CSE-571
Probabilistic Robotics

Particle filters for tracking

Ball Tracking
in RoboCup

= Extremely noisy (nonlinear) motion of
observer

= Inaccurate sensing, limited processing
power

= Interactions between target and

Goal: Unified framework for modeling the ball
and its interactions. t
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Tracking Techniques

= Kalman Filter
= Highly efficient, robust (even for nonlinear)
= Uni-modal, limited handling of nonlinearities
= Particle Filter
= Less efficient, highly robust
= Multi-modal, nonlinear, non-Gaussian
= Rao-Blackwellised Particle Filter, MHT
= Combines PF with KF
= Multi-modal, highly efficient
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Dynamic Bayes Network for Ball
Tracking

Landmark detection
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Map and robot location

Robot localization

Robot control
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Ball motion mode

Ball location and velocity

Ball tracking
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Ball observation
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Robot Location
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Robot and Ball Location (and
velocity)
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Ball-Environment Interactions

Grabbed
Deflected
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Ball-Environment Interactions
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Integrating Discrete Ball
Motion Mode

Grab Example (1)
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Grab Example (2)
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Inference: Posterior
Estimation
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Particle Filter for Robot
Localization

o]
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Rao-Blackwellised PF for
Inference

® Represent posterior by random samples

® Each sample
0T man) = (e thm ()

contains robot location, ball mode, ball Kalman
filter

® Generate individual components of a particle
stepwise using the factorization
p(bk’ml:k’rl:k | zl:k’ul:k’.) =

p(bk [ ml.k’rl.k’zl.k’ul.ki)p(ml.k [ rl:k’zl:k’ul:ki) : p(rl:k ‘ zl:k’ulzk’.)

Rao-Blackwellised Particle Filter for
Inference

8
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@ Map and robot location =
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@ Ball motion mode
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Ball location and velocity £
3
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® Draw a sample from the previous sample set:
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Generate Robot Location
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Generate Ball Motion Model

g

a Landmark detection 2
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Update Ball Location and
Velocity

g

a Landmark detection -

N

=

2

@_ﬁ a Map and robot location 3
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@ | Robot control =
@— @ Ball motion mode
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_‘® Ball location and velocity £
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b, ~p,|r, ,m, b z,) <r m, ,b >

Importance Resampling

= Weight sample by

) o )
W, p(z lr. )

if observation is landmark detection and by

i) i)

0 o O
\ p(z,|lm, ,r. b))

Wy

= IP(Z: |m(i) r(i) b(f))p(b(') |mi'),rk“),b(’)) db

k 2Tk 2Tk k k. k

if observation is ball detection.

= Resample
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Ball-Environment Interaction
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Ball-Environment Interaction

Tracking and Finding the Ball

= Cluster ball samples by discretizing
pan / tilt angles

= Uses negative information
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o ° )
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Experiment: Real Robot
= Robot kicks ball 100 times, tries to find it
afterwards
= Finds ball in 1.5 seconds on average
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Simulation Runs

77777 Reference
—*—  Observations
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Compal‘iSOI‘l tO KF* (optimized for straight

Com pa I‘iSOI’l tO KF’ (inflated prediction noise)

RBPF

KF’
Reference
Observations

Dieter Fox
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motion)
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*
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Error vs. Prediction Time
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Orientation Errors

Dieter Fox

Orientation Error [degrees]
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Geographic Information Systems

STREET MAP BUS ROUTES /| STOPS RESTAURANTS / STORES
Source: Tiger / Line data Source: Metro GIS Source: MS MapPoint
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GPS-Tracking Is NOT Trivial

[Liao-Fox-Kautz: AAAI-o4, AlJ-07]

Given data stream from a wearable GPS unit

= Infer the user’s location and mode of
transportation (foot, car, bus, bike, ...)

= Predict where user will go

= Detect novel behavior [ user errors
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Graph-based Location Estimation

Dead and semi-dead zones near buildings,
trees, etc.

