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1 Introduction 
This tutorial introduces the ACTS Vision System interface to Saphira.  ACTS is a high-performance color 
blob tracker that works with standard color cameras, developed by Paul Rybski at the University of 
Minnesota, and distributed by ActivMedia Robotics.  ACTS runs as a standalone process, and can be used 
to train the color tracker, and to report color blob information to other processes; please consult the ACTS 
manual for more information.  The Saphira interface to ACTS can open a connection to the ACTS server, 
and import information from the color blob tracker.  The source and makefile for the sample object file can 
be found in the Saphira/tutor/sfacts directory. 

In addition to material directly related to connecting to the ACTS server, this tutorial also discusses 
some issues in visual perception, including using color blob tracking to determine to position of objects 
relative to the robot. 
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2 Saphira Interface to ACTS 
Saphira has a loadable module that performs the basic housekeeping for connecting to ACTS, and 

receiving color blob information.  The information comes in every sync cycle (100 ms), and is deposited 
into data structures that can be accessed by other Saphira programs, or with Colbert.   

To facilitate debugging, and for an example of how to use the blob information, the largest blob on 
color channel 1 is tracked in the LPS with a point artifact. 

2.1 Starting ACTS 
The Saphira interface requires the ACTS server.  The ACTS server can be started at any point, but 

Saphira will not be able to connect to or retrieve any color blob information before ACTS is started. 
Please see the ACTS manual for information about running ACTS.  Saphira does not provide an 

interface for loading parameter files into ACTS; this must be done at startup time for ACTS, for via its 
GUI. 

2.2 Loading the sfActs Tutorial File 
In the Saphira distribution, the sfacts.so/dll file is already present in the lib/ directory.  

Load it with the Colbert command: 
 
loadlib sfacts; 

 
Loading the library will automatically create a micro-task for communication with the ACTS server, 

and for drawing on the LPS the largest blob on color channel 1. 
The tutorial can also be compiled; go to tutor/sfActs, and run the makefile or MSVC++ 

project for the program.  The library is deposited into lib/. 

2.3 Connecting to ACTS and Retrieving Blob Info 
Once sfacts.so/dll is loaded, Saphira will connect to an ACTS server running on the same 

machine, if the sfActsConnectFlag  is set to 1, from either Colbert or C++ code.  The sfActs 
microtask will check this variable, and try to open a connection to the ACTS server.  If it does not succeed, 
a message will be printed on the Colbert console, and the variable will be set back to 0.  Typically, the only 
reasons not to succeed are if the ACTS server is not started, or if another program is connected to it. 

Once Saphira is connected to ACTS, it receives information back about all the color channels that 
ACTS is monitoring.   The sfActs microtask will place this information into an array of blob structures, 
available to other loaded program within Saphira, and to Colbert. 

The format of the blob structure is: 
 

typedef struct blob_str  
{ 
  int area; 
  int xcg, ycg; 
  int left, right, top, bottom; 
} blob; 

 
Each blob structure contains information about a connected color blob that ACTS found in the most 

recent image.  The fields in the structure describe the image geometry of the blob.  For reference, the upper 
left corner of the image is at the coordinates (0,0).  X image coordinates increase to the right, and Y image 
coordinates increase down.  Figure 2-1 shows how the blob structure describes a typical blob.  The area of 
the blob is defined by the number of pixels that make up the blob. 

ACTS defines 32 color lookup channels, by which 32 separate color types may be tracked.  Within 
each channel, ACTS segments the image into blobs, that is, regions that have the color characteristics that 
the channel has been trained on.  Saphira imports the 10 largest blobs for each channel, putting them into 
an array of blob structures.  
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Figure 2-1  Blob image geometry.  The bounding box of the blob is given by 

the left, right, top, bottom fields (in pixels).  The center of gravity is (xcg, 
ycg).  The image coordinates originate from the top left-hand corner of 
the image. 

There are a number of functions and variables for getting the blob structures from the array.  The 
following table summarizes them. 

