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Planning and Control:

Markov Decision Processes
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Markov Decision Process (MDP)

 S: A set of states

 A: A set of actions

 Pr(s’|s,a): transition model

 C(s,a,s’): cost model

 G: set of goals

 s0: start state

 : discount factor

 R(s,a,s’): reward model



Role of Discount Factor ()

 Keep the total reward/total cost finite

• useful for infinite horizon problems

• sometimes indefinite horizon: if there are deadends

 Intuition (economics): 

• Money today is worth more than money tomorrow.

 Total reward: r1 + r2 + 2r3 + …

 Total cost: c1 + c2 + 2c3 + …



Objective of a Fully Observable MDP

 Find a policy : S → A

 which optimises 

• minimises expected cost to reach a goal

• maximises expected reward

• maximises expected (reward-cost)

 given a ____ horizon

• finite

• infinite

• indefinite

 assuming full observability

discounted

or

undiscount.



Examples of MDPs

 Goal-directed, Indefinite Horizon, Cost Minimisation MDP

• <S, A, Pr, C, G, s0>

 Infinite Horizon, Discounted Reward Maximisation MDP

• <S, A, Pr, R, >

• Reward = t 
trt

 Goal-directed, Finite Horizon, Prob. Maximisation MDP

• <S, A, Pr, G, s0, T>



 <S, A, Pr, C, G, s0>

 Define J*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state.

 J* should satisfy the following equation:

Bellman Equations for MDP1

Q*(s,a)



 <S, A, Pr, R, s0, >

 Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

 V* should satisfy the following equation:

Bellman Equations for MDP2



 Given an estimate of V* function (say Vn)

 Backup Vn function at state s 

• calculate a new estimate (Vn+1) :

 Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)      (greedy action)

Bellman Backup



Bellman Backup
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Value iteration [Bellman’57]

 assign an arbitrary assignment of V0 to each non-goal state.

 repeat

• for all states s

compute Vn+1(s) by Bellman backup at s.

 until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence



Complexity of value iteration

 One iteration takes O(|A||S|2) time.

 Number of iterations required 

• poly(|S|,|A|,1/(1-γ))

 Overall:

• the algorithm is polynomial in state space

• thus exponential in number of state variables.



Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.



Markov Decision Process (MDP)
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Value Function and Policy

 Value residual and policy residual



Changing the Search Space

 Value Iteration

• Search in value space

• Compute the resulting policy

 Policy Iteration [Howard’60]

• Search in policy space

• Compute the resulting value



Policy iteration [Howard’60]

 assign an arbitrary assignment of 0 to each state.

 repeat

• compute Vn+1: the evaluation of n

• for all states s

compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

 until n+1 = n

Advantage

 searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster.

 all other properties follow!

costly: O(n3)

approximate

by value iteration 

using fixed policy

Modified 

Policy Iteration



LP Formulation

minimise s2SV*(s)

under constraints:

for every s, a

V*(s) ≥ R(s) + s’2SPr(s’|a,s)V*(s’)

A big LP. So other tricks used to solve it!
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Hybrid Markov decision process:

Markov state = (n, x), where n is the discrete component

(set of fluents) and .

Bellman’s equation:
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

discrete-discrete

constant-discrete
[Feng et.al.’04]

constant-constant
[Li&Littman’05]

Convolutions



Result of convolutions

discrete constant linear

discrete discrete constant linear

constant constant linear quadratic

linear linear quadratic cubic
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Value Iteration for Motion Planning
(assumes knowledge of robot’s location)



Frontier-based Exploration

• Every unknown location is a target point.



Manipulator Control

Arm with two joints        Configuration space



Manipulator Control Path

State space            Configuration space



Manipulator Control Path

State space            Configuration space



Collision Avoidance via Planning

 Potential field methods have local minima

 Perform efficient path planning in the local perceptual 

space

 Path costs depend on length and closeness to 

obstacles

[Konolige, Gradient method]



Paths and Costs

 Path is list of points P={p1, p2,… pk}

 pk is only point in goal set

 Cost of path is separable into intrinsic cost at each point 
along with adjacency cost of moving from one point to 
the next

• Adjacency cost typically Euclidean distance

• Intrinsic cost typically occupancy, distance to obstacle

 =
i

ii

i

i ppApIPF ),()()( 1



Navigation Function

• Assignment of potential field value to every 
element in configuration space [Latombe, 91].

