CSE-571 AI-based Mobile Robotics

Planning and Control:

Markov Decision Processes

Classical Planning

Stochastic Planning

Deterministic, fully observable

Stochastic, Fully Observable

Stochastic, Partially Observable

Markov Decision Process (MDP)

- S: A set of states
- A: A set of actions
- Pr(s'|s,a). transition model
- C(s,a,s'): cost model
- *G*: set of goals
- s₀: start state
- γ: discount factor
- R(s,a,s'): reward model

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
 - sometimes indefinite horizon: if there are deadends
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + ...$

Objective of a Fully Observable MDP

- Find a policy π : $\mathcal{S} \to \mathcal{A}$
- which optimises
 - minimises discounted or expected cost to reach a goal expected reward
 maximises undiscount.
- given a ____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimisation MDP
 - $<\mathcal{S}$, \mathcal{A} , \mathcal{P} r, \mathcal{C} , \mathcal{G} , $s_0>$
- Infinite Horizon, Discounted Reward Maximisation MDP
 - $\langle S, A, Pr, R, \gamma \rangle$
 - Reward = $\sum_{t} \gamma^{t} \mathbf{r}_{t}$
- Goal-directed, Finite Horizon, Prob. Maximisation MDP
 - $\langle S, A, Pr, G, s_0, T \rangle$

Bellman Equations for MDP₁

- $<\mathcal{S}$, \mathcal{A} , \mathcal{P} r, \mathcal{C} , \mathcal{G} , $s_0>$
- Define J*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- J* should satisfy the following equation:

$$J^*(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^*(s) = \min_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{C}(s, a, s') + J^*(s') \right]$$

Bellman Equations for MDP₂

- $<\mathcal{S}$, \mathcal{A} , \mathcal{P} r, \mathcal{R} , s_0 , $\gamma>$
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

Bellman Backup

- Given an estimate of V* function (say V_n)
- Backup V_n function at state s
 - calculate a new estimate (V_{n+1}):

$$Q_{n+1}(s,a) = \sum_{s' \in \mathcal{S}} Pr(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V_n(s') \right]$$

$$V_{n+1}(s) = \max_{a \in Ap(s)} \left[Q_{n+1}(s,a) \right]$$

- Q_{n+1}(s,a): value/cost of the strategy:
 - execute action a in s, execute π_n subsequently
 - $\pi_n = \operatorname{argmax}_{a \in Ap(s)} Q_n(s,a)$ (greedy action)

Bellman Backup

Value iteration [Bellman'57]

assign an arbitrary assignment of V₀ to each non-goal state.

Complexity of value iteration

- One iteration takes $O(|\mathcal{A}||\mathcal{S}|^2)$ time.
- Number of iterations required
 - poly($|S|, |A|, 1/(1-\gamma)$)
- Overall:
 - the algorithm is polynomial in state space
 - thus exponential in number of state variables.

Policy Computation

$$\pi^*(s) = \underset{a \in Ap(s)}{\operatorname{argmax}} Q^*(s, a)$$

$$= \underset{a \in Ap(s)}{\operatorname{argmax}} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma V^*(s') \right]$$

Optimal policy is stationary and time-independent.

for infinite/indefinite horizon problems

Policy Evaluation

$$V_{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,\pi(s)) \left[\mathcal{R}(s,\pi(s),s') + \gamma V_{\pi}(s') \right]$$

A system of linear equations in |S| variables.

Markov Decision Process (MDP)

Value Function and Policy

Value residual and policy residual

Changing the Search Space

- Value Iteration
 - Search in value space
 - Compute the resulting policy
- Policy Iteration [Howard'60]
 - Search in policy space
 - Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.

- searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence faster.
- all other properties follow!

LP Formulation

minimise $\sum_{s \in \mathcal{S}} V^*(s)$

under constraints:

for every s, a

$$V^*(s) \ge \mathcal{R}(s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|a,s)V^*(s')$$

A big LP. So other tricks used to solve it!

Hybrid MDPs

Hybrid Markov decision process:

Markov state = (n, \mathbf{x}) , where n is the discrete component (set of fluents) and $\mathbf{x} \in \mathbb{R}^{l}$.

