly known.

 Therefore, we compute the
expected payoff by integrating
over all states:

29.11.2007
CSE-571- AI-based Mobile

Robotics 59

Payoffs in Our Example (1)

 If we are totally certain that we are in state x1 and
execute action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we
are in x2 and execute u1, the reward is +100.

 In between it is the linear combination of the
extreme values weighted by the probabilities

29.11.2007
CSE-571- AI-based Mobile

Robotics 60

Payoffs in Our Example (2)

29.11.2007
CSE-571- AI-based Mobile

Robotics 61

The Resulting Policy for T=1

 Given we have a finite POMDP with
T=1, we would use V1(b) to
determine the optimal policy.

 In our example, the optimal policy
for T=1 is

 This is the upper thick graph in the
diagram.

29.11.2007
CSE-571- AI-based Mobile

Robotics 62

Piecewise Linearity, Convexity

 The resulting value function V1(b) is

the maximum of the three functions
at each point

 It is piecewise linear and convex.

29.11.2007
CSE-571- AI-based Mobile

Robotics 63

Pruning

 If we carefully consider V1(b), we see

that only the first two components
contribute.

 The third component can therefore
safely be pruned away from V1(b).

29.11.2007
CSE-571- AI-based Mobile

Robotics 64

Increasing the Time Horizon

 Assume the robot can make an observation before
deciding on an action.

V1(b)

29.11.2007
CSE-571- AI-based Mobile

Robotics 65

Increasing the Time Horizon

 Assume the robot can make an observation before
deciding on an action.

 Suppose the robot perceives z1 for which
p(z1 | x1)=0.7 and p(z1| x2)=0.3.

 Given the observation z1 we update the belief using
Bayes rule.

3.04.0)1(3.07.0)(

)(

)1(3.0
'

)(

7.0
'

1111

1

1
2

1

1
1

==

=

=

pppzp

zp

p
p

zp

p
p

29.11.2007
CSE-571- AI-based Mobile

Robotics 66

Value Function

b’(b|z1)

V1(b)

V1(b|z1)

29.11.2007
CSE-571- AI-based Mobile

Robotics 67

Increasing the Time Horizon

 Assume the robot can make an observation before
deciding on an action.

 Suppose the robot perceives z1 for which
p(z1 | x1)=0.7 and p(z1| x2)=0.3.

 Given the observation z1 we update the belief using
Bayes rule.

 Thus V1(b | z1) is given by

29.11.2007
CSE-571- AI-based Mobile

Robotics 68

Expected Value after Measuring

 Since we do not know in advance
what the next measurement will be,
we have to compute the expected
belief

=

=

=

=

=

==

2

1

111

2

1

11
1

2

1

111

)|(

)(

)|(
)(

)|()()]|([)(

i

i

i i

i
i

i

iiz

pxzpV

zp

pxzp
Vzp

zbVzpzbVEbV

29.11.2007
CSE-571- AI-based Mobile

Robotics 69

Expected Value after Measuring

 Since we do not know in advance
what the next measurement will be,
we have to compute the expected
belief

29.11.2007
CSE-571- AI-based Mobile

Robotics 70

Resulting Value Function

 The four possible combinations yield the
following function which then can be simplified
and pruned.

29.11.2007
CSE-571- AI-based Mobile

Robotics 71

Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)

\bar{V}1(b)

29.11.2007
CSE-571- AI-based Mobile

Robotics 72

State Transitions (Prediction)

 When the agent selects u3 its state

potentially changes.

 When computing the value
function, we have to take these
potential state changes into
account.

29.11.2007
CSE-571- AI-based Mobile

Robotics 73

Resulting Value Function after
executing u3

 Taking the state transitions into account,
we finally obtain.

29.11.2007
CSE-571- AI-based Mobile

Robotics 74

Value Function after executing
u3

\bar{V}1(b)

\bar{V}1(b|u3)

29.11.2007
CSE-571- AI-based Mobile

Robotics 75

Value Function for T=2

 Taking into account that the agent can
either directly perform u1 or u2 or first u3
and then u1 or u2, we obtain (after

pruning)

29.11.2007
CSE-571- AI-based Mobile

Robotics 76

Graphical Representation
of V2(b)

u1 optimal u2 optimal

unclear

outcome of
measuring is
important
here

29.11.2007
CSE-571- AI-based Mobile

Robotics 77

Deep Horizons and Pruning

 We have now completed a full backup
in belief space.

 This process can be applied
recursively.

 The value functions for T=10 and
T=20 are

29.11.2007
CSE-571- AI-based Mobile

Robotics 78

Deep Horizons and Pruning

29.11.2007
CSE-571- AI-based Mobile

Robotics 79

29.11.2007
CSE-571- AI-based Mobile

Robotics 80

Why Pruning is Essential

 Each update introduces additional linear
components to V.

 Each measurement squares the number of
linear components.

 Thus, an unpruned value function for T=20
includes more than 10547,864 linear functions.

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in
comparison, contains only 12 linear components.

 The combinatorial explosion of linear components
in the value function are the major reason why
POMDPs are impractical for most
applications.

29.11.2007
CSE-571- AI-based Mobile

Robotics 81

POMDP Summary

 POMDPs compute the optimal action in
partially observable, stochastic domains.

 For finite horizon problems, the resulting
value functions are piecewise linear and
convex.

 In each iteration the number of linear
constraints grows exponentially.

 POMDPs so far have only been applied
successfully to very small state spaces
with small numbers of possible
observations and actions.

29.11.2007
CSE-571- AI-based Mobile

Robotics 82

POMDP Approximations

 Point-based value iteration

 QMDPs

 AMDPs

29.11.2007
CSE-571- AI-based Mobile

Robotics 83

Point-based Value Iteration

 Maintains a set of example beliefs

 Only considers constraints that
maximize value function for at least
one of the examples

29.11.2007
CSE-571- AI-based Mobile

Robotics 84

Point-based Value Iteration

Exact value function PBVI

Value functions for T=30

29.11.2007
CSE-571- AI-based Mobile

Robotics 85

Example Application

29.11.2007
CSE-571- AI-based Mobile

Robotics 86

Example Application

29.11.2007
CSE-571- AI-based Mobile

Robotics 87

QMDPs

 QMDPs only consider state
uncertainty in the first step

 After that, the world becomes fully
observable.

29.11.2007
CSE-571- AI-based Mobile

Robotics 88

=

=
N

j

ijjii xuxpxVuxruxQ
1

),|()(),(),(

=

N

j

ii
u

uxQp
1

),(maxarg

29.11.2007
CSE-571- AI-based Mobile

Robotics 89

Augmented MDPs

 Augmentation adds uncertainty
component to state space, e.g.

 Planning is performed by MDP in
augmented state space

 Transition, observation and payoff
models have to be learned

=

= dxxbxbxH

xH

xb
b b

b

x)(log)()(,
)(

)(maxarg

