
Aria Reference Manual

1.1.10

Generated by Doxygen 1.2.13.1

Tue Nov 12 17:43:43 2002

Contents

1 ARIA overview 1

1.1 Introduction . 1

1.2 ARIA, Saphira, Colbert and the ActivMedia Basic Suite 2

1.3 License and Sharing . 2

1.4 The ARIA Package . 3

1.5 Documentation and Coding Convention 3

1.6 ARIA Client-Server . 3

1.7 Robot Communication . 5

1.8 ArRobot . 7

1.9 Range Devices . 10

1.10 Commands and Actions . 11

1.11 Robot Callbacks . 16

1.12 Functors . 16

1.13 User Input . 17

1.14 ARIA Threading . 18

1.15 ARIA Global Data . 20

1.16 Piecemeal Use of ARIA . 20

1.17 Robot Parameter Files . 21

1.18 Utility Classes . 22

1.19 Sockets . 22

1.20 Non-everyday use of C++ . 23

2 Aria Hierarchical Index 27

ii CONTENTS

2.1 Aria Class Hierarchy . 27

3 Aria Compound Index 31

3.1 Aria Compound List . 31

4 Aria Class Documentation 37

4.1 ArAction Class Reference . 37

4.2 ArActionAvoidFront Class Reference 41

4.3 ArActionAvoidSide Class Reference 43

4.4 ArActionBumpers Class Reference 45

4.5 ArActionConstantVelocity Class Reference 47

4.6 ArActionDesired Class Reference 49

4.7 ArActionDesiredChannel Class Reference 55

4.8 ArActionGoto Class Reference 56

4.9 ArActionGroup Class Reference 58

4.10 ArActionGroupInput Class Reference 61

4.11 ArActionGroupStop Class Reference 62

4.12 ArActionGroupTeleop Class Reference 63

4.13 ArActionGroupWander Class Reference 64

4.14 ArActionInput Class Reference 65

4.15 ArActionJoydrive Class Reference 67

4.16 ArActionKeydrive Class Reference 70

4.17 ArActionLimiterBackwards Class Reference 73

4.18 ArActionLimiterForwards Class Reference 75

4.19 ArActionLimiterTableSensor Class Reference 77

4.20 ArActionStallRecover Class Reference 79

4.21 ArActionStop Class Reference . 81

4.22 ArActionTurn Class Reference 83

4.23 ArACTS 1 2 Class Reference . 85

4.24 ArACTSBlob Class Reference . 90

4.25 ArAMPTU Class Reference . 92

4.26 ArAMPTUCommands Class Reference 95

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

CONTENTS iii

4.27 ArAMPTUPacket Class Reference 97

4.28 ArArg Class Reference . 99

4.29 ArArgumentBuilder Class Reference 102

4.30 ArArgumentParser Class Reference 103

4.31 ArASyncTask Class Reference . 105

4.32 ArBasePacket Class Reference . 107

4.33 ArCommands Class Reference . 113

4.34 ArCondition Class Reference . 116

4.35 ArDeviceConnection Class Reference 118

4.36 ArDPPTU Class Reference . 124

4.37 ArDPPTUCommands Class Reference 130

4.38 ArDPPTUPacket Class Reference 132

4.39 ArFunctor Class Reference . 133

4.40 ArFunctor1 Class Template Reference 135

4.41 ArFunctor1C Class Template Reference 137

4.42 ArFunctor2 Class Template Reference 141

4.43 ArFunctor2C Class Template Reference 144

4.44 ArFunctor3 Class Template Reference 150

4.45 ArFunctor3C Class Template Reference 154

4.46 ArFunctorC Class Template Reference 162

4.47 ArGlobalFunctor Class Reference 165

4.48 ArGlobalFunctor1 Class Template Reference 167

4.49 ArGlobalFunctor2 Class Template Reference 170

4.50 ArGlobalFunctor3 Class Template Reference 175

4.51 ArGlobalRetFunctor Class Template Reference 181

4.52 ArGlobalRetFunctor1 Class Template Reference 183

4.53 ArGlobalRetFunctor2 Class Template Reference 186

4.54 ArGlobalRetFunctor3 Class Template Reference 190

4.55 ArGripper Class Reference . 195

4.56 ArGripperCommands Class Reference 202

4.57 Aria Class Reference . 204

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

iv CONTENTS

4.58 ArInterpolation Class Reference 209

4.59 ArIrrfDevice Class Reference . 211

4.60 ArJoyHandler Class Reference . 213

4.61 ArKeyHandler Class Reference 218

4.62 ArListPos Class Reference . 222

4.63 ArLog Class Reference . 223

4.64 ArLogFileConnection Class Reference 225

4.65 ArMath Class Reference . 230

4.66 ArMode Class Reference . 235

4.67 ArModeCamera Class Reference 239

4.68 ArModeGripper Class Reference 241

4.69 ArModeSonar Class Reference . 243

4.70 ArModeTeleop Class Reference 245

4.71 ArModeWander Class Reference 247

4.72 ArModule Class Reference . 249

4.73 ArModuleLoader Class Reference 252

4.74 ArMutex Class Reference . 255

4.75 ArNetServer Class Reference . 257

4.76 ArP2Arm Class Reference . 260

4.77 ArPeriodicTask Class Reference 272

4.78 ArPose Class Reference . 274

4.79 ArPoseWithTime Class Reference 278

4.80 ArPref Class Reference . 279

4.81 ArPriorityResolver Class Reference 286

4.82 ArPTZ Class Reference . 287

4.83 ArRangeBuffer Class Reference 293

4.84 ArRangeDevice Class Reference 299

4.85 ArRangeDeviceThreaded Class Reference 307

4.86 ArRecurrentTask Class Reference 310

4.87 ArResolver Class Reference . 312

4.88 ArRetFunctor Class Template Reference 314

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

CONTENTS v

4.89 ArRetFunctor1 Class Template Reference 315

4.90 ArRetFunctor1C Class Template Reference 317

4.91 ArRetFunctor2 Class Template Reference 321

4.92 ArRetFunctor2C Class Template Reference 323

4.93 ArRetFunctor3 Class Template Reference 329

4.94 ArRetFunctor3C Class Template Reference 332

4.95 ArRetFunctorC Class Template Reference 339

4.96 ArRobot Class Reference . 342

4.97 ArRobotPacket Class Reference 393

4.98 ArRobotPacketReceiver Class Reference 395

4.99 ArRobotPacketSender Class Reference 398

4.100ArRobotParams Class Reference 402

4.101ArSectors Class Reference . 405

4.102ArSensorReading Class Reference 406

4.103ArSerialConnection Class Reference 411

4.104ArSick Class Reference . 418

4.105ArSickLogger Class Reference . 430

4.106ArSickPacket Class Reference . 432

4.107ArSickPacketReceiver Class Reference 435

4.108ArSignalHandler Class Reference 438

4.109ArSocket Class Reference . 444

4.110ArSonarDevice Class Reference 451

4.111ArSonyPacket Class Reference 453

4.112ArSonyPTZ Class Reference . 455

4.113ArSyncTask Class Reference . 458

4.114ArTaskPool Class Reference . 463

4.115ArTaskState Class Reference . 465

4.116ArTcpConnection Class Reference 466

4.117ArThread Class Reference . 472

4.118ArTime Class Reference . 476

4.119ArTransform Class Reference . 478

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

vi CONTENTS

4.120ArTypes Class Reference . 481

4.121ArUtil Class Reference . 482

4.122ArVCC4 Class Reference . 491

4.123ArVCC4Commands Class Reference 495

4.124ArVCC4Packet Class Reference 497

4.125P2ArmJoint Class Reference . 498

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 1

ARIA overview

1.1 Introduction

ActivMedia Robotics Interface for Application (ARIA) Copyright 2002, Activ-
Media Robotics, LLC. All rights reserved.

Welcome to ARIA. The software is an object-oriented, robot control
applications-programming interface for ActivMedia Robotics’ line of intelligent
mobile robots.

Written in the C++ language, ARIA is client-side software for easy, high-
performance access to and management of the robot server, as well as to the
many accessory robot sensors and effectors. Its versatility and flexibility makes
ARIA an excellent foundation for higher-level robotics applications, including
SRI International’s Saphira and the ActivMedia Robotics Basic Suite.

ARIA can be run multi- or single-threaded, using its own wrapper around Linux
pthreads and WIN32 threads. Use ARIA in many different ways, from simple
command-control of the robot server for direct-drive navigation, to development
of higher-level intelligent actions (aka behaviors). For a description of how to
integrate parts of ARIA with your other code, see Piecemeal Use of ARIA
(p. 20).

This document contains an overview of ARIA. If you are browsing it in HTML,
click a class or function link to view its detail pages. New users should view
this document along with the ARIA examples.

2 ARIA overview

1.2 ARIA, Saphira, Colbert and the Activ-
Media Basic Suite

ARIA is for C++ object-oriented programmers who want to have close control
of their robot. ARIA also is for those who have prepared robot-control software
and want to quickly and easily deploy it on one or more ActivMedia Robotics
mobile robot platforms.

For creating applications with built-in advanced robotics capabilities, including
gradient navigation and localization, as well as GUI controls with visual display
of robot platform states and sensor readings, consider using SRI International’s
Saphira version 8 or later. Saphira v8 is built on top of ARIA, so you have
access to all of ARIA’s functionality, as well as its Saphira enhancements.

Non-programmers may create their own robot-control routines easily and simply
with Saphira Colbert activity-building language. A Colbert editor, as well as
some very advanced robot control applications including Navigator and World-
Link, come in the Saphira/ARIA-based ActivMedia Basic Suite software. They
give you GUI access to all the features of your ActivMedia robot, including
remote access across the global Internet.

Browse ActivMedia Robotics’ support webpages
http://www.activrobots.com and http://robots.activmedia.com for
these and many other mobile robotics resources.

1.3 License and Sharing

ARIA is released under the GNU Public License, which means that if you dis-
tribute any work which uses ARIA, you must distribute the entire source code
to that work. Read the included LICENSE text for details. We open-sourced
ARIA under GPL not only for your convenience, but also so that you will share
your enhancements to the software. If you wish your enhancements to make it
into the ARIA baseline, you will need to assign the copyright on those changes
to ActivMedia, contact aria-support@activmedia.com with these changes or
with questions about this.

Accordingly, please do share your work, and please sign up for the exclusive
ARIA-users@activmedia.com newslist so that you can benefit from others’
work, too.

ARIA may be licensed for proprietary, closed-source applications. Contact
sales@activmedia.com for details.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.4 The ARIA Package 3

1.4 The ARIA Package

1.4.1 ARIA/

LICENSE GPL license; agree to this to use ARIA

INSTALL Step-wise instructions for installing ARIA

README Also see READMEs in advanced/, examples/, and tests/

docs/ Extensive documentation in HTML and PDF format

bin/ Win32 binaries and dlls (Linux binaries in src/)

examples/ ARIA examples -- a good place to start; see examples README

include/ ARIA include files, of course

lib/ Win32 .lib files and Linux .so files

params/ Robot definition (parameter) files (p2dx.p, for example)

src/ ARIA source (*.cpp) files and Linux executables

1.4.2 Other ARIA Files of Note

ARIA.dsp MSVC++ project file for building the ARIA libraries and examples

ARIA.dsw Associated MSVC++ workspace for building ARIA and examples

Makefile Linux makefile for building ARIA and examples

Makefile.dep Linux dependency

run Linux-only; builds and executes your ARIA applcation

tests/ Test files, somewhat esoteric but useful during ARIA development

utils/ Utility commands, not generally needed

advanced/ Advanced demos, not for the faint of heart (or ARIA novice)

1.5 Documentation and Coding Convention

For clarity while you read this technical document, we follow common C++
coding conventions:

1) Class names begin with a capital letter. 2) Enums either begin with a capital
letter or are all in caps. 3) Avoid defines whenever possible. 4) Member variables
in classes are prefixed with ’my’. 5) Static variables in classes are prefixed with
’our’. 6) Member function names start with a lower case. 7) Capitalize each
word except the first one in a name; likeThisForExample. 8) Write all code so
that it can be used threaded.

1.6 ARIA Client-Server

For those of you who are familiar with SRI International’s Saphira software
and ActivMedia Robotics’ mobile robots and their related technologies, the
underlying client-server control architecture for the mobile platform, sensors,

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4 ARIA overview

and accessories hasn’t changed much in ARIA. It’s just gotten a lot better and
more accessible.

The mobile servers, embodied in the Pioneer 2 and AmigoBot Operating Sys-
tem software and found embedded on the robot’s microcontroller, manage the
low-level tasks of robot control and operation, including motion, heading and
odometry, as well as acquiring sensor information (sonar and compass, for ex-
ample) and driving accessory components like the PTZ camera, TCM2 com-
pass/inclinometer, and the Pioneer 5-DOF Arm. The robot servers do not,
however, perform robotic tasks.

