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AI-based Mobile Robotics

Planning and Control:

Markov Decision Processes
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Markov Decision Process (MDP)

 S: A set of states

 A: A set of actions

 Pr(s’|s,a): transition model

 C(s,a,s’): cost model

 G: set of goals

 s0: start state

 : discount factor

 R(s,a,s’): reward model



Role of Discount Factor ()

 Keep the total reward/total cost finite

• useful for infinite horizon problems

• sometimes indefinite horizon: if there are deadends

 Intuition (economics): 

• Money today is worth more than money tomorrow.

 Total reward: r1 + r2 + 2r3 + …

 Total cost: c1 + c2 + 2c3 + …



Objective of a Fully Observable MDP

 Find a policy : S → A

 which optimises 

• minimises expected cost to reach a goal

• maximises expected reward

• maximises expected (reward-cost)

 given a ____ horizon

• finite

• infinite

• indefinite

 assuming full observability

discounted

or

undiscount.



Examples of MDPs

 Goal-directed, Indefinite Horizon, Cost Minimisation MDP

• <S, A, Pr, C, G, s0>

 Infinite Horizon, Discounted Reward Maximisation MDP

• <S, A, Pr, R, >

• Reward = t 
trt

 Goal-directed, Finite Horizon, Prob. Maximisation MDP

• <S, A, Pr, G, s0, T>



 <S, A, Pr, C, G, s0>

 Define J*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state.

 J* should satisfy the following equation:

Bellman Equations for MDP1

Q*(s,a)



 <S, A, Pr, R, s0, >

 Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

 V* should satisfy the following equation:

Bellman Equations for MDP2



 Given an estimate of V* function (say Vn)

 Backup Vn function at state s 

• calculate a new estimate (Vn+1) :

 Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)      (greedy action)

Bellman Backup



Bellman Backup
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Value iteration [Bellman’57]

 assign an arbitrary assignment of V0 to each non-goal state.

 repeat

• for all states s

compute Vn+1(s) by Bellman backup at s.

 until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence



Complexity of value iteration

 One iteration takes O(|A||S|2) time.

 Number of iterations required 

• poly(|S|,|A|,1/(1-γ))

 Overall:

• the algorithm is polynomial in state space

• thus exponential in number of state variables.



Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.



Markov Decision Process (MDP)
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Value Function and Policy

 Value residual and policy residual



Changing the Search Space

 Value Iteration

• Search in value space

• Compute the resulting policy

 Policy Iteration [Howard’60]

• Search in policy space

• Compute the resulting value



Policy iteration [Howard’60]

 assign an arbitrary assignment of 0 to each state.

 repeat

• compute Vn+1: the evaluation of n

• for all states s

compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

 until n+1 = n

Advantage

 searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster.

 all other properties follow!

costly: O(n3)

approximate

by value iteration 

using fixed policy

Modified 

Policy Iteration



LP Formulation

minimise s2SV*(s)

under constraints:

for every s, a

V*(s) ≥ R(s) + s’2SPr(s’|a,s)V*(s’)

A big LP. So other tricks used to solve it!
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discrete-discrete

constant-discrete
[Feng et.al.’04]

constant-constant
[Li&Littman’05]

Convolutions



Result of convolutions

discrete constant linear

discrete discrete constant linear

constant constant linear quadratic

linear linear quadratic cubic
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Value Iteration for Motion Planning
(assumes knowledge of robot’s location)



Frontier-based Exploration

• Every unknown location is a target point.



Manipulator Control

Arm with two joints        Configuration space



Manipulator Control Path

State space            Configuration space



Manipulator Control Path

State space            Configuration space



Collision Avoidance via Planning

 Potential field methods have local minima

 Perform efficient path planning in the local perceptual 

space

 Path costs depend on length and closeness to 

obstacles

[Konolige, Gradient method]



Paths and Costs

 Path is list of points P={p1, p2,… pk}

 pk is only point in goal set

 Cost of path is separable into intrinsic cost at each point 
along with adjacency cost of moving from one point to 
the next

• Adjacency cost typically Euclidean distance

• Intrinsic cost typically occupancy, distance to obstacle
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Navigation Function

• Assignment of potential field value to every 
element in configuration space [Latombe, 91].