Bellman's equation:

$$V_n^{t+1}(\mathbf{x}) = \max_{a \in A_n(\mathbf{x})} \left[\sum_{n' \in N} \Pr(n'|n, \mathbf{x}, a) \right]$$

$$\int_{\mathbf{x}' \in \mathbf{X}} \Pr(\mathbf{x}'|n, \mathbf{x}, a, n') \left(R_{n'}(\mathbf{x}') + V_{n'}^t(\mathbf{x}') \right) d\mathbf{x}'$$

Hybrid MDPs

Hybrid Markov decision process:

Markov state = (n, \mathbf{x}) , where n is the discrete component (set of fluents) and $\mathbf{x} \in \mathbb{R}^l$.

Bellman's equation:

$$V_n^{t+1}(\mathbf{x}) = \max_{a \in A_n(\mathbf{x})} \left[\sum_{n' \in N} \Pr(n' | n, \mathbf{x}, a) \right]$$

$$\int_{\mathbf{x}' \in \mathbf{X}} \Pr(\mathbf{x}' | n, \mathbf{x}, a, n') \left(R_{n'}(\mathbf{x}') + V_{n'}^t(\mathbf{x}') \right) d\mathbf{x}'$$

Convolutions

discrete-discrete

constant-discrete [Feng et.al.'04]

constant-constant

[Li&Littman'05]

Result of convolutions

value function

	discrete	constant	linear
discrete	discrete	constant	linear
constant	constant	linear	quadratic
linear	linear	quadratic	cubic

probability density function

Value Iteration for Motion Planning

(assumes knowledge of robot's location)

Frontier-based Exploration

Every unknown location is a target point.

Manipulator Control

Arm with two joints

Configuration space

Manipulator Control Path

State space

Configuration space

Manipulator Control Path

State space

Configuration space

Collision Avoidance via Planning

- Potential field methods have local minima
- Perform efficient path planning in the local perceptual space

 Path costs depend on length and closeness to obstacles

Paths and Costs

- Path is list of points $P=\{p_1, p_2, ..., p_k\}$
- p_k is only point in goal set
- Cost of path is separable into intrinsic cost at each point along with adjacency cost of moving from one point to the next

$$F(P) = \sum_{i} I(p_{i}) + \sum_{i} A(p_{i}, p_{i+1})$$

- Adjacency cost typically Euclidean distance
- Intrinsic cost typically occupancy, distance to obstacle

Navigation Function

- Assignment of potential field value to every element in configuration space [Latombe, 91].
- Goal set is always downhill, no local minima.
- Navigation function of a point is cost of minimal cost path that starts at that point.

$$N_k = \min_{P_k} F(P_k)$$

Computation of Navigation Function

Figure 2. Three stages of the LPN algorithm, starting from a single goal point. The rectangles indicate the intrinsic cost of a point. The gradient direction at each point is shown as a short black line. The images shown are at 10, 30, and 70 iterations. The interpolated path from the robot to the goal is shown in the last image.

Challenges

- Where do we get the state space from?
- Where do we get the model from?
- What happens when the world is slightly different?
- Where does reward come from?

- Continuous state variables
- Continuous action space

How to solve larger problems?

- If deterministic problem
 - Use dijkstra's algorithm
- If no back-edge
 - Use backward Bellman updates
- Prioritize Bellman updates
 - to maximize information flow
- If known initial state
 - Use dynamic programming + heuristic search
 - LAO*, RTDP and variants
- Divide an MDP into sub-MDPs are solve the hierarchy
- Aggregate states with similar values
- Relational MDPs

Approximations: n-step lookahead

- n=1 : greedy
 - $\pi_1(s) = \operatorname{argmax}_a \mathcal{R}(s,a)$
- n-step lookahead
 - $\pi_n(s) = \operatorname{argmax}_a V_n(s)$

Approximation: Incremental approaches

Approximations: Planning and Replanning

CSE-571 AI-based Mobile Robotics

Planning and Control:

(1) Reinforcement Learning(2) Partially ObservableMarkov Decision Processes

Reinforcement Learning

- Still have an MDP
 - Still looking for policy π
- New twist: don't know \mathcal{P} r and/or \mathcal{R}
 - i.e. don't know which states are good
 - And what actions do

Must actually try actions and states out to learn

Model based methods

- Visit different states, perform different actions
- Estimate \mathcal{P} r and \mathcal{R}

 Once model built, do planning using V.I. or other methods

Cons: require _huge_ amounts of data

Model free methods

- TD learning
- Directly learn Q*(s,a) values

$$Q^*(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

$$Q^*(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma max_{a'} Q^*(s',a') \right]$$