Rather, it is the job of an intelligent client running on a connected PC to per-
form the full gamut of robotics control strategies and tasks, such as obstacle
detection and avoidance, sensor fusion, localization, features recognition, map-
ping, intelligent navigation, PTZ camera control, Arm motion, and much more.
ARIA’s role is on that intelligent client side.

Nearest the robot, ARIA’s ArDeviceConnection (p. 118) class, at the be-
hest of your application code, establishes and maintains a communication chan-
nel with the robot server, packaging commands to (ArRobotPacketSender
(p. 398)) and decoding responses (ArRobotPacketReceiver (p. 395)) from the
robot in safe and reliable packet formats (ArRobotPacket (p. 393)) prescribed
by the client-server protocols.

At its heart, ARIA’s ArRobot (p. 342) class collects and organizes the robot’s
operating states, and provides clear and convenient interface for other ARIA
components, as well as upper-level applications, to access that robot state-
reflection information for assessment, planning, and ultimately, intelligent, pur-
poseful control of the platform and its accessories.

ArRobot (p. 342)’s heart metaphor is particularly apt, too, since one of its
important jobs is to maintain the clockwork cycles and multi-threaded rhythms
of the robot-control system. Keyed to the robot’s main information-packet
cycle (hence, no longer a fixed timing cycle), ArRobot (p. 342)’s syncronous
tasks (ArSyncTask (p. 458)) include the robot server-information packet han-
dlers, sensor interpreters, action handlers, state reflectors, user tasks, and more.
And your software may expand, replace, remove, and rearrange the list of
synchronized tasks through ArRobot (p. 342)’s convenient sensor interp (Ar-
Robot::addSensorInterpTask (p. 361)) and user task (ArRobot::addUser-
Task (p. 362)) related methods.

Through its Action class, ARIA provides a flexible, programmable mechanism
for behavior-level control of the robot server. An associated Resolver class lets
you organize and combine actions, for coordinated motion control and intel-
ligent guidance. With ARIA actions, you easily develop integrated guarded-
teleoperation and color-blob tracking applications, for example.

ARIA also includes clear and convenient interface for applications to access and
control ActivMedia Robotics accessory sensors and devices, including operation

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.7 Robot Communication 5

and state reflection for sonar and laser range finders, pan-tilt units, arms, inertial
navigation devices, and many others.

The versatility and ease of access to ARIA code (sources included!) makes it
the ideal platform for robotics client applications development.

1.7 Robot Communication

One of the most important functions of ARIA, and one of the first and necessary
things that your application must do, is to establish and manage client-server
communications between your ARIA-based software client and the robot’s on-
board servers and devices.

1.7.1 Connecting with a Robot or the Simulator

ArDeviceConnection (p. 118) is ARIA’s communications object; ArSerial-
Connection (p. 411) and ArTcpConnection (p. 466) are its built-in children
most commonly used to manage communication between an ActivMedia robot
or the SRIsim robot simulator, respectively. These classes are not device-
specific, however, so use ArSerialConnection (p. 411), for instance, to also
configure a serial port and establish a connection with a robot accessory, such
as with the SICK laser range finder.

Do note that some accessories, such as the P2 Gripper, PTZ camera, P2 Arm,
compass, and others, which attach to the robot’s microcontroller AUX serial
port, are controlled through the client-side device connection with the robot.
Use different methods and procedures other than ArDeviceConnection
(p. 118) to communicate with and manage those devices through ARIA.

1.7.2 Opening the Connection

After creating and opening a device connection, associate it with its ARIA device
handlers, most commonly with ArRobot::setDeviceConnection (p. 385) for
the robot or the simulator.

For example, early in an ARIA program, specify the connection device and
associate it with the robot:

ArTcpConnection (p. 466) con;

ArRobot (p. 342) robot;

Later in the program, after initializing the ARIA system (ARIA::Init(); is
mandatory), set the Connection port to its default values (for TCP, host is
”localhost” and port number is 8101), and then open the port:

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

6 ARIA overview

con.setPort();

if (!con.openSimple())

{
printf("Open failed.");

ARIA::shutdown();

return 1;

}

TCP and Serial connections have their own implementation of open which is
not inherited, but has default arguments that make the generic open work for
the all default cases. And open returns a status integer which can be passed to
the re-implemented and inherited ArDeviceConnection::getOpenMessage
(p. 120) in order to retrieve related status string, which is useful in reporting
errors to the user without having to know about the underlying device.

1.7.3 Robot Client-Server Connection

After associating the device with the robot, now connect with the robot’s servers,
ArRobot::blockingConnect (p. 364) or ArRobot::asyncConnect (p. 362),
for example, to establish the client-server connection between ARIA ArRobot
(p. 342) and the ActivMedia robot microcontroller or SRIsim simulated server.
The blockingConnect method doesn’t return from the call until a connection
succeeds or fails:

robot.setDeviceConnection(&con);

if (!robot.blockingConnect())

{
printf("Could not connect to robot... Exiting.");

Aria::shutdown() (p. 207);

return 1;

}

The previous examples connect with the SRIsim simulator through a TCP socket
on your PC. Use tcpConn.setPort(host, port) to set the TCP hostname or IP
address and related socket number to another machine on the network. For
instance, use tcpConn.setPort(”bill”, 8101); to connect to the Simulator which
is running on the networked computer ”bill” through port 8101.

Replace ArTcpConnection (p. 466) con; with ArSerialConnection (p. 411)
con; to connect with a robot through the default serial port /dev/ttyS0 or
COM1, or another you specify with con.setPort, such as con.setPort(”COM3”);.

At some point, you may want to open the port with the more verbose
con.open();.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.8 ArRobot 7

1.7.4 Connection Read, Write, Close and Timestamping

The two main functions of a device connection are ArDevice-
Connection::read (p. 122) and ArDeviceConnection::write (p. 122).
Simple enough. ArDeviceConnection::close (p. 120) also is inherited and
important. You probably won’t use direct read or write to the robot device,
although you could. Rather, ArRobot (p. 342) provides a host of convenient
methods that package your robot commands, and gather and distribute the
various robot information packets, so that you don’t have to attend those
mundane details. See the next section for details.

All ArDeviceConnection (p. 118) subclasses have support for timestamping
(ArDeviceConnection::getTimeRead (p. 121)). With the robot connection,
timestamping merely says what time a robot SIP came in, which can be useful
for interpolating the robot’s location more precisely.

1.8 ArRobot

As mentioned earlier, ArRobot (p. 342) is the heart of ARIA, acting as client-
server communications gateway, central database for collection and distribu-
tion of state-reflection information, and systems synchronization manager. Ar-
Robot (p. 342) is also the gathering point for many other robot tasks, including
syncTasks, callbacks, range-finding sensor and Actions classes.

1.8.1 Client Commands and Server Information Packets

Client-server communications between applications software and an ActivMedia
robot or the Simulator must adhere to strict packet-based protocols. The gory
details can be found in several other ActivMedia Robotics publications, includ-
ing the Pioneer 2 Operations Manual and the AmigoBot Technical Manual.
Suffice it to say here that ArRobot (p. 342) handles the low-level details of
constructing and sending a client-command packets to the robot as well as re-
ceiving and decoding the various Server Information Packets from the robot.

1.8.2 Packet Handlers

Server Information Packets (SIPs) come from the robot over the robot-device
connection and contain operating information about the robot and its acces-
sories. Currently, there are two types of SIPs: the standard SIP and extended
SIPs. The standard SIP gets sent by the robot to a connected client automati-
cally every 100 (default) or 50 milliseconds. It contains the robot’s current po-
sition, heading, translational and rotational speeds, freshly accumulated sonar

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

8 ARIA overview

readings, and much more. These data ultimately are stored and distributed by
ArRobot (p. 342)’s State Reflection (see State Reflection (p. 9) below).

Extended SIPs use the same communication-packet protocols as the standard
SIP, but with a different ”type” specification and, of course, containing different
operating information, such as I/O port readings or accessory device states like
for the Gripper. And, whereas the standard SIP gets sent automatically once
per cycle, your client controls extended packet communications by explicitly
requesting that the server send one or more extended SIPs.

ArRobot (p. 342)’s standard SIP handler automatically runs as an ArRobot
(p. 342) synchronized task. Other SIP handlers are built in, but your client must
add each to the connected robot object, and hence to the SIP handler sync task
list, for it to take effect. See examples/gripperDemo.cpp for a good example.

You also may add your own SIP handler with ArRobot::addPacketHandler
(p. 360). ArListPos (p. 222) keeps track of the order by which ArRobot
(p. 342) calls each handler. When run, your packet handler must test the SIP
type (ArRobotPacket::getID (p. 393)) and return true after decoding your
own packet type or return false, leaving the packet untouched for other handlers.

1.8.3 Command Packets

From the client side going to the robot server, your ARIA program may send
commands directly, or more commonly, use ARIA’s convenience methods (Mo-
tion Commands and others) as well as engage Actions which ARIA ultimately
converts into Direct Commands to the robot. See Commands and Ac-
tions (p. 11) for details. At the ARIA-robot interface, there is no difference
between Action- or other ARIA convenience-generated commands and Direct
Commands. However, upper-level processes aren’t necessarily aware of extra-
neous Direct or Motion Commands your client may send to the robot. Motion
Commands in particular need special attention when mixing with Actions. See
Commands and Actions (p. 11) below for more details.

Once connected, your ARIA client may send commands to the robot server
nearly at will, only limited by communication speeds and other temporal pro-
cesses and delays. Similarly, the server responds nearly immediately with a
requested SIP, such as a GRIPPERpac or IOpac which describe the P2 Gripper
or Input/Output port states, respectively.

However, general information from the robot server about its odometry, current
sonar readings, and the many other details which comprise its ”standard” SIP
automatically get sent to the ARIA client on a constant 100 or 50 millisecond
cycle. This requires some synchronization with ArRobot (p. 342).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.8 ArRobot 9

1.8.4 Robot-ARIA Synchronization

ArRobot (p. 342) runs a processing cycle: a series of synchronized tasks, in-
cluding SIP handling, sensor interpretation, action handling and resolution,
state reflection, and user tasks, in that order. By default, ArRobot (p. 342)
performs these sequenced tasks each time it receives a standard SIP from the
robot. Its cycle is thereby triggered by the robot so that the tasks get the
freshest information from the robot upon which to act.

Of course, syncTasks runs without a connection with a robot, too. It has its
own default cycle time of 100 milliseconds which you may examine and re-
set with ArRobot::getCycleTime (p. 371) and ArRobot::setCycleTime
(p. 384), respectively. ArRobot (p. 342) waits up to twice that cycle time for
a standard SIP before cycling automatically.

ArRobot (p. 342)’s synchronization task list is actually a tree, with five ma-
jor branches. If a particular task is not running, none of its children will be
called. Each task has an associated state value and a pointer to an ArTask-
State::State (p. 465) variable, which can be used to control the process, by
turning it on or off, or to see if it succeeded or failed. If the pointer is NULL,
then it is assumed that the task does not care about its state, and a local variable
will be used in the task structure to keep track of that tasks state.

For each branch, tasks get executed in descending order of priority.

ARIA provides convenient methods to add your own sensor-interpretation and
user tasks. Create an ARIA function pointer (Functors (p. 16)) and then
add your sensor interpreter (ArRobot::addSensorInterpTask (p. 361)) or
user task (ArRobot::addUserTask (p. 362)) to the list of syncTasks. These
tasks can be removed; use ArRobot::remSensorInterpTask (p. 382) or Ar-
Robot::remUserTask (p. 382) to remove sensor interpreter or user tasks, re-
spectively, by name or by functor.

The intrepid ARIA programmer can add or prune branches from the ArRobot
(p. 342) task list, as well as leaves on the branches. Do these things by getting
the root of the tree with ArRobot::getSyncTaskRoot (p. 375), and then
using the ArSyncTask (p. 458) class to do the desired manipulation.

You may disassociate ArRobot (p. 342)’s syncTask from firing when the stan-
dard SIP is received, through ArRobot::setCycleChained (p. 354). But in
doing so, you may degrade robot performance, as the robot’s cycle will simply
be run once every ArRobot::getCycleTime (p. 371) milliseconds.

1.8.5 State Reflection

State reflection in the ArRobot (p. 342) class is the way ARIA main-
tains and distributes a snapshot of the robot’s operating conditions and
values, as extracted from the latest standard SIP. ArRobot (p. 342)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

10 ARIA overview

methods for examining these values include ArRobot::getPose (p. 345),
ArRobot::getX (p. 345), ArRobot::getY (p. 345), ArRobot::getTh
(p. 345), ArRobot::getVel (p. 346), ArRobot::getRotVel (p. 346), Ar-
Robot::getBatteryVoltage (p. 346), ArRobot::isLeftMotorStalled
(p. 346), ArRobot::isRightMotorStalled (p. 346), ArRobot::getCompass
(p. 347), ArRobot::getAnalogPortSelected (p. 347), ArRobot::get-
Analog (p. 347), ArRobot::getDigIn (p. 347), ArRobot::getDigOut
(p. 347).