 
C++ and Colbert Function or Variable Description 
blob * 
sfGetBlob(int ch, int n) 

Returns the nth blob on channel ch. 

int  
sfNumBlobs(int ch) 

Returns the number of blobs on the 
channel ch. 

int  
SfBlobValid(int ch, int n) 

Returns 1 if there is a valid blob on 
channel ch at index n. 

int sfActsConnectFlag Set to 1 to connect to ACTS server, 0 
to disconnect. 

int focalLength 
Focal length of the lens, in pixels.  
This parameter is used by the draw() 
function to determine object distance 
and angle. 

int objectWidth 
Width of the object, in mm.  This 
parameter is used by the draw() 
function to determine object distance. 

int imageWidth, imageHeight Width and height of the image, in 
pixels.  Default is 160 x 120. 
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3 From Image Blobs to World Positions 
Unlike sonars, image sensors do not give direct information about range to objects in the world.  

Instead, a vision sensor maps the 3D world into a 2D perspective projection.  Objects along the same line 
of sight through the viewpoint of the image sensor all appear at the same image position, no matter what 
their distance from the sensor. 

In this Section we discuss several ways to convert image information into 3D information.  All of 
these methods involve knowing something about the object being imaged; for example, its height or 
distance from the ground plane.  In addition, we have to know the internal camera parameters --- the 
parameters that are relevant to forming an image in the camera. 

3.1 Ideal Pinhole Camera 
We treat the imaging system as an ideal pinhole camera, where an image is formed on light-sensitive 

imaging plane by the action of a pinhole aperture.  Figure 3-1 shows the relevant geometry, for a plan view 
of the camera and object. 

From the figure, we can write down the relationship between the object 3D values and the image 
values: 

 

R
W

f
x
=

∆
  (1) 

 
Since we are interested in how far away the object is, we rearrange this equation to isolate R: 
 

x
fWR
∆

=   (2) 

 
To determine the range, we have to know the actual width W of the object; we won’t be able to find 

the range to unknown objects.  The focal length f is an internal parameter of the camera; we’ll discuss how 
to estimate it in the section on calibration below. 

For Equations 1 and 2, we assumed that one edge of the object was on the optic axis of the camera.  
However, this assumption is not necessary: as long as ∆x is the image size of the object’s width, it doesn’t 
matter where the object is. 

We can make another generalization.  While we have looked at a plan projection in Figure 3-1, the 
same geometry holds for any planar projection, so we can use any linear feature of the object with known 
size: height, width, diagonal, etc.  The relationship expressed by Equation 2 still holds. 

What about the area of object image?  Consider a rectangle of whose height and width are H and W, 

Pinhole 
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f R
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θ

 
Figure 3-1  Pinhole camera geometry.  Light is focused through a pinhole to fall on the image plane.  

An object of width W at a distance R projects onto a line of width ∆x in the image.  The focal 
length of the camera is f, and the line through f, perpendicular to the image plane, is called the 
optic axis. 

Image plane 
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respectively.  Then, from Equation 2, we can write down: 
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so that: 
 

a
AfR =    (4) 

 
Here, the range depends on the square root of the ratio of the known area of the object to its projected 

image area.  Equation 4 holds for an arbitrary shape area. 
Another useful quantity to measure is the angle at which an object appears, relative to the optic axis.  

Actually, we have to measure the angle for the edge of the object, or some other characteristic point such 
as the center of the object.  For this, we don’t need any object characteristics at all.  Referring to Figure 
3-1, the angle θ is given by: 
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
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= −

f
x1tanθ   (5) 

 
In this equation, we are measuring the angle from the optic axis, and ∆x is the image distance from 

the center of the image to the project object point. 

3.2 Calibration 
Calibration is the process of determining the parameters of the camera.  For the ideal pinhole camera, 

the only parameters we need are the focal length and the size of pixels.  Real cameras, with non-ideal 
lenses, have more parameters: lens center and lens distortion are the important ones.  We will assume we 
can ignore these, and that our camera is close to the pinhole model. 

3.2.1 Focal Length 
One thing to note is that, in the above Equations, the focal length f always appears in a ratio with an 

image distance, e.g., xf ∆ .  Instead of determining pixel size and focal length separately, we will just 
find the focal length in units of pixels.  Even though we won’t know the absolute size of the focal length or 
pixels, we can compute range just by knowing their relative size. 

We can use the basic Equation 1 for calibration.  Take a ruler, and place it so that it exactly fills the 
image horizontally.  Then measure the distance from the camera to the ruler.  We now have three of the 
four variables of Equation 1, and can determine the focal length f in terms of the number of pixels. 

