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Probabilistic Robotics

Bayes Filter Implementations

Particle filters
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♣So far, we discussed the

♣Kalman filter: Gaussian, linearization problems

♣Discrete filter: high memory complexity

♣Particle filters are a way to efficiently represent
non-Gaussian distributions

♣Basic principle

♣Set of state hypotheses (“particles”)

♣Survival-of-the-fittest

Motivation

Sample-based Localization (sonar)
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♣Particle sets can be used to approximate functions

Function Approximation

♣The more particles fall into an interval, the higher
the probability of that interval

♣How to draw samples form a function/distribution?
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♣Let us assume that f(x)<1 for all x

♣Sample x from a uniform distribution

♣Sample c from [0,1]

♣ if f(x) > c keep the sample
otherwise reject the sampe

Rejection Sampling
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♣We can even use a different distribution g to
generate samples from f

♣By introducing an importance weight w, we can
account for the “differences between g and f ”

♣w = f / g

♣ f is often called
target

♣ g is often called
proposal

Importance Sampling Principle

Importance Sampling with Resampling:
Landmark Detection Example

Distributions

Wanted: samples distributed according to
p(x| z1, z2, z3)



This is Easy!
We can draw samples from p(x|zl) by adding
noise to the detection parameters.

Importance Sampling with
Resampling
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Weighted samples After resampling

Importance Sampling with
Resampling
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Importance Sampling with
Resampling

Weighted samples After resampling



Particle Filter Projection Density Extraction

Sampling Variance Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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1.  Algorithm particle_filter( St-1, ut-1 zt):

2.

3.  For                                                Generate new samples

4.  Sample index j(i) from the discrete distribution given by wt-1

5.  Sample     from                         using          and

6.  Compute importance weight

7.  Update normalization factor

8.   Insert

9.  For

10. Normalize weights

Particle Filter Algorithm
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Particle Filter Algorithm

Resampling

• Given: Set S of weighted samples.

• Wanted : Random sample, where the
probability of drawing xi is given by wi.

• Typically done n times with replacement to
generate new sample set S’.

w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity

• Easy to implement, low variance



1.  Algorithm systematic_resampling(S,n):

2.
3.  For Generate cdf
4.  
5.  Initialize threshold

6.  For Draw samples …
7.   While (            ) Skip until next threshold reached
8.   
9.  Insert
10.                                           Increment threshold

11. Return S’

Resampling Algorithm
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Also called stochastic universal sampling

Start

Motion Model  Reminder

Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Sample-based Localization (sonar)

Using Ceiling Maps for Localization

[Dellaert et al. 99]

Vision-based Localization

P(z|x)

h(x)
z



Under a Light

Measurement z: P(z|x):

Next to a Light

Measurement z: P(z|x):

Elsewhere

Measurement z: P(z|x):

Global Localization Using Vision



Recovery from Failure Localization for AIBO robots

Adaptive Sampling

• Idea:
• Assume we know the true belief.

• Represent this belief as a multinomial distribution.

• Determine number of samples such that we can guarantee
that, with probability (1- δ), the KL-distance between the true
posterior and the sample-based approximation is less than ε.

• Observation:
• For fixed δ and ε, number of samples only depends on

number k of bins with support:

KLD-sampling

3

1

2

)1(9

2

)1(9

2
1

2

1
)1,1(

2

1

!
"
#

$
%
&

'
+

'
'

'
('')= '*

+
*

+
z

kk

k
kn



1.  Algorithm adaptive_particle_filter( St-1, ut-1 zt,               ):
2.
3.  Do                                          Generate new samples
4.  Sample index j(n) from the discrete distribution given by wt-1

5.   Sample     from                         using          and
6.  Compute importance weight
7.   Update normalization factor
8.   Insert
9.  If  (      falls into an empty bin b)   Update bins with support
10. k=k+1, b = non-empty
11. n=n+1
12. While (                                 )

13. For
14. Normalize weights

Adaptive Particle Filter Algorithm
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Evaluation

Example Run Sonar Example Run Laser



Localization Algorithms - Comparison
Kalman

filter
Multi-

hypothesis
tracking

Topological
maps

Grid-based
(fixed/variable)

Particle
filter

Sensors Gaussian Gaussian Features Non-Gaussian Non-
Gaussian

Posterior Gaussian Multi-modal Piecewise
constant

Piecewise
constant

Samples

Efficiency (memory) ++ ++ ++ -/o +/++

Efficiency (time) ++ ++ ++ o/+ +/++

Implementation + o + +/o ++

Accuracy ++ ++ - +/++ ++

Robustness - + + ++ +/++

Global
localization

No Yes Yes Yes Yes