The standard SIP also contains low-level sonar readings, which are reflected
in ArRobot (p. 342) and examined with the methods: ArRobot::get-
NumSonar (p. 348), ArRobot::getSonarRange (p. 373), ArRobot::is-
SonarNew (p. 377), ArRobot::getSonarReading (p. 374), ArRobot::get-
ClosestSonarRange (p. 348), ArRobot::getClosestSonarNumber
(p. 349). This information is more useful when applied to a range device; see
Range Devices (p. 10) for details. And read the link pages for ArRobot
(p. 342) state reflection method details.

ARIA’s ArRobot (p. 342) also, by default, reflects in the State Reflec-
tion Robot-ARIA Synchronization (p. 9) syncTask the latest client Mo-
tion Command to the robot server at a rate set by ArRobot::setState-
ReflectionRefreshTime (p. 388). If no command is in effect, the Ar-
Commands::PULSE (p. 113) Direct Command gets sent. State reflection of
the motion command ensures that the client-server communication watchdog
on the robot won’t time out and disable the robot.

You may turn the motion-control state reflector off in the ArRobot::ArRobot
(p. 357) constructor (set doStateReflection parameter to false). This will cause
Motion Commands to be sent directly to the robot whenever they are called.
State Reflection will send a PULSE command to the robot at ArRobot::get-
StateReflectionRefreshTime (p. 374) milliseconds to prevent the watchdog
from timing out.

1.9 Range Devices

Range devices (ArRangeDevice (p. 299)) are abstractions of sensors for which
there are histories of relevant readings. Currently, there are two ARIA
RangeDevices: sonar (ArSonarDevice (p. 451)) and the SICK laser (ArSick
(p. 418)). All range devices are range-finding devices that periodically collect
2-D data at specific global coordinates, so the RangeDevice class should work
for any type of two-dimensional sensor.

Attach a RangeDevice to your robot with ArRobot::addRangeDevice
(p. 349) and remove it with ArRobot::remRangeDevice (p. 381). Query for
RangeDevices with ArRobot::findRangeDevice (p. 369). ArRobot::has-
RangeDevice (p. 375) will check to see if a particular range device (the given

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.10 Commands and Actions 11

instance) is attached to the robot. A list of range devices can be obtained with
ArRobot::getRangeDeviceList (p. 373).

Note that sonar are integrated with the robot controller and that their readings
automatically come included with the standard SIP and so are handled by the
standard ArRobot (p. 342) packet handler. Nonetheless, you must explicitly
add the sonar RangeDevice with your robot object to use the sonar readings
for control tasks. ARIA’s design gives the programmer ultimate control over
their code, even though that means making you do nearly everything explicitly.
Besides, not every program needs to track sonar data and there are some robots
don’t even have sonar.

Each RangeDevice has two sets of buffers (ArRangeBuffer (p. 293)): cur-
rent and cumulative, and each support two different reading formats: box
and polar (ArRangeDevice::currentReadingPolar (p. 304), ArRange-
Device::currentReadingBox (p. 303), ArRangeDevice::cumulative-
ReadingPolar (p. 302), ArRangeDevice::cumulativeReadingBox
(p. 302)). The current buffer contains the most recent reading; the cumulative
buffer contains several readings over time, limited by ArRangeBuffer::setSize
(p. 298).

Useful for collision avoidance and other object detection tasks, apply the
checkRangeDevices methods to conveniently scan a related buffer on all
range devices attached to the robot for readings that fall within a specified
range, including ArRobot::checkRangeDevicesCurrentPolar (p. 366), Ar-
Robot::checkRangeDevicesCurrentBox (p. 366), ArRobot::checkRanges-
DevicesCumulativePolar, ArRobot::checkRangeDevicesCumulativeBox
(p. 365).

Note that each range device also has a threading mutex (ArRange-
Device::lockDevice (p. 304) and ArRangeDevice::unlockDevice (p. 305))
associated with it, so that sensors can be used in a thread-safe manner. For
example, if a laser device gets added that runs in its own thread, the check-
RangeDevice functions on the robot lock the device so it can poke at the laser
device without running into any issues, unlocking the device when it is done.
If you want to understand why this locking is good, see ARIA Threading
(p. 18).

1.10 Commands and Actions

Your ARIA client drives the robot and runs its various accessories through
Direct and Motion Commands, as well as through Actions.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

12 ARIA overview

1.10.1 Direct Commands

At the very lowest level, you may send commands directly to the robot server
through ArRobot (p. 342). Direct commands consist of a 1-byte command
number followed by none or more arguments, as defined by the robot’s operating
system, including P2OS and AmigOS. For example, the command number 4,
aka ENABLE, enables the robot’s motors if accompanied by the argument 1,
and disables the motors with the argument 0.

Direct commands to the robot come in five flavors, each defined by its command
argument type and length: Use ArRobot::com (p. 367) for commands that
have no argument, such as PULSE; ArRobot::comInt (p. 367) for a 2-byte
integer argument, signed or unsigned, such as the motors ENABLE command;
ArRobot::com2Bytes (p. 367) for when you want to define each of the two
bytes in the argument, such as the VEL2 command; and ArRobot::comStr
(p. 368) or ArRobot::comStrN (p. 368) for a null-terminated or defined-length
(N extra argument) string argument, respectively, such as the sonar POLLING
sequencing command.

The ArCommands (p. 113) class contains an enum with all the direct com-
mands; ArCommands::ENABLE (p. 113), for example. Although identical
in syntax and effect when supported, not all Direct Commands are included with
every ActivMedia robot. Fortunately, unrecognized or otherwise malformed
client commands are benign since they get ignored by the server. Please con-
sult your robot’s technical manual for details, such as the ”Pioneer 2 Operating
System” Chapter 6 in the Pioneer 2 Operations Manual, for client command
numbers and syntax.

1.10.2 Motion Commands

At a level just above ArRobot (p. 342)’s Direct Commands are the Motion
Commands. These are explicit movement commands. Some have identical
Direct Command analogues and act to immediately control the mobility of
your robot, either to set individual-wheel, or coordinated translational and
rotational velocities (ArRobot::setVel2 (p. 388), ArRobot::setVel (p. 388),
ArRobot::setRotVel (p. 387), respectively); change the robot’s absolute or
relative heading (ArRobot::setHeading (p. 386) or ArRobot::setDelta-
Heading (p. 385), respectively); move a prescribed distance (ArRobot::move
(p. 378)); or just stop (ArRobot::stop (p. 389)).

Examine the directMotionDemo.cpp example file to to see Motion Commands
at work.

Be aware that a Direct or a Motion Command may conflict with controls from
Actions or other upper-level processes and lead to unexpected consequences.
Use ArRobot::clearDirectMotion (p. 367) to cancel the overriding effect of
a Motion Command so that your Action is able to regain control the robot.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.10 Commands and Actions 13

Or limit the time a Motion Command prevents other motion actions with Ar-
Robot::setDirectMotionPrecedenceTime (p. 385). Otherwise, the Motion
Command will prevent actions forever. Use ArRobot::getDirectMotion-
PrecedenceTime (p. 372) to see how long a Motion Command takes prece-
dence.

1.10.3 Actions

Instead of using Direct or Motion Commands, we prefer that your ARIA client
software use Actions to drive the robot. ArAction (p. 37) is the base class;
ArAction::fire (p. 40) is the only function that needs to be overloaded for an
action to work. ARIA includes a number of built-in actions; look for them in the
ARIA sources (the inheritance diagram on the ArAction (p. 37) page will show
you which they are as well). And see the actionExample program to discover
how to create your own actions.

Actions are added to robots with ArRobot::addAction (p. 358), including a
priority which determines its position in the action list. ArAction::setRobot
(p. 39) is called on an action when it is added to a robot. You can override this.
For example, this would be useful to add a connection callback, if there were
some calculations you wished to do upon connection to the robot.

Actions are evaluated by the resolverin descending order of priority (lowest
priority goes last) in each ArRobot (p. 342) syncTask cycle just prior to State
Reflection. The resolver goes through the actions to find a single end action-
Desired (ArActionDesired (p. 49)). Depending on its current state, an action
contributes particular actionDesired movement values and strengths to the final
action desired. After this final action desired has been calculated, it is stored
and later gets passed to the State Reflector and on to the robot as motion
commands.

At each stage when the resolver is evaluating an action it passes in the current
action desired of the higher priority actions, this is the currentDesired. For
example, a stall-recovery action probably should be programmed not to exert
its motion effects if it has been pre-empted by a stop action, so the stall-recovery
action can check and see if either the strength is used up or if there is a maximum
velocity, and if so it can reset its state. However, there is no need for an action
to pay attention to the currentDesired. The resolver could also simply pass a
ArActionDesired.reset() to the actions if it did not want the actions to know
about its state.

1.10.4 Action Desired

ArActionDesired (p. 49) is the meat of actions. Desired actions should be
reset (ArActionDesired::reset (p. 49)) before they are used or reused.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

14 ARIA overview

There are six desired action channels: velocity (ArActionDesired::setVel
(p. 54)), relative heading (ArActionDesired::setDeltaHeading (p. 53)), ab-
solute heading (ArActionDesired::setHeading (p. 53)), maximum forward
translational velocity (ArActionDesired::setMaxVel (p. 54)), maximum re-
verse translational velocity (ArActionDesired::setMaxNegVel (p. 53)), and
maximum rotational velocity (ArActionDesired::setMaxRotVel (p. 53)).

Your action gives each channel a strength of 0.0, the lowest, to 1.0, the highest.
Strengths are used by the resolver to compute the relative effect the action-
Desired channel setting will have on the current translational velocity and head-
ing of the robot, as well as the speed limits for those movements. (Note that
deltaHeading and heading are treated as the same channel for strength purposes,
and that these are simply alternate ways of accessing the same channel.)

The maximum velocity, maximum negative velocity, and maximum rotational
velocity channels simply impose speed limits and thereby indirectly control the
robot.

For more advanced usage, desired actions can be merged (ArAction-
Desired::merge (p. 52)) and averaged (ArActionDesired::startAverage
(p. 54), ArActionDesired::addAverage (p. 52), ArActionDesired::end-
Average (p. 52)).

1.10.5 Resolvers

ArResolver (p. 312) is the base action-resolver class. ArPriorityResolver
(p. 286) is the default resolver. ArResolver::resolve (p. 312) is the
function that ArRobot (p. 342) calls with the action list (actually Ar-
Resolver::ActionMap (p. 312)) in order to combine and thereby resolve the
actionDesired movement controls into State Reflection motion commands to the
robot server.

There may only be one resolver per robot, which is set with ArRobot::set-
Resolver (p. 353). However, a resolver could be created to contain multiple
resolvers of its own. Also note that though a robot has particular resolver
bound to it, a resolver instance is not tied to any robot. Thus, if you had some
adapative resolver, you could set it to work for all robots.

The resolver works by setting each of the currentDesired channels to the con-
tributing actionDesired values in proportion to their respective strenghts and
priority, adjusting each movement channel’s currentDesired value until the in-
dividual strength becomes 1.0 or the list is exhausted. Same-priority actions
get averaged together (if they are competing) before being resolved with higher-
priority results.

The following table illustrates the steps and currentDesired setVel results when
the resolver combines four fictional actionDesired setVel channel values and their
relative strengths:

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.10 Commands and Actions 15

step # action priority Desired::setVel strength currentDesired strength

1 4 4 -400 0.25 -400 0.25

2 3 3 -100 1.0 (combine to 2&3)

3 2 3 200 0.50 (combine to 2&3)

4 2&3 3 0 0.75 -100 1.0

5 1 1 500 0.50 -100 1.0

Notice in the example that the same-priority actions 2 and 3 are combined
before being resolved with the higher priority action 4. Also notice that action
1 has no effect since the currentDesired channel strength reaches 1.0 before that
lowest-priority action gets considered by the resolver.

1.10.6 Movement and Limiting Actions

For programming convenience, ARIA has defined two useful types of actions:
Movement and Limiting. There are no classes for limiting or movement actions.

Built in movement actions have an ArAction (p. 37) prefix and act to set either
or both the translational velocity (setVel) and heading (setDeltaHeading and
setHeading) channels. Built in limiting actions are prefixed with ArAction-
Limiter and act to set one or more of the maximum translational and rotational
velocity channels.

1.10.7 Mixing Actions

Actions are most useful when mixed. The teleop program is a good example
of mixing limiting and movement actions. In the code, there are many limiting
actions, including Limiter, LimiterFar, and so on. And there are two movement
actions, joydriveAct and keydriveAct. The limiting actions have higher priority
than the movement ones, thereby making sure the way is safe before allowing
the robot to drive.

The example also illustrates fundamental, yet very powerful features of ARIA
actions and how they contribute to the overall behavior of the mobile robot.
Because they are individuals, contributing discretely to the movements of the
robot, actions are easily reusable. The limiting action in the teleop example that
prevents the robot from crashing into a wall when translating forward, can be
copied, as is, into another ARIA program and have the identical effect, except
that instead of driving the robot with a joystick, the new program’s lower-
priority movement action might use color-tracking to have the robot follow a
rolling ball. The ball-following action doesn’t needs to know anything about
the finer arts of safe navigation–the higher-priority limiting actions take care of
that.