• Goal set is always downhill, no local minima.

• Navigation function of a point is cost of minimal 
cost path that starts at that point.
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k
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Computation of Navigation Function

• Initialization

• Points in goal set  0 cost

• All other points  infinite cost

• Active list  goal set

• Repeat

• Take point from active list and update neighbors

• If cost changes, add the point to the active list

• Until active list is empty



Challenges

 Where do we get the state space from?

 Where do we get the model from?

 What happens when the world is slightly 

different?

 Where does reward come from?

 Continuous state variables

 Continuous action space



How to solve larger problems?

 If deterministic problem

• Use dijkstra’s algorithm

 If no back-edge

• Use backward Bellman updates

 Prioritize Bellman updates 

• to maximize information flow

 If known initial state

• Use dynamic programming + heuristic search

• LAO*, RTDP and variants

 Divide an MDP into sub-MDPs are solve the hierarchy

 Aggregate states with similar values

 Relational MDPs



Approximations: n-step lookahead

 n=1 : greedy

• 1(s) = argmaxa R(s,a)

 n-step lookahead

• n(s) = argmaxa Vn(s)



Approximation: Incremental approaches

Deterministic planner

deterministic relaxation

Stochastic simulation

Identify weakness

plan

Solve/Merge



Approximations: Planning and Replanning

Deterministic planner

deterministic relaxation

Execute the action

plan
send the state reached
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Planning and Control:

(1) Reinforcement Learning

(2) Partially Observable 
Markov Decision Processes



Reinforcement Learning

 Still have an MDP

• Still looking for policy 

 New twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• And what actions do

 Must actually try actions and states out to learn



Model based methods

 Visit different states, perform different actions

 Estimate Pr and R

 Once model built, do planning using V.I. or 

other methods

 Cons: require _huge_ amounts of data



Model free methods

 TD learning

 Directly learn Q*(s,a) values

 sample = R(s,a,s’) + maxa’Qn(s’,a’)

 Nudge the old estimate towards the new sample

 Qn+1(s,a) Ã (1-)Qn(s,a) + [sample]



Properties

 Converges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly



Exploration vs. Exploitation

 -greedy

• Each time step flip a coin

• With prob , action randomly

• With prob 1- take the current greedy action

 Lower  over time to increase exploitation as 

more learning has happened



Q-learning

 Problems

• Too many states to visit during learning

• Q(s,a) is a BIG table

 We want to generalize from small set of training 

examples

 Solutions

• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning



Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Root

Take GiveNavigate(loc)

DeliverFetch

Extend-arm Extend-armGrab Release

MoveeMovewMovesMoven

Children of a 

unordered

Children of a 

task are 

unordered



MAXQ Decomposition

 Augment the state s by adding the subtask i: [s,i].

 Define C([s,i],j)  as the reward received in i after j 

finishes.

 Q([s,Fetch],Navigate(prr)) = 

V([s,Navigate(prr)])+C([s,Fetch],Navigate(prr))

 Express V in terms of C

 Learn C, instead of learning Q

Reward received Reward received 

while navigating

Reward received Reward received 

after navigation



MAXQ Decomposition (contd)

 State Abstraction

• Finding irrelevant actions

• Finding funnel actions



POMDPs: Recall example



Partially Observable Markov Decision Processes
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POMDPs

 In POMDPs we apply the very same idea as in 
MDPs.

 Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

 Let b be the belief of the agent about the state 

under consideration.

 POMDPs compute a value function over belief 
space:
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Problems

 Each belief is a probability distribution, thus, 
each value in a POMDP is a function of an 
entire probability distribution.

 This is problematic, since probability 
distributions are continuous.

 Additionally, we have to deal with the huge 
complexity of belief spaces.