• Goal set is always downhill, no local minima.

• Navigation function of a point is cost of minimal 
cost path that starts at that point.
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P

k PFN
k
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Computation of Navigation Function

• Initialization

• Points in goal set  0 cost

• All other points  infinite cost

• Active list  goal set

• Repeat

• Take point from active list and update neighbors

• If cost changes, add the point to the active list

• Until active list is empty



Challenges

 Where do we get the state space from?

 Where do we get the model from?

 What happens when the world is slightly 

different?

 Where does reward come from?

 Continuous state variables

 Continuous action space



How to solve larger problems?

 If deterministic problem

• Use dijkstra’s algorithm

 If no back-edge

• Use backward Bellman updates

 Prioritize Bellman updates 

• to maximize information flow

 If known initial state

• Use dynamic programming + heuristic search

• LAO*, RTDP and variants

 Divide an MDP into sub-MDPs are solve the hierarchy

 Aggregate states with similar values

 Relational MDPs



Approximations: n-step lookahead

 n=1 : greedy

• 1(s) = argmaxa R(s,a)

 n-step lookahead

• n(s) = argmaxa Vn(s)



Approximation: Incremental approaches

Deterministic planner

deterministic relaxation

Stochastic simulation

Identify weakness

plan

Solve/Merge



Approximations: Planning and Replanning

Deterministic planner

deterministic relaxation

Execute the action

plan
send the state reached
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Reinforcement Learning

 Still have an MDP

• Still looking for policy 

 New twist: don’t know Pr and/or R

• i.e. don’t know which states are good

• And what actions do

 Must actually try actions and states out to learn



Model based methods

 Visit different states, perform different actions

 Estimate Pr and R

 Once model built, do planning using V.I. or 

other methods

 Cons: require _huge_ amounts of data



Model free methods

 TD learning

 Directly learn Q*(s,a) values

 sample = R(s,a,s’) + maxa’Qn(s’,a’)

 Nudge the old estimate towards the new sample

 Qn+1(s,a) Ã (1-)Qn(s,a) + [sample]



Properties

 Converges to optimal if

• If you explore enough

• If you make learning rate () small enough

• But not decrease it too quickly



Exploration vs. Exploitation

 -greedy

• Each time step flip a coin

• With prob , action randomly

• With prob 1- take the current greedy action

 Lower  over time to increase exploitation as 

more learning has happened



Q-learning

 Problems

• Too many states to visit during learning

• Q(s,a) is a BIG table

 We want to generalize from small set of training 

examples

 Solutions

• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning



Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Root

Take GiveNavigate(loc)

DeliverFetch

Extend-arm Extend-armGrab Release

MoveeMovewMovesMoven

Children of a 

unordered

Children of a 

task are 

unordered



MAXQ Decomposition

 Augment the state s by adding the subtask i: [s,i].

 Define C([s,i],j)  as the reward received in i after j 

finishes.

 Q([s,Fetch],Navigate(prr)) = 

V([s,Navigate(prr)])+C([s,Fetch],Navigate(prr))

 Express V in terms of C

 Learn C, instead of learning Q

Reward received Reward received 

while navigating

Reward received Reward received 

after navigation



MAXQ Decomposition (contd)

 State Abstraction

• Finding irrelevant actions

• Finding funnel actions



POMDPs: Recall example



Partially Observable Markov Decision Processes
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POMDPs

 In POMDPs we apply the very same idea as in 
MDPs.

 Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

 Let b be the belief of the agent about the state 

under consideration.

 POMDPs compute a value function over belief 
space:
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Problems

 Each belief is a probability distribution, thus, 
each value in a POMDP is a function of an 
entire probability distribution.

 This is problematic, since probability 
distributions are continuous.

 Additionally, we have to deal with the huge 
complexity of belief spaces.

 For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions. 



29.11.2007
CSE-571- AI-based Mobile 

Robotics 56

An Illustrative Example
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The Parameters of the Example

 The actions u1 and u2 are terminal actions.

