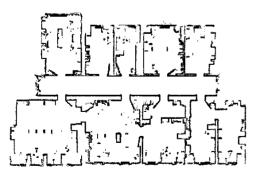
CSE 571 Probabilistic Robotics

Boosting

Some slides taken from: Wolfram Burgard, Hongbo Deng, Antonio Torralba

Motivation

• Indoor mapping is an important task in mobile robotics.



Why boosting?

- A simple algorithm for learning robust classifiers
 - Freund & Shapire, 1995
 - Friedman, Hastie, Tibshhirani, 1998
- Provides efficient algorithm for sparse feature selection
 - Tieu & Viola, 2000
 - Viola & Jones, 2003
- Easy to implement, doesn't requires external optimization tools.

Motivation

· Semantic mapping:

Corridor Room

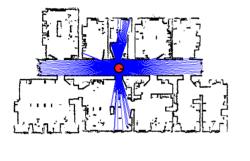
Doorway

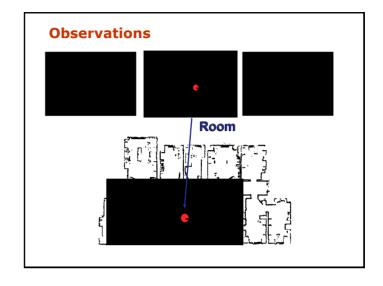
Human-Robot interaction:

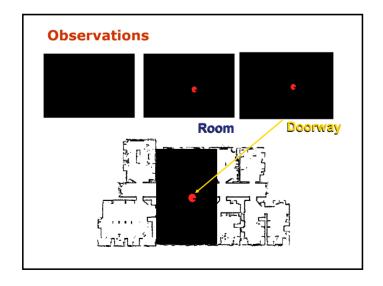
User: "Go to the corridor"

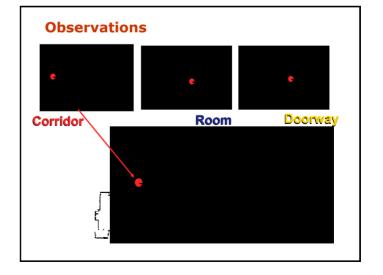
Goal

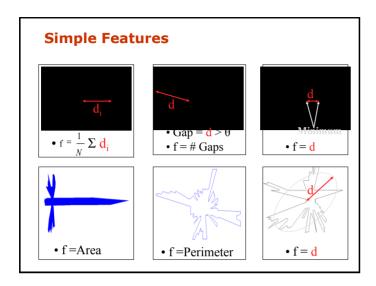
• Classification of the position of the robot using one single observation: a 360° laser range data.

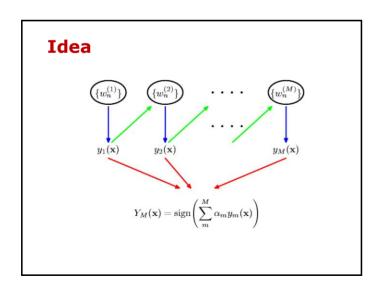






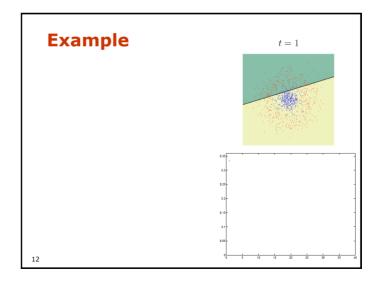


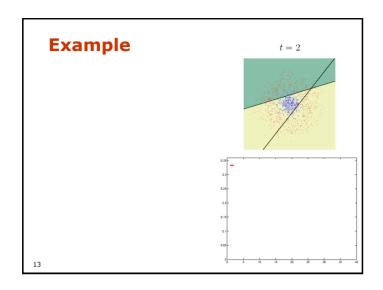


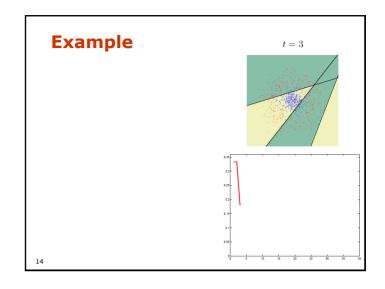


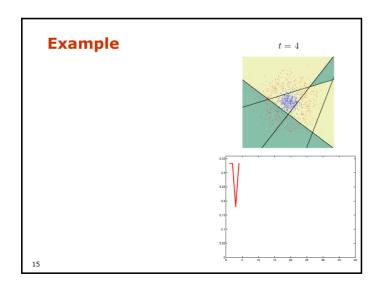
Combining Features

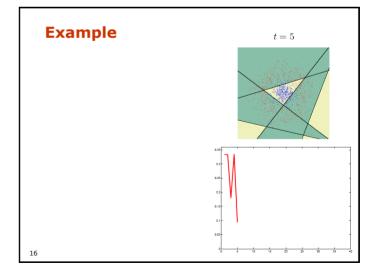
- Observation: There are many simple features f_i .
- Problem: Each single feature f_i gives poor classification rates.
- Solution:
 Combine multiple simple features to form a final classifier using AdaBoost.