There is one further complication: the pixels of the imaging system may not be square.  And even if 
they are square, the framegrabber may introduce stretching or shrinking of the pixel width and height, as it 
digitizes the signal from the camera.  We can generalize Equations 1-5 to take this into account, by 
subscripting the focal length with the direction, x or y, of the object feature we are working with. 

For the built-in camera of the Sony C1VN PictureBook we use in Stanford’s CS225B Robot Lab, the 
focal length is approximately 175 pixels, in the x direction.  In the y direction, a slightly larger focal length 
was obtained, but it was within 2% of the x direction, and so it was deemed not to matter, and a single focal 
length suffices.  The field of view of the PictureBook camera is approximately 50 degrees in the horizontal 
direction. 

3.2.2 From Camera to Real-World Coordinates 
In Equations 1-5, the range and angle to an object are computed relative to the camera viewpoint and 

optic ray.  If the camera is located in the center of the robot, and the optic ray points straight ahead, then 



Saphira Tutorial on the ACTS Vision System  8 

the range and angle are also in robot-centric coordinates.  But, it the camera is offset from the center of the 
robot, or pointing in a different direction, then a further transformation is needed from camera-centric 
coordinates to robot-centric coordinates.  Then, given the robot’s real-world pose, a final transformation to 
real-world coordinates can be made. 

3.3 Finding Good Features 
One of the practical problems in going from 2D color blobs to 3D properties such as range and angle is 

finding good features for this purpose.  In most cases we can restrict the environment so that some features 
will be suitable.   

3.3.1 Feature Properties 
A good feature should have these properties: 

1. View independence.  No matter what angle the object presents itself to the camera, the feature 
should have the same value. 

2. Unambiguous.  The only objects with the given color should be the ones we are interested in. 
3. Lighting independence.  The feature should be stable under a variety of lighting conditions. 

There are several types of object features that can potentially satisfy these criteria.  Obviously, objects 
with heavily saturated colors are the best: neon green and orange work particularly well.  Objects with very 
bright specular reflections are a problem, because these bright spots tend to show up as the color of the 
light, rather than the color of the object. 

Object shape is also very important.  Planar objects are very convenient.  A rectangular sheet of 
colored paper makes a great landmark.  Assuming the camera always point parallel to the floor plane, 
putting the sheet on a vertical wall means that the height of the sheet is invariant, no matter what angle is 
chosen.  The x center of gravity, or one of the vertical edges, can be used to judge an angle to the object. 

Another good object is a spherical ball, which has the most symmetry of any object.  The width or 
height of the ball is a great feature to use.  In general, for balls on the floor, the width tends to be a better 
feature, because sometimes the bottom of the ball is in shadow, and only the upper half of the ball is 
recognized as a blob.  The x center of gravity is a good feature for judging the angle to the ball. 

For several reasons, image area is not a good feature to use for planar and spherical objects.  Planar 
objects can change their area, depending on the view angle.  Spherical objects suffer from poor lighting of 
the bottom of the sphere (with overhead lighting), leading to fluctuations of the image area as the ball 
moves to places with different lighting.   

Vertical cylindrical objects, however, lend themselves to good area features.  Their area is view 
independent, and they do not suffer from the same shading problems as a spherical object. 

3.3.2 Aperture Problem 
When an object is projected near the edge of the camera image, some part of it can be cut off.  This 

phenomenon is referred to as the aperture problem.  It can lead to mistaken estimates of range and angle.  
For example, suppose we are using the width of a spherical ball as the feature for determining range.  If the 
camera sees only half the ball at the edge of the image, then using the image width of the ball to calculate 
the range of the ball will give an answer that is much farther than the real distance.  Potential aperture 
problems can be readily detected by examining the bounding box of the blob, and seeing if it impinges on 
any of the borders of the image. 

3.3.3 Filtering 
It is important to recognize when a feature may be corrupted, either by the aperture problem, or 

perhaps from occlusion with another object.  Using multiple features to check for compliance with an 
expected distance or angle can provide a valuable confidence measure.  For example, suppose we are 
trying to recognize the distance to a ball, based on its width.  Generally, we should also be able to see the 
top of the ball (given by the top of the bounding box).  Depending on the distance to the ball, the top of the 
ball should appear at a different height in the image.  We can use this information to check that the distance 
measure generated from the image width feature conforms to the expected appearance of the top of the 
ball. 
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