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Conditional Random Fields

Discriminative, undirected graphical model

Introduced for labeling sequence data to overcome weaknesses of Hidden

Markov Models [Lafferty-McCallum-Pereira: ICML-01]

Applied successfully to

Natural language processing [McCallum-Li: CoNLL-03], [Roth-Yih: ICML-05]

Social network analysis [McCallum-CorradaEmmanuel-Wang: IJCAI-05]

Computer vision [Kumar-Hebert: NIPS-04], [Quattoni-Collins-Darrel: NIPS-05]

Activity recognition [Liao-Fox-Kautz: IJRR-07, Smimchisescu-Kanaujia-Li-Metaxus: ICCV-05]
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Hidden Markov Models

Hidden states x

Observations z

* Directed graphical model

pxgez) = x o x o  axg)
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Conditional Random Fields

Hidden states x

Observations z

* Directly models conditional probability p(x|z)

(instead of modeling p(z|x) and p(x), and using Bayes rule to infer p(x|z)).

* Noindependence assumption on observations needed!
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Conditional Probability

* Conditional probability factorizes into clique potentials:

p(x|z)= [T x 2
Z(Z) c€ _

()Y ()

Hidden states x

Observations z
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Clique Potentials

* Non-negative functions over values in clique
* Measure compatibility between values

()

Hidden states x

Observations z
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Clique Potentials

* Non-negative functions over values in clique
* Measure compatibility between values

* Local potentials link states to observations / features

— T
(D\Xazl_'“r w -[X,Z)

)

Hidden states x

Observations z
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Clique Potentials

* Non-negative functions over values in clique

* Measure compatibility between values

* Local potentials link states to observations / features

* Neighborhood potentials link states to neighboring states

T

(D = l
X,X , T L W X,X)

Hidden states x

Observations z
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Conditional Distribution Revisited

p(xl|z)= H Xz

Z(z) ..
. [ ]
= ,,_942 W X z
Z(z) L J

* Normalizer can grow exponentially in number of variables:

‘ ]
Z(z)zz _LZW X z J}

X
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Inference via Belief Propagation

* BP computes posteriors via local message passing

— Sum-product for posterior

— Max-product for MAP

* Exact if network has no loops

* Otherwise, run loopy belief propagation and hope it works
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Sum-Product Belief Propagation

1. Message initialization: All messages m;;(2;) are initialized as uniform distributions over ;.

2. Message update rule: The message m;;(z;) sent from node { to its neighbor § is updated based
on local potentials ¢(zx; ), the pair-wise potential ¢(x;, x;), and all the messages to i received from
4's neighbors other than j (denoted as n(i) \ j). More specifically, for sum-product, we have

my(zg) = 3 dle)dlenz) [[ mule:)

i ken(i)\j

3. Message update order: The algorithm iterates the message update rule until it (possibly) con-
verges. Usually, at each iteration, it updates each message once, and the specific order is not
important (although it might affect the convergence speed).

4. Convergence conditions: To test whether the algorithm converged, BP measures the difference
between the previous messages and the updated ones:

'|mij($j)(kl - mij(ij("’lJH < ¢, Vi, and Vj € n(i)

(k-1)

where m:;(x;) %) and mi;(x;) are the messages after and before iteration %, respectively.

5. Marginals: After all messages have converged, marginals of each node can be computed as

blzi) oo o(m) [ mles)

jen(i)
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Inference via Gibbs Sampling

Basic

: generate sequence of samples drawn from posterior
p(x|z)* .. w f(x,z)
Initialize all x, to a random value

At each step pick an x, and sample from the conditional:

p(x, |x_ z0% ... w f(x,z)
: difficult to move between modes of posterior

Many alternatives: block sampling, slice sampling, MC-SAT

Conditional distribution parameterized via weights w:

: ( ]
p(x|z,w)~ exp42w X z ¢
Z(z.w) L J

Maximize conditional log-likelihood with
L(w) = iR = I‘\x 1 Z’Vv/ -
No closed-form solution, gradient requires inference:
w
\% —w, " fxz, 7 L fx.z, 7 -

Maximization via stochastic gradient, L-BFGS, conjugate gradient
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* Alternative: maximize pseudo log-likelihood  [Besag: 1975]

PL(w):z X, - X, ,,W, T

* Gradient computation does not require inference

* Very efficient, works surprisingly well in practice

[Kumar-Hebert: ICCV-03], [Richardson-Domingos: ML-04],
[Liao-Fox-Kautz: IJRR-07]
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Conclusions

e Graphical models provide powerful and flexible
framework for learning and reasoning about
complex relationships

* Conditional Random Fields
— Can handle high-dimensional features

— No need to worry about dependencies
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