Another ARIA example program called wander.cpp demonstrates how different
movement actions can be used and how they interact. The stall-recover action

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

16 ARIA overview

in wander (ArActionStallRecover (p. 79)) influences the robot’s movements
only when the motors are stalled, disabling the lower priority actions by using up
all translational and rotational strength until the robot has extracted from the
stall. You should also examine ArActionStallRecover.cpp in the src/ directory
for actionDesired details on how the action changes its motion control influences
based on the stall state.

Also note how ArActionAvoidFront (p. 41) and ArActionConstant-
Velocity (p. 47) interact.

1.11 Robot Callbacks

There are a number of useful callbacks in the ARIA system, including Ar-
Robot::addConnectCB (p. 358), ArRobot::remConnectCB (p. 380), Ar-
Robot::addFailedConnectCB (p. 360), ArRobot::remFailedConnectCB
(p. 381), ArRobot::addDisconnectNormallyCB (p. 359), ArRobot::rem-
DisconnectNormallyCB (p. 380), ArRobot::addDisconnectOnErrorCB
(p. 359), ArRobot::remDisconnectOnErrorCB (p. 380), ArRobot::add-
RunExitCB (p. 361), ArRobot::remRunExitCB (p. 382). Read their indi-
vidual documentation pages for details.

Examples of callbacks are in the directMotionDemo and in joydriveThreaded.
Also, ArGripper (p. 195) uses a connectCB as a way to find out when to poll
the robot – a good use of callbacks. Just make sure that any modular code you
have removes callbacks if you use them.

1.12 Functors

Functor is short for function pointer. A Functor lets you call a function without
knowing the declaration of the function. Instead, the compiler and linker figure
out how to properly call the function.

Function pointers are fully supported by the C language. C++ treats function
pointers like C, but adds in the concept of member functions and the ’this’
pointer. C++ does not include the ’this’ pointer in the function pointer, which
can cause all sorts of problems in an object-oriented program. Hence, we created
functors. Functors contain both the function pointer and the pointer to the
object which contains the function, or what the function uses as its ’this’ pointer.

ARIA makes use of functors as callback functions. In most cases, you will only
need to instantiate callback functors and pass them off to various parts of ARIA.
To instantiate a functor, you first need to identify how many parameters the
function needs and if it returns a value. Most ARIA functions take a pointer to
ArFunctor (p. 133). This is the base class for all the different functors. Its for
a function that has no parameters and no return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.13 User Input 17

But you can not create an ArFunctor (p. 133), because it is an abstract base
class. Rather, you need to instantiate one of these classes:

ArFunctorC (p. 162), ArFunctor1C (p. 137), ArFunctor2C (p. 144),
ArRetFunctorC (p. 339), ArRetFunctor1C (p. 317), ArRetFunctor2C
(p. 323)

The ’C’ in the name means that it’s an instance of the functor that knows
about the class of a member function. These are templatized classes so need to
be instantiated. For example:

ExampleClass obj;

ArFunctorC (p. 162)<ExampleClass> functor(obj, &ExampleClass::aFunction);

ExampleClass is a class which contains a function called aFunction. Once the
functor is created in this fashion, it can now be passed off to an ARIA function
that wants a callback functor. And the function ExampleClass::aFunction will
be called when the functor is invoked.

The code that uses the callback functor only needs to know about
these templatized classes: ArFunctor (p. 133), ArFunctor1 (p. 135), Ar-
Functor2 (p. 141), ArRetFunctor (p. 314)<ReturnType>, ArRetFunctor1
(p. 315)<ReturnType>, and ArRetFunctor2 (p. 321)<ReturnType>. These
functors take 0-2 parameters and have no return or a return value.

To invoke the functors, simply call the invoke function on the functor. If it takes
parameters, call invoke with those parameters. If the functor has a return value,
call invokeR. The return value of the function will be passed back through the
invokeR function.

1.13 User Input

There are two different ways to get user input into Aria (p. 204), from a joystick
and from a keyboard. With a joystick is most useful for driving the robot around.
There is a class set up that interfaces to the OS for joystick controls, this is Ar-
JoyHandler (p. 213), the important functions are ArJoyHandler::getButtons,
ArJoyHandler::getAdjusted (p. 215), ArJoyHandler::setSpeeds (p. 213),
and ArJoyHandler::getDoubles (p. 216). With a keyboard is most useful for
setting and changing modes, and exiting the program, but it it can also be used
to drive the robot as well (with the arrow keys and the space bar typically), Ar-
KeyHandler (p. 218) is the class which deals with interfacing to the keyboard.
ArKeyhandler is directed towards capturing single key presses, not towards
reading in sets of text, you can use the normal OS functions to do this. The
important functions in ArKeyHandler (p. 218) is ArKeyHandler::addKey-
Handler (p. 220), which binds a specific key to a given functor, also look at the
enum ArKeyHandler::KEY (p. 219) for values to pass in for special keys. You

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

18 ARIA overview

also need to attach a key handler to some robot with ArRobot::attachKey-
Handler (p. 364). ArActionJoydrive (p. 67) will use the joystick to drive the
robot around, while ArActionKeydrive (p. 70) will use the arrow keys and
spacebar to drive the robot around, both of these are employed in the teleop
example. The keyboard control is also a nice way to exit cleanly in Windows
since control C or just clicking on the program box won’t cleanly disconnect
from the robot, by default if you connect an ArKeyHandler (p. 218) to a
robot, escape will exit the program, however you can chage this behavior when
you attach the key handler to the robot if you wish.

1.14 ARIA Threading

ARIA is highly multi-threaded. This section presents some of the critical con-
cepts behind writing threaded ARIA code.

ARIA provides a number of support classes to make it easier to write object-
oriented threaded code. They are: ArASyncTask (p. 105), ArCondition
(p. 116), ArMutex (p. 255), ArPeriodicTask (p. 272), ArSemaphore, Ar-
TaskPool (p. 463), and ArThread (p. 472).

Thread-safe code mostly means proper coordination between threads when han-
dling the same data. You want to avoid the obvious problem of one or more
threads reading the data at the same time others write the data. To prevent this
problem from happening, the data needs to be protected with synchronization
objects.

1.14.1 Synchronous Objects

In ARIA, the synchronization objects are ArMutex (p. 255), ArSemaphore,
and ArCondition (p. 116). ArMutex (p. 255) is the most useful one. Mutex
is short for mutual exclusion. It guarantees that only one thread will use its
data at a time. The proper way to use a mutex is to attempt to lock it right
before accessing its shared data. If the mutex is not in use, ARIA then grants
exclusive access by the requesting thread. If the mutex is locked, the access
request gets blocked, and the thread must wait until the mutex gets free.

When the thread that has access to the mutex is finished with the data, it must
unlock the mutex and thereby make the data available to other threads. If it is
not unlocked, the program may become deadlocked and hang. See the mutex
example in the ARIA distribution for more details.

ArCondition (p. 116) and ArSemaphore are useful for delaying the execution
of a thread. A thread suspends execution while waiting on an ArSemaphore
or ArCondition (p. 116) until another thread wakes it up. For instance, use
ArSemaphore or ArCondition (p. 116) while waiting for a mutex to become

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.14 ARIA Threading 19

free. Performance is better, too. ArSemaphore and ArCondition (p. 116) put
the thread to sleep. The processing expensive alternative is to have the thread
continously check for a change in condition.

ArSemaphores are more thread-safe than ArConditions in that a semaphore
keeps track of the number of threads that use it. ArCondition (p. 116) notifies
only those threads that are currently waiting on it at the time the condition
changes. A semaphore counts how many times its been woken up and keeps
track of the fact that it needs to wake up that many threads. So, when a thread
goes to wait on the semaphore, the call to wait() will not block because the
condition already has been met.

See the ARIA condition example.

1.14.2 Asynchronous Tasks

Unlike the cyclical tasks in the syncTask list, asynchronous tasks run in their
own threads. And an ARIA ArASyncTask (p. 105) needs to have a thread
under its control for the full lifetime of the program.

To create an ansynchronous task, derive a class from ArASyncTask (p. 105)
and override the ArASyncTask::runThread() (p. 106) function. (The func-
tion automatically is called within the new thread, when the ArASync-
Task (p. 105) gets created.) To create and start the thread, call ArASync-
Task::create() (p. 105). When the ArASyncTask::runThread() (p. 106)
function exits, the thread will exit and be destroyed.

This class is mainly a convenience wrapper around ArThread (p. 472) so that
you can easily create your own object that encapsulates the concept of a thread.

1.14.3 Task Pool

The ArTaskPool (p. 463) class is a structure that contains a pool of threads
which can be allocated to run ArPeriodicTasks. This is useful for tasks that
need to be run in their own thread, but you don’t want to have the overhead of
creating and destroying many threads. The ArTaskPool (p. 463) class manages
the threads for you.

ArTaskPool (p. 463) uses the singleton design pattern; there is one and only
one instance of the ArTaskPool (p. 463). That instance can be reached through
the ArTaskPoll::getPool() function.

To use ArPeriodicTask (p. 272), create a class which derives from Ar-
PeriodicTask (p. 272) and override the ArPeriodicTask::runTask() (p. 272).
The user defined runTask() function simply needs to do the task and exit when
its done. This function will be called within its own thread. The conventions on
how to handle data access between multiple threads should be observed within

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

20 ARIA overview

the runTask() code and any functions that it calls.

Once the user-defined class is created, instantiate an object and pass it to the
ArTaskPool::runTask() (p. 463) function. This will cause the task to be run
immediately in its own thread.

1.15 ARIA Global Data

ARIA contains a list of all the ArRobot (p. 342) instances. Use the ARIA::find-
Robot() to find a robot by name, or use ARIA::getRobotList() to get a list of
the robots.

Use ARIA::getDirectory() to find ARIA’s top-level path (C:\Aria (p. 204) or
/usr/local/Aria (p. 204), typically). This is useful, for instance, to locate robot
parameter files for individual operational details. Use ARIA::setDirectory() to
change this path for the run of the program if you feel the need to override what
Aria (p. 204) has decided.

1.16 Piecemeal Use of ARIA

The most basic layer of ARIA is its deviceConnections, which handles low-level
communication with the robot server. On top of the connection layer, we have a
packet layer–ArBasePacket (p. 107) and ArRobotPacket (p. 393)–the basic
algorithms for constructing command packets and decoding server information
packets.

Above the packet layer is the packet handler classes, ArRobotPacketReceiver
(p. 395) and ArRobotPacketSender (p. 398), when send and receive packets
to and from the robot. Finally, on top of all these lowest layers is ArRobot
(p. 342), which is a gathering point for all things, but can be used in a quite
basic format without all of the bells and whistles. ArRobot (p. 342) has builtin
tasks, actions, state reflection and so forth, all of which can be disabled from
the constructor (ArRobot::ArRobot (p. 357)) and ignored or reimplemented.

Also note that if all you do is turn off state reflection, which only affects sending
ArRobot (p. 342)-mediated motion commands to the robot, not receiving SIPs
from the robot, none of the other activities which ArRobot (p. 342) engages on
its loop will take up hardly any time, so it probably isn’t worth building your
own set of tasks, but the power to do so is there for the intrepid.

One other thing worth noting is that you can call ArRobot::loopOnce (p. 378)
and it will run through its loop a single time and return. This is so that you can
use ARIA from your own control structure. If you are using loopOnce you may
also find it beneficial to call ArRobot::incCounter (p. 355), so that the loop
counter will be updated. You could also just call ArRobot::packetHandler

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.17 Robot Parameter Files 21

(p. 379), ArRobot::actionHandler (p. 358), or ArRobot::stateReflector
(p. 389) on your own, as these are the most important internal functions, though
if you make your own loop you should probably call ArRobot::incCounter
(p. 355) any way that you do it, as this is how sonar are known to be new or
not, and such.

We recommend that whatever you do you use the same type of strict thread-
ing/locking that ARIA observes.

1.17 Robot Parameter Files

Found in the Aria (p. 204)/params directory, generic, as well as individually
named robot parameter files contain default and name-specific robot information
that ARIA uses to characterize the robot and correctly interpret the server
information that a robot sends back to the client.

Every robot has a type and subtype, such as Pioneer and P2AT, as well as a
user-modifiable name, embedded in its FLASH parameters. These parameters
get sent to the ARIA client right after establishment of the client-server connec-
tion. ARIA retrieves parameter files in the following order– built in defaults,
subtype parameter file, and finally name parameter file–setting and resetting
global variables based on the contents of each file. Accordingly, subtype may
add or change the settings derived from the default, and a named parameter file
has the very last say over things.

