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CSE-571
Probabilistic Robotics

Fast-SLAM Mapping

Rao-Blackwellized Mapping
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Compute a posterior over the map and possible 
trajectories of the robot :

robot motionmap trajectory

map and trajectory

measurements

A Graphical Model of Rao-
Blackwellized Mapping
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FastSLAM

Robot Pose 2 x 2 Kalman Filters
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[Begin courtesy of Mike Montemerlo]
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FastSLAM – Simulation

• Up to 100,000 
landmarks

• 100 particles

• 103 times fewer 
parameters than 
EKF SLAM

Blue line = true robot path

Red line = estimated robot path

Black dashed line = odometry

Victoria Park Results

• 4 km traverse

• 100 particles

• Uses negative 
evidence to remove 
spurious landmarks

Blue path = odometry
Red path = estimated path

[End courtesy of Mike Montemerlo]

Tasks to be Solved

•Mapping (occupancy grids)

• Each particle carries its own map m.

• The history of each particle represents a 
potential trajectory of the robot.

• Localization

• Propagate the particles according to the 
motion model (draw from p(x|u,x’)).

• Compute importance weight according to 
the likelihood of the observation z given 
the pose x and the map m of the particle.

Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Map Maintenance Challenges

• High resolution maps are big

• Typically 100’s or 1000’s of particles are 
needed

• One full map per particle requires

• O(|m|·n) work (re-sampling)

• Gigabytes of memory movement

Begin courtesy of Eliazar & Parr

DP-SLAM Results

Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s 

scale: 3cm

Consistency Results obtained with 
DP-SLAM 2.0 (offline)

Eliazar & Parr, 04
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Close up

End courtesy of Eliazar & Parr

Techniques to Reduce the 
Number of Particles Needed

• Better proposals (put the particles in 
the right place in the prediction 
step).

• Avoid particle depletion (re-sample 
only when needed). 

Generating better Proposals

•Use scan-matching to compute highly 
accurate odometry measurements 
from consecutive range scans. 

•Use the improved odometry in the 
prediction step to get highly accurate 
proposal distributions.

Motion Model for Scan Matching
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Graphical Model for Mapping 
with Improved Odometry
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Rao-Blackwellized Mapping with 
Scan-Matching
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Rao-Blackwellized Mapping with 
Scan-Matching
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Rao-Blackwellized Mapping with 
Scan-Matching
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Example (Intel Lab)

 15 particles

 four times faster 
than real-time
P4, 2.8GHz

 5cm resolution 
during scan 
matching

 1cm resolution in 
final map

Work by Grisetti et al.

Outdoor Campus Map

 30 particles

 250x250m2

 1.75 km 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map

Work by Grisetti et al.

 30 particles

 250x250m2

 1.088 miles 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map

Fast-SLAM Summary

• Full and online version of SLAM

• Factorizes posterior into robot trajectories 
(particles) and map (EKFs).

• Landmark locations are independent!

• More efficient proposal distribution through 
Kalman filter prediction

• Data association per particle