 The action u3 is a sensing action that potentially 

leads to a state transition.

 The horizon is finite and =1.
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Payoff in POMDPs

 In MDPs, the payoff (or return) 
depended on the state of the 
system.

 In POMDPs, however, the true state 
is not exactly known.

 Therefore, we compute the 
expected payoff by integrating 
over all states: 
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Payoffs in Our Example (1)

 If we are totally certain that we are in state x1 and 
execute action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.

 In between it is the linear combination of the 
extreme values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1

 Given we have a finite POMDP with 
T=1, we would use V1(b) to 
determine the optimal policy.

 In our example, the optimal policy 
for T=1 is

 This is the upper thick graph in the 
diagram.
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Piecewise Linearity, Convexity

 The resulting value function V1(b) is 

the maximum of the three functions 
at each point

 It is piecewise linear and convex.
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Pruning

 If we carefully consider V1(b), we see 

that only the first two components 
contribute. 

 The third component can therefore 
safely be pruned away from V1(b).
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

V1(b)
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Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using 
Bayes rule. 
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Value Function

b’(b|z1)

V1(b)

V1(b|z1)



29.11.2007
CSE-571- AI-based Mobile 

Robotics 67

Increasing the Time Horizon

 Assume the robot can make an observation before 
deciding on an action.  

 Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

 Given the observation z1 we update the belief using 
Bayes rule. 

 Thus V1(b |  z1) is given by 
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Expected Value after Measuring

 Since we do not know in advance 
what the next measurement will be, 
we have to compute the expected 
belief
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Expected Value after Measuring

 Since we do not know in advance 
what the next measurement will be, 
we have to compute the expected 
belief



29.11.2007
CSE-571- AI-based Mobile 

Robotics 70

Resulting Value Function

 The four possible combinations yield the 
following function which then can be simplified 
and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)

\bar{V}1(b)
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State Transitions (Prediction)

 When the agent selects u3 its state 

potentially changes. 

 When computing the value 
function, we have to take these 
potential state changes into 
account.
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Resulting Value Function after 
executing u3

 Taking the state transitions into account, 
we finally obtain.
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Value Function after executing 
u3

\bar{V}1(b)

\bar{V}1(b|u3)
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Value Function for T=2

 Taking into account that the agent can 
either directly perform u1 or u2 or first u3
and then u1 or u2, we obtain (after 

pruning)
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Graphical Representation 
of V2(b)

u1 optimal u2 optimal

unclear

outcome of 
measuring is 
important 
here



29.11.2007
CSE-571- AI-based Mobile 

Robotics 77

Deep Horizons and Pruning

 We have now completed a full backup 
in belief space.

 This process can be applied 
recursively. 

 The value functions for T=10 and 
T=20 are
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Deep Horizons and Pruning
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Why Pruning is Essential

 Each update introduces additional linear 
components to V.

 Each measurement squares the number of 
linear components. 

 Thus, an unpruned value function for T=20 
includes more than 10547,864 linear functions.  

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in 
comparison, contains only 12 linear components.

 The combinatorial explosion of linear components 
in the value function are the major reason why 
POMDPs are impractical for most 
applications.
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POMDP Summary

 POMDPs compute the optimal action in 
partially observable, stochastic domains.

 For finite horizon problems, the resulting 
value functions are piecewise linear and 
convex. 

 In each iteration the number of linear 
constraints grows exponentially.

 POMDPs so far have only been applied 
successfully to very small state spaces 
with small numbers of possible 
observations and actions. 
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POMDP Approximations

 Point-based value iteration

 QMDPs

 AMDPs
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Point-based Value Iteration

 Maintains a set of example beliefs

 Only considers constraints that 
maximize value function for at least 
one of the examples
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Point-based Value Iteration

Exact value function                 PBVI

Value functions for T=30
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Example Application
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Example Application
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QMDPs

 QMDPs only consider state 
uncertainty in the first step

 After that, the world becomes fully 
observable.
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Augmented MDPs

 Augmentation adds uncertainty 
component to state space, e.g.

 Planning is performed by MDP in 
augmented state space

 Transition, observation and payoff 
models have to be learned
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