- sample = $\mathcal{R}(s,a,s') + \gamma \max_{a'} Q_n(s',a')$
- Nudge the old estimate towards the new sample
- $Q_{n+1}(s,a) \leftarrow (1-\alpha)Q_n(s,a) + \alpha[sample]$

Properties

- Converges to optimal if
 - If you explore enough
 - If you make learning rate (α) small enough
 - But not decrease it too quickly

Exploration vs. Exploitation

- ε-greedy
 - Each time step flip a coin
 - With prob ε, action randomly
 - With prob 1-ε take the current greedy action
- Lower ε over time to increase exploitation as more learning has happened

Q-learning

- Problems
 - Too many states to visit during learning
 - Q(s,a) is a BIG table
- We want to generalize from small set of training examples
- Solutions
 - Value function approximators
 - Policy approximators
 - Hierarchical Reinforcement Learning

Task Hierarchy: MAXQ Decomposition [Dietterich'00]

MAXQ Decomposition

- Augment the state s by adding the subtask i: [s,i].
- Define C([s,i],j) as the reward received in i after j finishes.
- Q([s,Fetch],Navigate(prr)] =
 V([s,Navigate(prr)])+C([s,Fetch],Navigate(prr))
 Reward received while navigating

 Reward received after navigation
- lacktriangle Express ${\mathcal V}$ in terms of ${\mathcal C}$
- Learn C, instead of learning Q

MAXQ Decomposition (contd)

$$C_{n+1}(s,i,a) \leftarrow (1-\alpha)C_n(s,i,a) + \alpha \gamma^N \left[max_{a'}V(s',a') + C_n(s',i,a') \right]$$

- State Abstraction
 - Finding irrelevant actions
 - Finding funnel actions

POMDPs: Recall example

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \gamma \max_{u} \left[r(b, u) + \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action u_3 is a sensing action that potentially leads to a state transition.
- The horizon is finite and γ =1.

$$r(x_1, u_1) = -100$$
 $r(x_2, u_1) = +100$ $r(x_1, u_2) = +100$ $r(x_2, u_2) = -50$ $r(x_1, u_3) = -1$ $r(x_2, u_3) = -1$ $r(x_2, u_3) = -1$ $r(x_2, u_3) = 0.8$ $r(x_1'|x_1, u_3) = 0.8$ $r(x_1'|x_2, u_3) = 0.8$ $r(x_2'|x_1, u_3) = 0.8$

57

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the

$$\begin{aligned} \mathbf{ex}_r(b,u) &= E_x[r(x,u)] \\ &= \int r(x,u)p(x) \ dx \\ &= p_1 \ r(x_1,u) + p_2 \ r(x_2,u) \end{aligned}$$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x_1 and execute action u_1 , we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= $-100 p_1 + 100 (1 - p_1)$

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

29.11.2007 Robotics 59

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use $V_1(b)$ to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

■ The resulting value function $V_1(b)$ is the maximum of the three functions at each point

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

- If we carefully consider $V_1(b)$, we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_1(b)$.

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

 Assume the robot can make an observation before deciding on an action.

29.11.2007

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z_I we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- \blacksquare Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z_i we update the belief using Bayes rule.
- Thus $V_1(b \mid z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$
Robotics

29.11.2007

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

belief
$$V_1(b) = E_z[V_1(b|z)] = \sum_{i=1}^2 p(z_i)V_1(b|z_i)$$

$$= \sum_{i=1}^{2} p(z_i) V_1 \left(\frac{p(z_i | x_1) p_1}{p(z_i)} \right)$$

$$= \sum_{i=1}^{2} V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected

$$\begin{aligned} \mathbf{b}_{V_{1}(b)}^{\bullet \text{liof}} &= E_{z}[V_{1}(b \mid z)] \\ &= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i}) \\ &= \max \left\{ \begin{array}{ccc} -70 \ p_{1} & +30 \ (1-p_{1}) \\ 70 \ p_{1} & -15 \ (1-p_{1}) \end{array} \right\} \\ &+ \max \left\{ \begin{array}{ccc} -30 \ p_{1} & +70 \ (1-p_{1}) \\ 30 \ p_{1} & -35 \ (1-p_{1}) \end{array} \right\} \end{aligned}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 p_{1} + 30 (1 - p_{1}) & -30 p_{1} + 70 (1 - p_{1}) \\ -70 p_{1} + 30 (1 - p_{1}) & +30 p_{1} & -35 (1 - p_{1}) \\ +70 p_{1} & -15 (1 - p_{1}) & -30 p_{1} + 70 (1 - p_{1}) \\ +70 p_{1} & -15 (1 - p_{1}) & +30 p_{1} & -35 (1 - p_{1}) \end{cases}$$

$$= \max \begin{cases} -100 p_{1} + 100 (1 - p_{1}) \\ +40 p_{1} & +55 (1 - p_{1}) \\ +100 p_{1} & -50 (1 - p_{1}) \end{cases}$$

Value Function

State Transitions (Prediction)

• When the agent selects u_3 its state potentially changes.