 For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions. 
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An Illustrative Example
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The Parameters of the Example

 The actions u1 and u2 are terminal actions.

 The action u3 is a sensing action that potentially 

leads to a state transition.

 The horizon is finite and =1.
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Payoff in POMDPs

 In MDPs, the payoff (or return) 
depended on the state of the 
system.

 In POMDPs, however, the true state 
is not exactly known.

 Therefore, we compute the 
expected payoff by integrating 
over all states: 
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Payoffs in Our Example (1)

 If we are totally certain that we are in state x1 and 
execute action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.

 In between it is the linear combination of the 
extreme values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1

 Given we have a finite POMDP with 
T=1, we would use V1(b) to 
determine the optimal policy.

 In our example, the optimal policy 
for T=1 is

 This is the upper thick graph in the 
diagram.
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Piecewise Linearity, Convexity

 The resulting value function V1(b) is 

the maximum of the three functions 
at each point

 It is piecewise linear and convex.
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Pruning

 If we carefully consider V1(b), we see 

that only the first two components 
contribute. 

 The third component can therefore 
safely be pruned away from V1(b).
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

V1(b)
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using 
Bayes rule. 
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Value Function

b’(b|z1)

V1(b)

V1(b|z1)
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using 
Bayes rule. 

 Thus V1(b |  z1) is given by 
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Expected Value after Measuring

 Since we do not know in advance 
what the next measurement will be, 
we have to compute the expected 
belief
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Expected Value after Measuring

 Since we do not know in advance 
what the next measurement will be, 
we have to compute the expected 
belief
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Resulting Value Function

 The four possible combinations yield the 
following function which then can be simplified 
and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)

\bar{V}1(b)
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State Transitions (Prediction)

 When the agent selects u3 its state 

potentially changes. 

 When computing the value 
function, we have to take these 
potential state changes into 
account.
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Resulting Value Function after 
executing u3

 Taking the state transitions into account, 
we finally obtain.



29.11.2007
CSE-571- AI-based Mobile 

Robotics 74

Value Function after executing 
u3

\bar{V}1(b)

\bar{V}1(b|u3)
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Value Function for T=2

 Taking into account that the agent can 
either directly perform u1 or u2 or first u3
and then u1 or u2, we obtain (after 

pruning)
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Graphical Representation 
of V2(b)

u1 optimal u2 optimal

unclear

outcome of 
measuring is 
important 
here
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Deep Horizons and Pruning

 We have now completed a full backup 
in belief space.

 This process can be applied 
recursively. 

 The value functions for T=10 and 
T=20 are
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Deep Horizons and Pruning
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Why Pruning is Essential

 Each update introduces additional linear 
components to V.

 Each measurement squares the number of 
linear components. 

 Thus, an unpruned value function for T=20 
includes more than 10547,864 linear functions.  

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in 
comparison, contains only 12 linear components.

 The combinatorial explosion of linear components 
in the value function are the major reason why 
POMDPs are impractical for most 
applications.
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POMDP Summary

 POMDPs compute the optimal action in 
partially observable, stochastic domains.

 For finite horizon problems, the resulting 
value functions are piecewise linear and 
convex. 

 In each iteration the number of linear 
constraints grows exponentially.

 POMDPs so far have only been applied 
successfully to very small state spaces 
with small numbers of possible 
observations and actions. 
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POMDP Approximations

 Point-based value iteration

 QMDPs

 AMDPs
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Point-based Value Iteration

 Maintains a set of example beliefs

 Only considers constraints that 
maximize value function for at least 
one of the examples
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Point-based Value Iteration

Exact value function                 PBVI

Value functions for T=30
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Example Application
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Example Application
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QMDPs

 QMDPs only consider state 
uncertainty in the first step

 After that, the world becomes fully 
observable.
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Augmented MDPs

 Augmentation adds uncertainty 
component to state space, e.g.

 Planning is performed by MDP in 
augmented state space

 Transition, observation and payoff 
models have to be learned
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