ARIA has default generic type parameters, and generic subtype robot files,
such as p2at.p, p2de.p or p2pp.p for the Pioneer 2-AT, and Pioneer 2-DE and
Performance PeopleBot subtypes, respectively, in the parameters directory. You
may change their contents to better match your specific robot. Or, better, either
create a new one or copy the contents to a file which name matches your robot’s
FLASH parameter name, adding the ”.p” parameter file suffix. Then change and
add to the generic factors section those accessory or other operational details
that best define that specific robot.

For example, ARIA uses RobotRadius to determine the robot’s turn limits in
most of the obstacle avoidance routines. The default for the P2AT robot doesn’t
account for bumper accessories. Accordingly, you might create a new parameter
file that redefines RobotRadius for that specific robot.

ARIA uses the values in the conversion factors section of a parameter file to
transform the robot-dependent server information data into normal dimensions
and rates. For example, the DistConvFactor converts the robot’s position data,
measured in encoder ticks, into millimeters.

ARIA consults the accessories section of a robot’s parameter file to determine
what accessories a robot might have that cannot be told by other means. For
example, the P2 bumper values appear in the standard SIP stall values, but if a

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

22 ARIA overview

bump ring isn’t connected, these values float and vacillate between on and off.
An accessory definition in the parameter file clues ARIA to use or not use the
bumper values.

Finally, the sonar section of the parameter file contains information about the
sonar number and geometry so that ARIA can relate sonar readings with posi-
tion relative to the center of the robot.

1.17.1 How the parameter file works

The parameter file is very much like a Windows INI file in format. It contains
sections and keyword/data pairs. Comments start with a semi-colon. A section
identifier is a bracketed keyword, such as:

[ConvFactors]

Keywords and data are separated by one or more spaces on a single line, and
may include several defining data values. Each keyword has its own behavior
with how it parses the data. For example:

KeyWord data1 data2 data3 ...

Case matters for both section identifiers and keyword names. Some parameters
can have multiple instances in the file. SonarUnit is a good example of this.
The multiple instances of the parameter need to be surrounded by a ’@start’
and ’@end’ block. For example:

@start

SonarUnit 0 73 105 90

SonarUnit 1 130 78 41

@end

See ArPreferences.h for additional details.

1.18 Utility Classes

Some of the utility classes are ArMath (p. 230), ArUtil (p. 482), ArTime
(p. 476), ArPose (p. 274), and ArSectors (p. 405).

1.19 Sockets

The ArSocket (p. 444) class is a wrapper around the socket network commu-
nication layer of your operating system. ARIA mostly uses ArSocket (p. 444)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.19 Sockets 23

to open a server port and to connect to another server port.

To connect to a port, simply construct a socket containing the hostname or IP
address of the host, a port number, and the ARIA socket type (TCP or UDP).
For example:

ArSocket (p. 444) sock("host.name.com", 4040, ArSocket::TCP);

Or call the ArSocket::connect() (p. 444) function, such as:

ArSocket (p. 444) sock;

sock.connect("host.name.com", 4040, ArSocket::TCP);

To open a server port, simple construct a socket:

ArSocket (p. 444) sock(4040, true, ArSocket::TCP);

Or call:

ArSocket::open(4040, ArSocket::TCP);

1.19.1 Emacs

Here is the configuration specification the developers at ActivMedia Robotics
use in their .emacs files, in case you want to modify the code using emacs and
not deal with differences in indentation and such.

(setq c-default-style ’((other . "user")))

(c-set-offset ’substatement-open 0)

(c-set-offset ’defun-block-intro 2)

(c-set-offset ’statement-block-intro 2)

(c-set-offset ’substatement 2)

(c-set-offset ’topmost-intro -2)

(c-set-offset ’arglist-intro ’++)

(c-set-offset ’statement-case-intro ’*)

(c-set-offset ’member-init-intro 2)

(c-set-offset ’inline-open 0)

(c-set-offset ’brace-list-intro 2)

(c-set-offset ’statement-cont 0)

(defvar c-mode-hook ’c++-mode)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

24 ARIA overview

1.20 Non-everyday use of C++

1.20.1 Standard Template Library

ARIA makes heavy use of the C++ standard template library. So you should
understand the STL in order to get the best use from some of the more
advanced parts of ARIA. A reference many developers have found useful is
http://www.sgi.com/tech/stl/, this is documentation to SGI’s implementa-
tion, but other than the SGI specific templates which are explicitly stated as
being SGI only, the documentation is quite helpful.

1.20.2 Default Arguments

Default arguments work like the following, in the function delcaration a param-
eter is specified, and given a default value at the same time. If the function is
then used the parameters which have been given a value do not need to be given
values when the function is used.

For example, after defining foo, it can be used in two differnt manners:

void foo(int number = 3);

// ...later

foo();

// or

foo(int);

This behavior is quite useful for having defaults that most people will not need
to change, but allowing people to change them if they desire.

Also note that the function definition must not have the assignment in it, only
the declaration, otherwise Windows compilers will not work and will report a
not entirely useful error message.

1.20.3 Constructor Chaining

Constructor chaining is quite simple though little used. Each contructor can
give arguments to the constructors of the member variables it contains and to
the constructors which it inherits. For example if you have:

class BaseClass

{
public:

BaseClass(int someNumber);

};

and

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.20 Non-everyday use of C++ 25

class SubClass : public BaseClass

{
public:

SubClass(void);

int anotherNumber;

};

When you write your constructor for subClass. you can intialize both baseClass
and anotherNumber:

SubClass::SubClass(void) : BaseClass(3), anotherNumber(37)

{
// ...

}

Note how the constructors to be initialized must follow a colon (:) after the
constructor, and be separated by commas? For member variables they must also
be initialized in the order they are in the class. Note that intializing integers
is not all that unique or useful, but using this to initialize callback Functors
(p. 16) is quite useful.

Constructor chaining is used in many many places by ARIA, thus it must be
understood in order to understand ARIA, but the above is all that really needs
to be known.

1.20.4 Chars and Strings, Win workaround

During development problems were encountered with windows if std::strings
were passed into a dll. Thus for all input to ARIA const char ∗s are used,
but for all internal storage and all reporting std::strings are passed back out of
ARIA.

1.20.5 AREXPORT

Because of the Windows set up for using DLLs, is a macro used to take care of the
requirements for DLLs. Largely users do not need to worry about AREXPORTs,
but only functions which have AREXPORTs or inline functions are usable with
DLLs in windows (all of the functions which are documented are usable).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

26 ARIA overview

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 2

Aria Hierarchical Index

2.1 Aria Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ArAction . 37
ArActionAvoidFront . 41
ArActionAvoidSide . 43
ArActionBumpers . 45
ArActionConstantVelocity . 47
ArActionGoto . 56
ArActionInput . 65
ArActionJoydrive . 67
ArActionKeydrive . 70
ArActionLimiterBackwards . 73
ArActionLimiterForwards . 75
ArActionLimiterTableSensor . 77
ArActionStallRecover . 79
ArActionStop . 81
ArActionTurn . 83

ArActionDesired . 49
ArActionDesiredChannel . 55
ArActionGroup . 58

ArActionGroupInput . 61
ArActionGroupStop . 62
ArActionGroupTeleop . 63
ArActionGroupWander . 64

ArACTS 1 2 . 85
ArACTSBlob . 90
ArAMPTUCommands . 95

28 Aria Hierarchical Index

ArArg . 99
ArArgumentBuilder . 102
ArArgumentParser . 103
ArBasePacket . 107

ArAMPTUPacket . 97
ArDPPTUPacket . 132
ArRobotPacket . 393
ArSickPacket . 432
ArSonyPacket . 453
ArVCC4Packet . 497

ArCommands . 113
ArCondition . 116
ArDeviceConnection . 118

ArLogFileConnection . 225
ArSerialConnection . 411
ArTcpConnection . 466

ArDPPTUCommands . 130
ArFunctor . 133

ArFunctor1< P1 > . 135
ArFunctor1C< T, P1 > . 137
ArGlobalFunctor1< P1 > . 167

ArFunctor2< P1, P2 > . 141
ArFunctor2C< T, P1, P2 > . 144
ArGlobalFunctor2< P1, P2 > 170

ArFunctor3< P1, P2, P3 > . 150
ArFunctor3C< T, P1, P2, P3 > 154
ArGlobalFunctor3< P1, P2, P3 > 175

ArFunctorC< T > . 162
ArGlobalFunctor . 165
ArRetFunctor< Ret > . 314

ArGlobalRetFunctor< Ret > 181
ArRetFunctor1< Ret, P1 > . 315

ArGlobalRetFunctor1< Ret, P1 > 183
ArRetFunctor1C< Ret, T, P1 > 317

ArRetFunctor2< Ret, P1, P2 > 321
ArGlobalRetFunctor2< Ret, P1, P2 > 186
ArRetFunctor2C< Ret, T, P1, P2 > 323

ArRetFunctor3< Ret, P1, P2, P3 > 329
ArGlobalRetFunctor3< Ret, P1, P2, P3 > 190
ArRetFunctor3C< Ret, T, P1, P2, P3 > 332

ArRetFunctorC< Ret, T > . 339
ArGripper . 195
ArGripperCommands . 202
Aria . 204

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

2.1 Aria Class Hierarchy 29

ArInterpolation . 209
ArJoyHandler . 213
ArKeyHandler . 218
ArListPos . 222
ArLog . 223
ArMath . 230
ArMode . 235

ArModeBumps
ArModeCamera . 239
ArModeGripper . 241
ArModeIO
ArModeLaser
ArModePosition
ArModeSonar . 243
ArModeTeleop . 245
ArModeWander . 247

ArModule . 249
ArModuleLoader . 252
ArMutex . 255
ArNetServer . 257
ArP2Arm . 260
ArPeriodicTask . 272
ArPose . 274

ArPoseWithTime . 278
ArPref . 279
ArPreferences

ArRobotParamFile
ArRobotAmigo
ArRobotGeneric
ArRobotMapper
ArRobotP2AT
ArRobotP2AT8
ArRobotP2CE
ArRobotP2D8
ArRobotP2DF
ArRobotP2DX
ArRobotP2DXe
ArRobotP2IT
ArRobotP2PB
ArRobotP2PP
ArRobotPerfPB
ArRobotPion1M
ArRobotPion1X
ArRobotPionAT
ArRobotPowerBot

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

30 Aria Hierarchical Index

ArRobotPsos1M
ArRobotPsos1X
ArRobotPsos43M

ArPrefSection
ArPTZ . 287

ArAMPTU . 92
ArDPPTU . 124
ArSonyPTZ . 455
ArVCC4 . 491

ArRangeBuffer . 293
ArRangeDevice . 299

ArIrrfDevice . 211
ArRangeDeviceThreaded . 307

ArSick . 418
ArSonarDevice . 451

ArResolver . 312
ArPriorityResolver . 286

ArRobot . 342
ArRobotPacketReceiver . 395
ArRobotPacketSender . 398
ArRobotParams . 402
ArSectors . 405
ArSemaphore
ArSensorReading . 406
ArSickLogger . 430
ArSickPacketReceiver . 435
ArSocket . 444
ArSyncTask . 458
ArTaskPool . 463
ArTaskState . 465
ArThread . 472

ArASyncTask . 105
ArRangeDeviceThreaded . 307
ArRecurrentTask . 310
ArSignalHandler . 438
ArSyncLoop
ArTimer

ArTaskPoolTask
ArTime . 476
ArTransform . 478
ArTypes . 481
ArUtil . 482
ArVCC4Commands . 495
P2ArmJoint . 498

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 3

Aria Compound Index

3.1 Aria Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

ArAction (Action class, what typically makes the robot move) 37
ArActionAvoidFront (This action does obstacle avoidance, control-

ling both trans and rot) . 41
ArActionAvoidSide (Action to avoid impacts by firening into walls

at a shallow angle) . 43
ArActionBumpers (Action to deal with if the bumpers trigger) . . 45
ArActionConstantVelocity (Action for going straight at a constant

velocity) . 47
ArActionDesired (Class used to say what movement is desired) . . 49
ArActionDesiredChannel (Class used by ArActionDesired

(p. 49) for each channel, internal) 55
ArActionGoto (This action goes to a given ArPose (p. 274) very

naively) . 56
ArActionGroup (Class for groups of actions to accomplish one thing) 58
ArActionGroupInput (Input to drive the robot) 61
ArActionGroupStop (Stop the robot) 62
ArActionGroupTeleop (Teleop the robot) 63
ArActionGroupWander (Has the robot wander) 64
ArActionInput (Action for stopping the robot) 65
ArActionJoydrive (This action will use the joystick for input to drive

the robot) . 67
ArActionKeydrive (This action will use the keyboard arrow keys for

input to drive the robot) . 70
ArActionLimiterBackwards (Action to limit the backwards motion

of the robot) . 73

32 Aria Compound Index

ArActionLimiterForwards (Action to limit the forwards motion of
the robot) . 75

ArActionLimiterTableSensor (Action to limit speed based on
whether there the table-sensors see anything) 77

