CSE-571 Probabilistic Robotics

Dieter Fox

Applications of Conditional Random Fields

Place Labeling Line Labeling Scan Labeling GPS Trace Analysis

APPLICATIONS OF CRFS

11/21/2007

CSE-571: Probabilistic Robotics

Voronoi Random Fields

- Local approach does not take neighborhood between locations into account
- Voronoi Random Fields
 - Represent free space by Voronoi graph
 - Use Conditional Random Field to jointly label points on the graph

11/21/2007

CSE-571: Probabilistic Robotics

3

Voronoi Graph

11/21/2007

CSE-571: Probabilistic Robotics

Handling Continuous Features

- Log-linearity for continuous feature value corresponds to Gaussian likelihood
- · Not flexible enough
- Incorporate boosted features into CRF

11/21/2007

CSE-571: Probabilistic Robotics

Evaluation: Accuracy

- Leave-one-out cross validation on hand labeled maps of four different environments
- Learning + evaluation time: ~15min

	Accuracy(%)				
	A	В	C	D	Avg.
Baseline	87.0	90.8	82.0	81.1	85.2
VRF	93.6	93.3	91.5	86.4	91.2

- · Baseline: AdaBoost classification
- VRF: CRF classification with AdaBoost features

11/21/2007 CSE-571: Probabilistic Robotics

Evaluation: Topological Edit Distance

- Topological Edit Distance Ratio (TED)
 - Shortest paths between 100 pairs of pointss
 - Labels on topological nodes along path as string
 - Ratio of edit distance to path length, smaller numbers are better

	Topological Edt Distance				
	A	В	C	D	Avg.
Baseline	79.4	60.5	76.6	62.6	69.8
VRF	18.2	22.1	23.7	25.7	22.4

11/21/2007 CSE-571: Probabilistic Robotics

15

Intel Research Lab

Occupancy map

Spatial Labeling

Topological Representation

11/21/2007

CSE-571: Probabilistic Robotics

Comparison to Previous Work

Local Approach

Spatial Labeling

Topological Representation

17

11/21/2007

CSE-571: Probabilistic Robotics

Target Scenario

[Douillard-Fox-Ramos: IROS-07, ISRR-07]

11/21/2007

CSE-571: Probabilistic Robotics

Laser Scan Labeling

- · Convert laser scan into CRF.
- Hidden states range over object types.
- Features:
 - Local shape of laser scan
 - Visual appearance around projected laser point (~7,000 continuous values)
- VEB for feature induction and learning.
- Labeling via MAP inference.

Local shape and appearance

Object type of laser beam 1

Object type of laser beam 2

Object type of laser beam 3

Object type of laser beam 4

Local shape and appearance

Object type of laser beam n

11/21/2007

CSE-571: Probabilistic Robotics

19

Temporal Integration

- Taking past and future scans into account can improve labeling accuracy.
- Match consecutive laser scans using ICP.
- Associated laser points are connected in CRF.
- Can perform online filtering or offline smoothing via BP.

11/21/2007

CSE-571: Probabilistic Robotics

Results

Classifier	Logitboost	CRF	CRF
Time slices	1	1	+-10
Accuracy [%]	55.3	59.0	60.7
Edit distance	5.9	2.6	0.9

- Ten-fold cross-validation on 100 images
- Training on 90 images: 3 hours
- Testing: 6 seconds per image (not optimized)
- Semi-supervised learning helps

11/21/2007 CSE-571: Probabilistic Robotics

21

Example Labeling

11/21/2007

CSE-571: Probabilistic Robotics

Example Labeling

11/21/2007 CSE-571: Probabilistic Robotics

23

Example Labeling

11/21/2007

CSE-571: Probabilistic Robotics

Example Labelings

11/21/2007 CSE-571: Probabilistic Robotics

Example Labelings

11/21/2007

CSE-571: Probabilistic Robotics

Example Labelings

11/21/2007 CSE-571: Probabilistic Robotics

27

Example Labelings

11/21/2007

CSE-571: Probabilistic Robotics

28

Example Labelings

11/21/2007

CSE-571: Probabilistic Robotics

20

Place Detection and Labeling

[Liao-Fox-Kautz: NIPS-05,IJCAI-05,IJRR-07]

- Use spatial and temporal information to label locations / activities such as
 - Home, Work, Friend, Other
 - Visit friend, get on / off bus, sleep, work
 - Walk, drive car, ride bus

Dieter Fox

KI-2007: Location-Based Activity Recognition

Features

- Temporal pattern: duration, time of day, etc.
- Geographic evidence: is there a restaurant / store / bus stop nearby?
- Transition relation: adjacent activities
- Spatial feature: relation between place and activity
- Summation constraint: number of homes, number of workplaces

Dieter Fox

KI-2007: Location-Based Activity Recognition

31

Hierarchical CRF Model

Accuracy / Confusion Matrix

	Inferred labels				
Truth	Work	Home	Friend	Parking	Other
Work	5	0	0	0	0
Home	0	4	0	0	0
Friend	0	0	3	0	2
Parking	0	0	0	8	0
Other	0	0	0	0	28

Cross-validation using data from 4 persons

Dieter Fox

KI-2007: Location-Based Activity Recognition

Summary of a Day

Time	Activity and transportation		
8:15am - 8:34am	Drive from home 1 to parking lot 2, walk to workplace 1;		
8:34am - 5:44pm	Work at workplace 1;		
5:44pm - 6:54pm	Walk from workplace 1 to parking lot 2, drive to friend's place 3;		
6:54pm - 6:56pm	Pick up/drop off at friend 3's place;		
6:56pm - 7:15pm	Drive from friend 3's place to other place 5;		
9:01pm - 9:20pm	Drive from other place 5 to friend 3's place;		
9:20pm - 9:21pm	Pick up/drop off at friend 3's place;		
9:21pm - 9:50pm	Drive from friend 3's place to home 1;		
9:50pm - 8:22am	Sleep at home 1.		

Dieter Fox

KI-2007: Location-Based Activity Recognition

39

Conclusions

- Graphical models provide powerful and flexible framework for learning and reasoning about complex relationships
- Object and place recognition as posterior and MAP estimation
- Conditional Random Fields
 - Can handle high-dimensional features (especially VEB)
 - No need to worry about dependencies

11/21/2007

CSE-571: Probabilistic Robotics