Sparse measurements inside vehicles,
especially bus

Multi-path propagation

Inaccurate street map
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Map is directed graph

Location:
= Edgee
= Distance d from start of edge

Prediction:
= Move along edges according to velocity model

Correction:
= Update estimate based on GPS reading
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Kalman Filtering on a Graph:
Prediction Step

Problem: Predicted location is multi-modal
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Kalman Filtering on a Graph:

Correction Step

Xk
4 -
—

if O=e,
/Zk

€3

€

= Probabilistically “snap” GPS reading to the graph
= Perform A* search to compute innovation
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Kalman Filtering on a Graph:
Correction Step

Problem: GPS reading is not on the graph
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Kalman Filtering on a Graph:

Correction Step

€1

Xk
&3 L- ‘ :’if 0=¢, e

= Probabilistically “snap” GPS reading to the graph
= Perform A* search to compute innovation
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Location Tracking: Inference

Rao-Blackwellised particle filter represents posterior
by sets of weighted particles:

= (< (D) (i) > .=
A\ {(Ss ,w L0 L., n}

Each particle contains Kalman filter for location:

g = <e(’),v('),6’ DN u o .)>
| - v | - v
g v
Edge transitions, Gaussian for position
velocities, edge
associations
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Infer Mode of Transportation

Encode prior knowledge into the model

= Modes have different velocity distributions
= Buses run on bus routes
= Get on/off the bus near bus stops

= Switch to car near car location

Dieter Fox CSE-571: Probabilistic Robotics
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Tracking Example

@ GPSmeasurements

W Particles (Kalman filters)
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Dynamic Bayesian Network

?—'? @ Transportation mode
@ ° Edge, velocity, position

@ a GPS reading

Time k-1 Time k
H (i) = ) )
Particles: s Ve w0e . mo ’
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Infer Location and Transportation

Measurements
o Projections
Bus mode
Red Car mode
Blue Foot mode
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Home

Hierarchical Model

Goal

Trip segment

GPS reading

Time k-1 Time k

Particles: S(":\\h"/ ?’n([’e’?v’ 2 LI \y’()- I/
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Transportation mode

Edge, velocity, position

43

Transportation Routines

B Workplace

Goal (destination):

= workplace (home, friends, restaurant, ...)

Trip segments: <start, end, transportation>
= Home to Bus stop A on Foot

= Bus stop A to Bus stop B on Bus

= Bus stop B to workplace on Foot
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Model Learning

Key to goal / path prediction and error detection
Customized model for each user

Unsupervised model learning

= Learn variable domains (goals, trip segments)

= Learn transition parameters (goals, trips, edges)
Training data

= 30 days GPS readings of one user, logged every
second (when outdoors)
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Predict Goal and Path

® Predicted goal

 —— Predicted path
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Learned Transition Parameters

GOINGTO THEWORKPLACE GOING HOME
Bus stop I Bus stop
I‘. Parking lot J l‘ / Parking lot

Work Y . /\"-"-f

e — | \'\'(Jrl\. S 1

N N
— 7-\7-7-'-\ — 7-7-\-"'\

s T L - ‘,:" Ty

Palkn;g lot ) Pnrkil{; lot .

Detect Atypical Behavior and User

Errors [Patterson-Liao-etAl: Ubicomp-04]

Behavior mode

normal / unknown [ error

Goal
Trip segment
Transportation mode

Edge, velocity, position

GPS reading

Time k-1 Time k
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High probability transitions: bus car foot
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Application: Opportunity Knocks
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Detect User Errors
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Application: Opportunity Knocks

Dieter Fox CSE-571: Probabilistic Robotics 50

Discussion

= Particle filters are intuitive and simple
= Support point-wise thinking (reduced uncertainty)
= It's an art to make them work

= Good for test implementation if system behavior is
not well known

= Inefficient compared to Kalman filter

= Rao-Blackwellization

= Only sample discrete / highly non-linear parts of
state space

= Solve remaining part analytically (KF,discrete)
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