ArActionStallRecover (Action to recover from a stall) 79
ArActionStop (Action for stopping the robot) 81
ArActionTurn (Action to turn when the behaviors with more priority

have limited the speed) . 83
ArACTS 1 2 (Driver for ACTS) . 85
ArACTSBlob (A class for the acts blob) 90
ArAMPTU (Driver for the AMPUT) 92
ArAMPTUCommands (A class with the commands for the AMPTU) 95
ArAMPTUPacket (A class for for making commands to send to the

AMPTU) . 97
ArArg (Argument class, mostly for actions, could be used for other

things) . 99
ArArgumentBuilder (This class is to build arguments for things

that require argc and argv) 102
ArArgumentParser (Class for parsing arguments) 103
ArASyncTask (Asynchronous task (runs in its own thread)) 105
ArBasePacket (Base packet class) 107
ArCommands (A class with an enum of the commands that can be

sent to the robot) . 113
ArCondition (Threading condition wrapper class) 116
ArDeviceConnection (Base class for device connections) 118
ArDPPTU (Driver for the DPPTU) 124
ArDPPTUCommands (A class with the commands for the DPPTU) 130
ArDPPTUPacket (A class for for making commands to send to the

DPPTU) . 132
ArFunctor (Base class for functors) 133
ArFunctor1< P1 > (Base class for functors with 1 parameter) . . . 135
ArFunctor1C< T, P1 > (Functor for a member function with 1

parameter) . 137
ArFunctor2< P1, P2 > (Base class for functors with 2 parameters) 141
ArFunctor2C< T, P1, P2 > (Functor for a member function with

2 parameters) . 144
ArFunctor3< P1, P2, P3 > (Base class for functors with 3 param-

eters) . 150
ArFunctor3C< T, P1, P2, P3 > (Functor for a member function

with 3 parameters) . 154
ArFunctorC< T > (Functor for a member function) 162
ArGlobalFunctor (Functor for a global function with no parameters) 165
ArGlobalFunctor1< P1 > (Functor for a global function with 1

parameter) . 167
ArGlobalFunctor2< P1, P2 > (Functor for a global function with

2 parameters) . 170

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

3.1 Aria Compound List 33

ArGlobalFunctor3< P1, P2, P3 > (Functor for a global function
with 3 parameters) . 175

ArGlobalRetFunctor< Ret > (Functor for a global function with
return value) . 181

ArGlobalRetFunctor1< Ret, P1 > (Functor for a global function
with 1 parameter and return value) 183

ArGlobalRetFunctor2< Ret, P1, P2 > (Functor for a global func-
tion with 2 parameters and return value) 186

ArGlobalRetFunctor3< Ret, P1, P2, P3 > (Functor for a global
function with 2 parameters and return value) 190

ArGripper (A class of convenience functions for using the gripper) . 195
ArGripperCommands (A class with an enum of the commands for

the gripper) . 202
Aria (This class performs global initialization and deinitialization) . . 204
ArInterpolation . 209
ArIrrfDevice (A class for connecting to a PB-9 and managing the

resulting data) . 211
ArJoyHandler (Interfaces to a joystick) 213
ArKeyHandler (This class will read input from the keyboard) . . . 218
ArListPos (Has enum for position in list) 222
ArLog (Logging utility class) . 223
ArLogFileConnection (For connecting through a log file) 225
ArMath (This class has static members to do common math operations)230
ArMode (A class for different modes, mostly as related to keyboard

input) . 235
ArModeCamera (Mode for controlling the gripper) 239
ArModeGripper (Mode for controlling the gripper) 241
ArModeSonar (Mode for displaying the sonar) 243
ArModeTeleop (Mode for teleoping the robot with joystick + key-

board) . 245
ArModeWander (Mode for wandering around) 247
ArModule (Dynamicly loaded module base class, read warning in more)249
ArModuleLoader (Dynamic ArModule (p. 249) loader) 252
ArMutex (Mutex wrapper class) . 255
ArNetServer (Class for running a simple net server to send/recv

commands via text) . 257
ArP2Arm (Arm Control class) . 260
ArPeriodicTask (A periodic task base class) 272
ArPose (The class which represents a position) 274
ArPoseWithTime (A subclass of pose that also has the time the

pose was taken) . 278
ArPref (Preference instance. Used by ArPreferences) 279
ArPriorityResolver ((Default resolver), takes the action list and uses

the priority to resolve) . 286
ArPTZ (Base class which handles the PTZ cameras) 287
ArRangeBuffer (This class is a buffer that holds ranging information)293

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

34 Aria Compound Index

ArRangeDevice (The class for all devices which return range info
(laser, sonar)) . 299

ArRangeDeviceThreaded (A range device which can run in its own
thread) . 307

ArRecurrentTask (Recurrent task (runs in its own thread)) 310
ArResolver (Resolves a list of actions and returns what to do) . . . 312
ArRetFunctor< Ret > (Base class for functors with a return value) 314
ArRetFunctor1< Ret, P1 > (Base class for functors with a return

value with 1 parameter) . 315
ArRetFunctor1C< Ret, T, P1 > (Functor for a member function

with return value and 1 parameter) 317
ArRetFunctor2< Ret, P1, P2 > (Base class for functors with a

return value with 2 parameters) 321
ArRetFunctor2C< Ret, T, P1, P2 > (Functor for a member func-

tion with return value and 2 parameters) 323
ArRetFunctor3< Ret, P1, P2, P3 > (Base class for functors with

a return value with 3 parameters) 329
ArRetFunctor3C< Ret, T, P1, P2, P3 > (Functor for a member

function with return value and 3 parameters) 332
ArRetFunctorC< Ret, T > (Functor for a member function with

return value) . 339
ArRobot (THE important class) . 342
ArRobotPacket (Represents the packets sent to the robot as well as

those received from it) . 393
ArRobotPacketReceiver (Given a device connection it receives

packets from the robot through it) 395
ArRobotPacketSender (Given a device connection this sends com-

mands through it to the robot) 398
ArRobotParams (Contains the robot parameters, according to the

parameter file) . 402
ArSectors (A class for keeping track of if a complete revolution has

been attained) . 405
ArSensorReading (A class to hold a sensor reading, should be one

instance per sensor) . 406
ArSerialConnection (For connecting to devices through a serial port)411
ArSick (The sick driver) . 418
ArSickLogger (This class can be used to create log files for the laser

mapper) . 430
ArSickPacket (Represents the packets sent to the sick as well as those

received from it) . 432
ArSickPacketReceiver (Given a device connection it receives pack-

ets from the sick through it) 435
ArSignalHandler (Signal handling class) 438
ArSocket (Socket communication wrapper) 444
ArSonarDevice (A class for keeping track of sonar) 451
ArSonyPacket (A class for for making commands to send to the sony)453

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

3.1 Aria Compound List 35

ArSonyPTZ (A class to use the sony pan tilt zoom unit) 455
ArSyncTask (Class used internally to manage the functions that are

called every cycle) . 458
ArTaskPool (A thread pool for running functions or ArPeriodicTasks)463
ArTaskState (Class with the different states a task can be in) 465
ArTcpConnection (For connectiong to a device through a socket) . 466
ArThread (POSIX/WIN32 thread wrapper class) 472
ArTime (A class for time readings) 476
ArTransform (A class to handle transforms between different coor-

dinates) . 478
ArTypes (Contains platform independent sized variable types) 481
ArUtil (This class has utility functions) 482
ArVCC4 (Driver for the VCC4) . 491
ArVCC4Commands (A class with the commands for the VCC4) . . 495
ArVCC4Packet (A class for for making commands to send to the

VCC4) . 497
P2ArmJoint (P2 Arm joint info) . 498

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

36 Aria Compound Index

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 4

Aria Class Documentation

4.1 ArAction Class Reference

Action class, what typically makes the robot move.

#include <ArAction.h>

Inheritance diagram for ArAction::

38 Aria Class Documentation

ArAction

ArActionAvoidFront

ArActionAvoidSide

ArActionBumpers

ArActionConstantVelocity

ArActionGoto

ArActionInput

ArActionJoydrive

ArActionKeydrive

ArActionLimiterBackwards

ArActionLimiterForwards

ArActionLimiterTableSensor

ArActionStallRecover

ArActionStop

ArActionTurn

Public Methods

• ArAction (const char ∗name, const char ∗description=””)
Constructor.

• virtual ∼ArAction (void)
Desructor.

• virtual bool isActive (void)
Finds out whether the action is active or not.

• virtual void activate (void)
Activate the action.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 ArAction Class Reference 39

• virtual void deactivate (void)

Deactivate the action.

• virtual ArActionDesired ∗ fire (ArActionDesired current-
Desired)=0

Fires the action, returning what the action wants to do.

• virtual void setRobot (ArRobot ∗robot)

Sets the robot this action is driving.

• virtual int getNumArgs (void)

Find the number of arguments this action takes.

• virtual ArArg ∗ getArg (int number)

Gets the numbered argument.

• virtual std::string getName (void)

Gets the name of the action.

• virtual std::string getDescription (void)

Gets the long description of the action.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

• virtual void print (void)

ArLog::log (p. 224) s the actions stats.

Protected Methods

• void setNextArgument (ArArg const &arg)

Sets the argument type for the next argument (only use in constructor).

4.1.1 Detailed Description

Action class, what typically makes the robot move.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

40 Aria Class Documentation

4.1.2 Member Function Documentation

4.1.2.1 virtual ArActionDesired∗ ArAction::fire (ArActionDesired
currentDesired) [pure virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented in ArActionAvoidFront (p. 42), ArActionAvoidSide
(p. 44), ArActionBumpers (p. 46), ArActionConstantVelocity (p. 48),
ArActionGoto (p. 57), ArActionInput (p. 66), ArActionJoydrive (p. 69),
ArActionKeydrive (p. 71), ArActionLimiterBackwards (p. 74), Ar-
ActionLimiterForwards (p. 76), ArActionLimiterTableSensor (p. 78),
ArActionStallRecover (p. 80), ArActionStop (p. 82), and ArActionTurn
(p. 84).

The documentation for this class was generated from the following files:

• ArAction.h
• ArAction.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.2 ArActionAvoidFront Class Reference 41

4.2 ArActionAvoidFront Class Reference

This action does obstacle avoidance, controlling both trans and rot.

#include <ArActionAvoidFront.h>

Inheritance diagram for ArActionAvoidFront::

ArActionAvoidFront

ArAction

Public Methods

• ArActionAvoidFront (const char ∗name=”avoid front obstacles”,
double obstacleDistance=450, double avoidVelocity=200, double turn-
Amount=15, bool useTableIRIfAvail=true)

Constructor.

• virtual ∼ArActionAvoidFront (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.2.1 Detailed Description

This action does obstacle avoidance, controlling both trans and rot.

This action uses whatever available range device have been added to the robot
to avoid obstacles. See the ArActionAvoidFront constructor documentation to
see the parameters it takes.

Also note that this action does something most others don’t, which is to check
for a specific piece of hardware. This is the tableSensingIR. If this is set up in
the parameters for the robot, it will use DigIn0 and DigIn1, where the table-
SensingIRs are connected. Note that if you make useTableIRIfAvail false in the
constructor it’ll ignore these. Whether the action thinks the robot has them or
not depends on the value of tableSensingIR in the parameter file for that robot.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

42 Aria Class Documentation

4.2.2 Constructor & Destructor Documentation

4.2.2.1 ArActionAvoidFront::ArActionAvoidFront (const char ∗
name = ”avoid front obstacles”, double obstacleDistance =
450, double avoidVelocity = 200, double turnAmount = 15,
bool useTableIRIfAvail = true)

Constructor.

Parameters:
name the name of the action

obstacleDistance distance at which to turn. (mm)

avoidVelocity Speed at which to go while avoiding an obstacle. (mm/sec)

turnAmount Degrees to turn relative to current heading while avoiding
obstacle (deg)

useTableIRIfAvail Whether to use the table sensing IR if they are avail-
able

4.2.3 Member Function Documentation

4.2.3.1 ArActionDesired ∗ ArActionAvoidFront::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionAvoidFront.h
• ArActionAvoidFront.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.3 ArActionAvoidSide Class Reference 43

4.3 ArActionAvoidSide Class Reference

Action to avoid impacts by firening into walls at a shallow angle.

#include <ArActionAvoidSide.h>

Inheritance diagram for ArActionAvoidSide::

ArActionAvoidSide

ArAction

Public Methods

• ArActionAvoidSide (const char ∗name=”Avoid side”, double obstacle-
Distance=300, double turnAmount=5)

Constructor.

• virtual ∼ArActionAvoidSide (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.3.1 Detailed Description

Action to avoid impacts by firening into walls at a shallow angle.