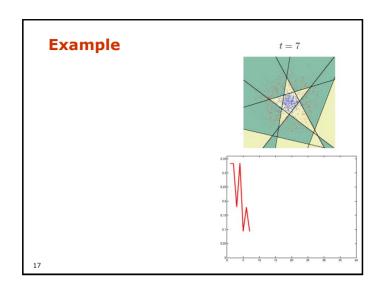


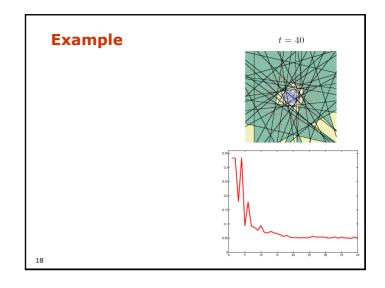












AdaBoost Algorithm

- 1. Initialize data weights $w_n^{(1)} = 1/N$
- 2. For m = 1, ..., M,
 - 2.1 Fit a classifier $y_m(x)$ by minimizing
 - $J_m = \sum w_n^{(m)} I(y_m(\mathbf{x}_n \neq t_n))$ 2.2 Evaluate quantity ϵ_m (ratio of misclassified) $\epsilon_m = \frac{\sum_n w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)}{\sum_n w_n^{(m)}}$

Evaluate quantity α_m (weight for classfier m)

- $lpha_m = \log(rac{1-\epsilon_m}{\epsilon_m})$ 2.3 Update the data weighting coefficients $\mathbf{w}_{n}^{(m+1)} = \mathbf{w}_{n}^{(m)} \mathbf{e}^{\alpha_{m} l(\mathbf{y}_{m}(\mathbf{x}_{n}) \neq t_{n})}$
- 3. Make prediction by $Y_M(\mathbf{x}) = \text{sign}(\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x}))$

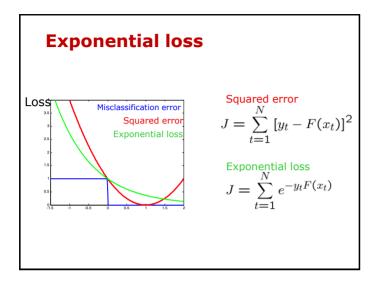
Sequential Optimization

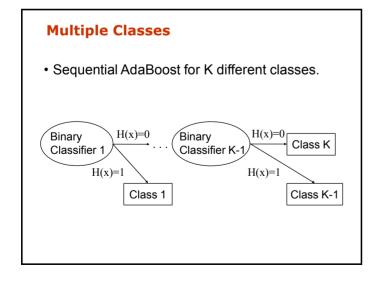
- Original motivation in learning theory
- Can be derived as sequential optimization of exponential error function

$$E = \sum_{m = 1}^{\infty} with^{n}$$

$$f_m(x) = \sum_{n = 1}^{\infty} c_n c_n$$

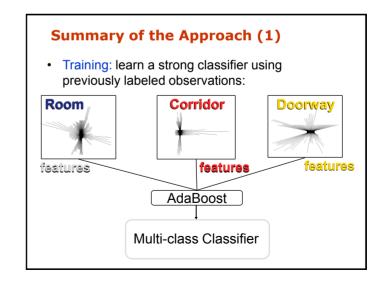
• Fixing first m-1 classifiers and minimizing wrt m-th classifier gives AdaBoost equations!

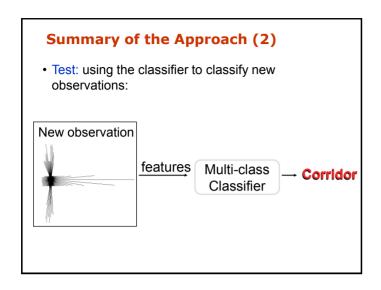


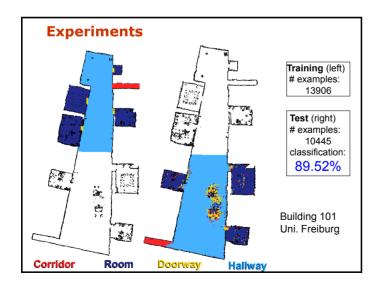


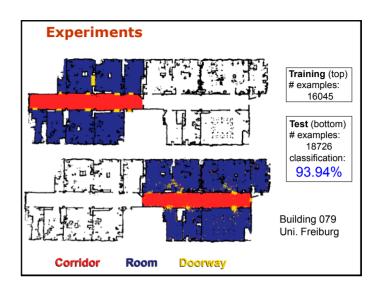
Further Observations

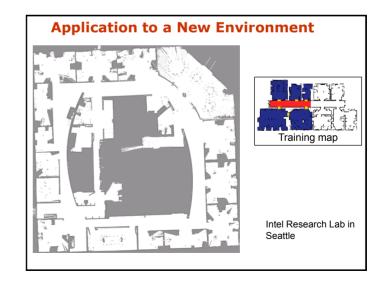
- Test error often decreases even when training error is already zero
- Many other boosting algorithms possible by changing error function
- Regression
- Multiclass

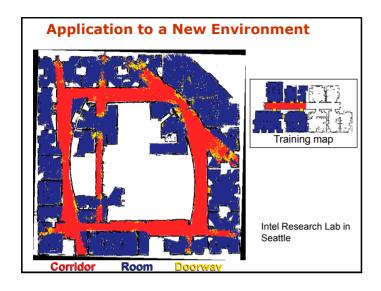












- Extremely flexible framework
- Handles high-dimensional continuous data
- Easy to implement
- Limitation:
 - Only models local classification problems