29.11.2007 Robotics

72

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} + 30 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\ -70 \ p_{1} + 30 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1}) \\ +70 \ p_{1} - 15 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\ +70 \ p_{1} - 15 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1}) \end{cases}$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_{1} & +100 \ (1 - p_{1}) \\ +40 \ p_{1} & +55 \ (1 - p_{1}) \\ +100 \ p_{1} & -50 \ (1 - p_{1}) \end{array} \right\}$$

$$ar{V}_1(b \mid u_3) = \max \left\{ egin{array}{ll} 60 \ p_1 & -60 \ (1-p_1) \ 52 \ p_1 & +43 \ (1-p_1) \ -20 \ p_1 & +70 \ (1-p_1) \ \end{array}
ight\}$$

Value Function after executing

 u_3

Value Function for T=2

■ Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2 , we obtain (after pruning)

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.

Deep Horizons and Pruning


```
Algorithm POMDP(T):
1:
              \Upsilon = (0, \dots, 0)
              for \tau = 1 to T do
                   \Upsilon' = \emptyset
4:
5:
                   for all (u'; v_1^k, \ldots, v_N^k) in \Upsilon do
                        for all control actions u do
6:
7:
                             for all measurements z do
8:
                                  for j = 1 to N do
                                     v_{j,u,z}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})
9:
                                  endfor
10:
11:
                             endfor
12:
                        endfor
13:
                   endfor
14:
                   for all control actions u do
                        for all k(1), \ldots, k(M) = (1, \ldots, 1) to (|\Upsilon|, \ldots, |\Upsilon|) do
15:
16:
                             for i = 1 to N do
                                v_i' = \gamma \left[ r(x_i, u) + \sum_z v_{u, z, i}^{k(z)} \right]
17:
18:
                             endfor
                             add (u; v'_1, \ldots, v'_N) to \Upsilon'
19:
20:
                        endfor
21:
                   endfor
                   optional: prune \Upsilon'
22:
                   \Upsilon = \Upsilon'
23:
24:
              endfor
              return Y
25:
```

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for T=20 includes more than $10^{547,864}$ linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why **POMDPs** are impractical for most **applications.** CSE-571- AI-based Mobile 29.11.2007

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

POMDP Approximations

Point-based value iteration

QMDPs

AMDPs

Point-based Value Iteration

Maintains a set of example beliefs

 Only considers constraints that maximize value function for at least one of the examples

Point-based Value Iteration

Value functions for T=30

CSE-571- AI-based Mobile **Robotics**

Example Application

					26	27	28		
				,	23	24	25		
					20	21	22		
10	11	12	13	14	150	16	17	18	19
0 ್ಟ್	1	2	3	4	5	6	7	8	9

Example Application

QMDPs

 QMDPs only consider state uncertainty in the first step

After that, the world becomes fully observable.

1: Algorithm QMDP(
$$b = (p_1, \dots, p_N)$$
):
2: $\hat{V} = \text{MDP_discrete_value_iteration}() // \text{ see page 504}$
3: for all control actions u do
4: $Q(x_i, u) = r(x_i, u) + \sum_{j=1}^{N} \hat{V}(x_j) \, p(x_j \mid u, x_i)$
5: endfor
6: return $\underset{u}{\text{arg max}} \sum_{i=1}^{N} p_i \, Q(x_i, u)$

Augmented MDPs

 Augmentation adds uncertainty component to state space, e.g.

$$\overline{b} = \begin{pmatrix} \arg \max b(x) \\ x \\ H_b(x) \end{pmatrix}, \qquad H_b(x) = -\int b(x) \log b(x) dx$$

- Planning is performed by MDP in augmented state space
- Transition, observation and payoff models have to be learned

CSE-571- AI-based Mobile Robotics