This action watches the sensors to see if it is close to firening into a wall at a
shallow enough angle that other avoidance may not avoid.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 ArActionAvoidSide::ArActionAvoidSide (const char ∗
name = ”Avoid side”, double obstacleDistance = 300,
double turnAmount = 5)

Constructor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

44 Aria Class Documentation

Parameters:
name name of the action

obstacleDistance distance at which to start avoiding (mm)

turnAmount degrees at which to turn (deg)

4.3.3 Member Function Documentation

4.3.3.1 ArActionDesired ∗ ArActionAvoidSide::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionAvoidSide.h
• ArActionAvoidSide.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.4 ArActionBumpers Class Reference 45

4.4 ArActionBumpers Class Reference

Action to deal with if the bumpers trigger.

#include <ArActionBumpers.h>

Inheritance diagram for ArActionBumpers::

ArActionBumpers

ArAction

Public Methods

• ArActionBumpers (const char ∗name=”bumpers”, double back-
OffSpeed=100, int backOffTime=2500, int turnTime=500, bool set-
Maximums=false)

Constructor.

• virtual ∼ArActionBumpers (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.4.1 Detailed Description

Action to deal with if the bumpers trigger.

This class basically responds to the bumpers the robot has, what the activity
things the robot has is decided by the param file. If the robot is going forwards
and bumps into something with the front bumpers, it will back up and turn. If
the robot is going backwards and bumps into something with the rear bumpers
then the robot will move forward and turn.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

46 Aria Class Documentation

4.4.2 Constructor & Destructor Documentation

4.4.2.1 ArActionBumpers::ArActionBumpers (const char ∗ name
= ”bumpers”, double backOffSpeed = 100, int backOffTime
= 2500, int turnTime = 500, bool setMaximums = false)

Constructor.

Parameters:
name name of the action

backOffSpeed speed at which to back away (mm/sec)

backOffTime number of msec to back up for (msec)

turnTime number of msec to alow for turn (msec)

4.4.3 Member Function Documentation

4.4.3.1 ArActionDesired ∗ ArActionBumpers::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionBumpers.h
• ArActionBumpers.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.5 ArActionConstantVelocity Class Reference 47

4.5 ArActionConstantVelocity Class Reference

Action for going straight at a constant velocity.

#include <ArActionConstantVelocity.h>

Inheritance diagram for ArActionConstantVelocity::

ArActionConstantVelocity

ArAction

Public Methods

• ArActionConstantVelocity (const char ∗name=”Constant Velocity”,
double velocity=400)

Constructor.

• virtual ∼ArActionConstantVelocity (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.5.1 Detailed Description

Action for going straight at a constant velocity.

This action simply goes straight at a constant velocity.

4.5.2 Constructor & Destructor Documentation

4.5.2.1 ArActionConstantVelocity::ArActionConstantVelocity
(const char ∗ name = ”Constant Velocity”, double velocity
= 400)

Constructor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

48 Aria Class Documentation

Parameters:
name name of the action

velocity velocity to travel at (mm/sec)

4.5.3 Member Function Documentation

4.5.3.1 ArActionDesired ∗ ArActionConstantVelocity::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionConstantVelocity.h
• ArActionConstantVelocity.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 49

4.6 ArActionDesired Class Reference

Class used to say what movement is desired.

#include <ArActionDesired.h>

Public Methods

• ArActionDesired (void)
Constructor.

• virtual ∼ArActionDesired (void)
Destructor.

• virtual void setVel (double vel, double strength=MAX STRENGTH)
Sets the velocity (mm/sec) and strength.

• virtual void setDeltaHeading (double deltaHeading, double
strength=MAX STRENGTH)

Sets the delta heading (deg) and strength.

• virtual void setHeading (double heading, double strength=MAX -
STRENGTH)

Sets the absolute heading (deg).

• virtual void setMaxVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum velocity (+mm/sec) and strength.

• virtual void setMaxNegVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum velocity for going backwards (-mm/sec) and strength.

• virtual void setMaxRotVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum rotational velocity (deg/sec) and strength.

• virtual void reset (void)
Resets the strengths to 0.

• virtual double getVel (void)
Gets the translational velocity desired (mm/sec).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

50 Aria Class Documentation

• virtual double getVelStrength (void)
Gets the strength of the translational velocity desired.

• virtual double getHeading (void)
Gets the heading desired (deg).

• virtual double getHeadingStrength (void)
Gets the strength of the heading desired.

• virtual double getDeltaHeading (void)
Gets the delta heading desired (deg).

• virtual double getDeltaHeadingStrength (void)
Gets the strength of the delta heading desired.

• virtual double getMaxVel (void)
Gets the desired maximum velocity (mm/sec).

• virtual double getMaxVelStrength (void)
Gets the maximum velocity strength.

• virtual double getMaxNegVel (void)
Gets the desired maximum negative velocity (-mm/sec).

• virtual double getMaxNegVelStrength (void)
Gets the desired maximum negative velocity strength.

• virtual double getMaxRotVel (void)
Gets the maximum rotational velocity.

• virtual double getMaxRotVelStrength (void)
Gets the maximum rotational velocity strength.

• virtual void merge (ArActionDesired ∗actDesired)
Merges the given ArActionDesired into this one (this one has precedence),
internal.

• virtual void startAverage (void)
Starts the process of avereraging together different desireds.

• virtual void addAverage (ArActionDesired ∗actDesired)
Adds another actionDesired into the mix to average.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 51

• virtual void endAverage (void)

Ends the process of avereraging together different desireds.

• virtual void accountForRobotHeading (double robotHeading)

Accounts for robot heading, mostly internal.

• ArActionDesiredChannel ∗ getVelDesiredChannel (void)

Accessor for the channel structor for merge, internal.

• ArActionDesiredChannel ∗ getDeltaHeadingDesiredChannel
(void)

Accessor for the channel structor for merge, internal.

• ArActionDesiredChannel ∗ getMaxVelDesiredChannel (void)

Accessor for the channel structor for merge, internal.

• ArActionDesiredChannel ∗ getMaxNegVelDesiredChannel (void)

Accessor for the channel structor for merge, internal.

• ArActionDesiredChannel ∗ getMaxRotVelDesiredChannel (void)

Accessor for the channel structor for merge, internal.

4.6.1 Detailed Description

Class used to say what movement is desired.

This class is use by actions to report what they want to want to do (hence the
name).

The way it works, is that translational (front/back) and rotational (right/left)
are seperate. Translational movement uses velocity, while rotational movement
uses change in heading from current heading. Translational and rotational each
have their own strength value. Both translational and rotational movement
have maximum velocities as well, that also have their own strengths.

The strength value reflects how strongly an action wants to do the chosen
movement command, the resolver (ArResolver (p. 312)) will combine these
strengths and figure out what to do based on them.

For all strength values there is a total of 1.0 strength to be had. The range for
strength is from 0 to 1. This is simply a convention that ARIA uses by default, if
you don’t like it, you can override this class and make an ArResolver (p. 312).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

52 Aria Class Documentation

4.6.2 Member Function Documentation

4.6.2.1 virtual void ArActionDesired::accountForRobotHeading
(double robotHeading) [inline, virtual]

Accounts for robot heading, mostly internal.

This accounts for the robots heading, and transforms the set heading on this
actionDesired into a delta heading so it can be merged and averaged and the
like

Parameters:
robotHeading the heading the real actual robot is at now

4.6.2.2 virtual void ArActionDesired::addAverage
(ArActionDesired ∗ actDesired) [inline, virtual]

Adds another actionDesired into the mix to average.

For a description of how to use this, see startAverage.

Parameters:
actDesired the actionDesired to add into the average

4.6.2.3 virtual void ArActionDesired::endAverage (void) [inline,
virtual]

Ends the process of avereraging together different desireds.

For a description of how to use this, see startAverage.

4.6.2.4 virtual void ArActionDesired::merge (ArActionDesired ∗
actDesired) [inline, virtual]

Merges the given ArActionDesired into this one (this one has precedence), in-
ternal.

This merges in the two different action values, accountForRobotHeading MUST
be done before this is called (on both actions), since this merges their delta
headings, and the deltas can’t be known unless the account for angle is done.

Parameters:
actDesired the actionDesired to merge with this one

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 53

4.6.2.5 virtual void ArActionDesired::setDeltaHeading (double
deltaHeading, double strength = MAX STRENGTH)
[inline, virtual]

Sets the delta heading (deg) and strength.

Parameters:
deltaHeading desired change in heading (deg)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.6 virtual void ArActionDesired::setHeading (double heading,
double strength = MAX STRENGTH) [inline, virtual]

Sets the absolute heading (deg).

This is a way to set the heading instead of using a delta, there is no get for this,
because accountForRobotHeading MUST be called (this should be called by all
resolvers, but if you want to call it you can, thats fine).

Parameters:
heading desired heading (deg)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.7 virtual void ArActionDesired::setMaxNegVel (double
maxVel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the maximum velocity for going backwards (-mm/sec) and strength.

Parameters:
maxVel desired maximum velocity for going backwards (-mm/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.8 virtual void ArActionDesired::setMaxRotVel (double
maxVel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the maximum rotational velocity (deg/sec) and strength.

Parameters:
maxVel desired maximum rotational velocity (deg/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

54 Aria Class Documentation

4.6.2.9 virtual void ArActionDesired::setMaxVel (double maxVel,
double strength = MAX STRENGTH) [inline, virtual]

Sets the maximum velocity (+mm/sec) and strength.

Parameters:
maxVel desired maximum velocity (+mm/sec)

strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.10 virtual void ArActionDesired::setVel (double vel, double
strength = MAX STRENGTH) [inline, virtual]

Sets the velocity (mm/sec) and strength.

Parameters:
vel desired vel (mm/sec)

strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.11 virtual void ArActionDesired::startAverage (void)
[inline, virtual]

Starts the process of avereraging together different desireds.

There is a three step process for averaging actionDesireds together, first start-
Average must be done to set up the process, then addAverage must be done
with each average that is desired, then finally endAverage should be used, after
that is done then the normal process of getting the results out should be done.

The documentation for this class was generated from the following files:

• ArActionDesired.h
• ArActionDesired.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.7 ArActionDesiredChannel Class Reference 55

4.7 ArActionDesiredChannel Class Reference

Class used by ArActionDesired (p. 49) for each channel, internal.

#include <ArActionDesired.h>

4.7.1 Detailed Description

Class used by ArActionDesired (p. 49) for each channel, internal.

4.7.2 Member Data Documentation

4.7.2.1 const double ArActionDesiredChannel::MAX STRENGTH
[static]

Initial value:

ArActionDesired::MAX_STRENGTH

4.7.2.2 const double ArActionDesiredChannel::MIN STRENGTH
[static]

Initial value:

ArActionDesired::MIN_STRENGTH

4.7.2.3 const double ArActionDesiredChannel::NO STRENGTH
[static]

Initial value:

ArActionDesired::NO_STRENGTH

The documentation for this class was generated from the following files:

• ArActionDesired.h
• ArActionDesired.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

56 Aria Class Documentation

4.8 ArActionGoto Class Reference

This action goes to a given ArPose (p. 274) very naively.

#include <ArActionGoto.h>

Inheritance diagram for ArActionGoto::

ArActionGoto

ArAction

Public Methods

• bool haveAchievedGoal (void)
Sees if the goal has been achieved.

• void cancelGoal (void)
Cancels the goal the robot has.

• void setGoal (ArPose goal)
Sets a new goal and sets the action to go there.

• ArPose getGoal (void)
Gets the goal the action has.

• void setCloseDist (double closeDist)
Set the distance which is close enough to the goal (mm);.

• double getCloseDist (void)
Gets the distance which is close enough to the goal (mm).

• void setSpeed (double speed)
Sets the speed the action will travel to the goal at (mm/sec).

• double getSpeed (void)
Gets the speed the action will travel to the goal at (mm/sec).

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.8 ArActionGoto Class Reference 57

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.8.1 Detailed Description

This action goes to a given ArPose (p. 274) very naively.

This action naively drives straight towards a given ArPose (p. 274)... the action
stops when it gets closeDist away... it travels to the point at speed mm/sec.

You can give it a new goal with setGoal, cancel its movement with cancelGoal,
and see if it got there with haveAchievedGoal.

This doesn’t avoid obstacles or anything, you could have an avoid routine at a
higher priority to avoid on the way there... but for real and intelligent looking
navigation you should use something like Saphira’s Gradient navigation.

4.8.2 Member Function Documentation

4.8.2.1 ArActionDesired ∗ ArActionGoto::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionGoto.h
• ArActionGoto.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

58 Aria Class Documentation

4.9 ArActionGroup Class Reference

Class for groups of actions to accomplish one thing.

#include <ArActionGroup.h>

Inheritance diagram for ArActionGroup::

ArActionGroup

ArActionGroupInput ArActionGroupStop ArActionGroupTeleop ArActionGroupWander

Public Methods

• ArActionGroup (ArRobot ∗robot)
Constructor.

• virtual ∼ArActionGroup (void)
Destructor, it also deletes the actions in its group.

• virtual void addAction (ArAction ∗action, int priority)
Adds the action to the robot this group uses with the given priority.

• virtual void remAction (ArAction ∗action)
Removes the action from the robot this group uses.

• virtual void activate (void)
Activates all the actions in this group.

• virtual void activateExclusive (void)
Activates all the actions in this group and deactivates all others.

• virtual void deactivate (void)
Deactivates all the actions in this group.

• virtual void removeActions (void)
Removes all the actions in this group from the robot.

• virtual std::list< ArAction ∗> ∗ getActionList (void)
Gets the action list (use this to delete actions after doing removeActions).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.9 ArActionGroup Class Reference 59

4.9.1 Detailed Description

Class for groups of actions to accomplish one thing.

This class is used to have a group of ArActions and turn them on and off in
aggregate... this is so that you can say have a group of like 5 behaviors for teleop
or wander, and just turn ’em all on and off at once. Note that the destructor
by default will delete the actions added to the group, this is controlled with
a flag to the constructor though, so you can have it how you want.... this is
nice though so you can just do addAction(new ArActionWhatever(blah, blah,
blah), 90); and not worry about the deletion (since the destructor will do it),
just delete the group... if for some reason (I’d advise against it) you are using
one action in multiple groups, don’t use this feature, ie pass in false to the
constructor for it or you’ll wind up with a crash when the action is deleted by
both groups (again, you should probably only have an action in one group).

4.9.2 Constructor & Destructor Documentation

4.9.2.1 ArActionGroup::ArActionGroup (ArRobot ∗ robot)

Constructor.

@param robot The robot that this action group is attached to

@param deleteActionsOnDestruction if this is true then when the destructor is
called the actions that this group has will be deleted

4.9.3 Member Function Documentation

4.9.3.1 void ArActionGroup::addAction (ArAction ∗ action, int
priority) [virtual]

Adds the action to the robot this group uses with the given priority.

@param action the action to add to the robot @param priority the priority to
give the action @see ArRobot::addAction (p. 358)

4.9.3.2 void ArActionGroup::remAction (ArAction ∗ action)
[virtual]

Removes the action from the robot this group uses.

@param action the action to remove from the robot @see ArRobot::rem-
Action (p. 379)

The documentation for this class was generated from the following files:

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

60 Aria Class Documentation

• ArActionGroup.h
• ArActionGroup.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.10 ArActionGroupInput Class Reference 61

4.10 ArActionGroupInput Class Reference

Input to drive the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupInput::

ArActionGroupInput

ArActionGroup

4.10.1 Detailed Description

Input to drive the robot.

This class is just useful for teleoping the robot under your own joystick and
keyboard control... Note that you the predefined ArActionGroups in ARIA are
made only to be used exclusively... they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

62 Aria Class Documentation

4.11 ArActionGroupStop Class Reference

Stop the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupStop::

ArActionGroupStop

ArActionGroup

4.11.1 Detailed Description

Stop the robot.

This class is just useful for having the robot stopped... Note that you the
predefined ArActionGroups in ARIA are made only to be used exclusively...
they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.12 ArActionGroupTeleop Class Reference 63

4.12 ArActionGroupTeleop Class Reference

Teleop the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupTeleop::

ArActionGroupTeleop

ArActionGroup

4.12.1 Detailed Description

Teleop the robot.

This class is just useful for teleoping the robot and having these actions read
the joystick and keyboard... Note that you the predefined ArActionGroups in
ARIA are made only to be used exclusively... they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

64 Aria Class Documentation

4.13 ArActionGroupWander Class Reference

Has the robot wander.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupWander::

ArActionGroupWander

ArActionGroup

4.13.1 Detailed Description

Has the robot wander.

This class is useful for having the robot wander... Note that you the predefined
ArActionGroups in ARIA are made only to be used exclusively... they won’t
combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.14 ArActionInput Class Reference 65

4.14 ArActionInput Class Reference

Action for stopping the robot.

#include <ArActionInput.h>

Inheritance diagram for ArActionInput::

ArActionInput

ArAction

Public Methods

• ArActionInput (const char ∗name=”Input”)

Constructor.

• virtual ∼ArActionInput (void)

Destructor.

• void setVel (double vel)

Set velocity (cancels deltaVel).

• void deltaVel (double delta)

Increment/decrement the velocity (cancels setVel).

• void deltaHeading (double delta)

Increment/decrement the heading.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

• void activate (void)

Activate the action.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

66 Aria Class Documentation

4.14.1 Detailed Description

Action for stopping the robot.

This action simply sets the robot to a 0 velocity and a deltaHeading of 0.

4.14.2 Constructor & Destructor Documentation

4.14.2.1 ArActionInput::ArActionInput (const char ∗ name =
”Input”)

Constructor.

Parameters:
name name of the action

4.14.3 Member Function Documentation

4.14.3.1 ArActionDesired ∗ ArActionInput::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionInput.h
• ArActionInput.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.15 ArActionJoydrive Class Reference 67

4.15 ArActionJoydrive Class Reference

This action will use the joystick for input to drive the robot.

#include <ArActionJoydrive.h>

Inheritance diagram for ArActionJoydrive::

ArActionJoydrive

ArAction

Public Methods

• ArActionJoydrive (const char ∗name=”joydrive”, double trans-
VelMax=400, double turnAmountMax=15, bool stopIfNoButton-
Pressed=true, bool useOSCalForJoystick=true)

Constructor.

• virtual ∼ArActionJoydrive (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• bool joystickInited (void)
Whether the joystick is initalized or not.

• void setSpeeds (double transVelMax, double turnAmountMax)
Set Speeds.

• void setStopIfNoButtonPressed (bool stopIfNoButtonPressed)
Set if we’ll stop if no button is pressed, otherwise just do nothing.

• bool getStopIfNoButtonPressed (void)
Get if we’ll stop if no button is pressed, otherwise just do nothing.

• void setUseOSCal (bool useOSCal)
Sets whether to use OSCalibration the joystick or not.

• bool getUseOSCal (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

68 Aria Class Documentation

Gets whether OSCalibration is being used for the joystick or not.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.15.1 Detailed Description

This action will use the joystick for input to drive the robot.

This class creates its own ArJoyHandler (p. 213) to get input from the joystick.
Then it will scale the speed between 0 and the given max for velocity and
turning, up and down on the joystick go forwards/backwards while right and
left go right and left. You must press in one of the two joystick buttons for the
class to pay attention to the joystick.

NOTE: The joystick does not save calibration information, so you must calibrate
the joystick before each time you use it. To do this, press the button for at least
a half a second while the joystick is in the middle. Then let go of the button
and hold the joystick in the upper left for at least a half second and then in the
lower right corner for at least a half second.

4.15.2 Constructor & Destructor Documentation

4.15.2.1 ArActionJoydrive::ArActionJoydrive (const char ∗
name = ”joydrive”, double transVelMax = 400, double
turnAmountMax = 15, bool stopIfNoButtonPressed =
true, bool useOSCalForJoystick = true)

Constructor.

This action is for driving around the robot with a joystick, you must hold in
a button on the joystick and then lean the joytsick over to have it drive. You
need to calibrate the joystick for it to work right, for details about this see
ArJoyHandler (p. 213).

Parameters:
name the name of this action

transVelMax the maximum velocity the joydrive action will go, it reachs
this when the joystick is all the way forwards

turnAmountMax the maximum amount the joydrive action will turn, it
reachs this when the joystick is all the way forwards

stopIfNoButtonPressed if this is true and there is a joystick and no
button is pressed, the action will have the robot stop... otherwise it’ll
do nothing (letting lower priority actions fire)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.15 ArActionJoydrive Class Reference 69

See also:
ArJoyHandler::setUseOSCal (p. 216)

4.15.3 Member Function Documentation

4.15.3.1 ArActionDesired ∗ ArActionJoydrive::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

4.15.3.2 bool ArActionJoydrive::getUseOSCal (void)

Gets whether OSCalibration is being used for the joystick or not.

See also:
ArJoyHandler::getUseOSCal (p. 216)

4.15.3.3 void ArActionJoydrive::setUseOSCal (bool useOSCal)

Sets whether to use OSCalibration the joystick or not.

See also:
ArJoyHandler::setUseOSCal (p. 216)

The documentation for this class was generated from the following files:

• ArActionJoydrive.h
• ArActionJoydrive.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

70 Aria Class Documentation

4.16 ArActionKeydrive Class Reference

This action will use the keyboard arrow keys for input to drive the robot.

#include <ArActionKeydrive.h>

Inheritance diagram for ArActionKeydrive::

ArActionKeydrive

ArAction

Public Methods

• ArActionKeydrive (const char ∗name=”keydrive”, double transVel-
Max=400, double turnAmountMax=24, double velIncrement=25, double
turnIncrement=8)

Constructor.

• virtual ∼ArActionKeydrive (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• void setSpeeds (double transVelMax, double turnAmountMax)
For setting the maximum speeds.

• void setIncrements (double velIncrement, double turnIncrement)
For setting the increment amounts.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

• virtual void setRobot (ArRobot ∗robot)
Sets the robot this action is driving.

• virtual void activate (void)
Activate the action.

• virtual void deactivate (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.16 ArActionKeydrive Class Reference 71

Deactivate the action.

• void takeKeys (void)

Takes the keys this action wants to use to drive.

• void giveUpKeys (void)

Gives up the keys this action wants to use to drive.

• void up (void)

Internal, callback for up arrow.

• void down (void)

Internal, callback for down arrow.

• void left (void)

Internal, callback for left arrow.

• void right (void)

Internal, callback for right arrow.

• void space (void)

Internal, callback for space key.

4.16.1 Detailed Description

This action will use the keyboard arrow keys for input to drive the robot.

4.16.2 Member Function Documentation

4.16.2.1 ArActionDesired ∗ ArActionKeydrive::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

72 Aria Class Documentation

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionKeydrive.h
• ArActionKeydrive.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.17 ArActionLimiterBackwards Class Reference 73

4.17 ArActionLimiterBackwards Class Refer-
ence

Action to limit the backwards motion of the robot.

#include <ArActionLimiterBackwards.h>

Inheritance diagram for ArActionLimiterBackwards::

ArActionLimiterBackwards

ArAction

Public Methods

• ArActionLimiterBackwards (const char ∗name=”speed limiter”,
double stopDistance=-250, double slowDistance=-600, double max-
BackwardsSpeed=-250)

Constructor.

• virtual ∼ArActionLimiterBackwards (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.17.1 Detailed Description

Action to limit the backwards motion of the robot.

This class limits the backwards motion of the robot according to the parameters
given.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

74 Aria Class Documentation

4.17.2 Constructor & Destructor Documentation

4.17.2.1 ArActionLimiterBackwards::ArActionLimiterBackwards
(const char ∗ name = ”speed limiter”, double
stopDistance = -250, double slowDistance = -600, double
maxBackwardsSpeed = -250)

Constructor.

Parameters:
name name of the action

stopDistance distance at which to stop (mm)

slowDistance distance at which to slow down (mm)

maxBackwardsSpeed maximum backwards speed, speed allowed scales
from this to 0 at the stop distance (mm/sec)

4.17.3 Member Function Documentation

4.17.3.1 ArActionDesired ∗ ArActionLimiterBackwards::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionLimiterBackwards.h
• ArActionLimiterBackwards.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.18 ArActionLimiterForwards Class Reference 75

4.18 ArActionLimiterForwards Class Reference

Action to limit the forwards motion of the robot.

#include <ArActionLimiterForwards.h>

Inheritance diagram for ArActionLimiterForwards::

ArActionLimiterForwards

ArAction

Public Methods

• ArActionLimiterForwards (const char ∗name=”speed limiter”, dou-
ble stopDistance=250, double slowDistance=600, double slowSpeed=250,
double widthRatio=1.5)

Constructor.

• virtual ∼ArActionLimiterForwards (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.18.1 Detailed Description

Action to limit the forwards motion of the robot.

This action uses the sensors to find a maximum speed to travel at

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

76 Aria Class Documentation

4.18.2 Constructor & Destructor Documentation

4.18.2.1 ArActionLimiterForwards::ArActionLimiterForwards
(const char ∗ name = ”speed limiter”, double stopDistance
= 250, double slowDistance = 600, double slowSpeed =
250, double widthRatio = 1.5)

Constructor.

Parameters:
name name of the action

stopDistance distance at which to stop (mm)

slowDistance distance at which to slow down (mm)

slowSpeed speed allowed at slowDistance, scales to 0 at slow distance
(mm/sec)

4.18.3 Member Function Documentation

4.18.3.1 ArActionDesired ∗ ArActionLimiterForwards::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionLimiterForwards.h
• ArActionLimiterForwards.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.19 ArActionLimiterTableSensor Class Reference 77

4.19 ArActionLimiterTableSensor Class Refer-
ence

Action to limit speed based on whether there the table-sensors see anything.

#include <ArActionLimiterTableSensor.h>

Inheritance diagram for ArActionLimiterTableSensor::

ArActionLimiterTableSensor

ArAction

Public Methods

• ArActionLimiterTableSensor (const char ∗name=”TableSensor-
Limiter”)

Constructor.

• virtual ∼ArActionLimiterTableSensor (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.19.1 Detailed Description

Action to limit speed based on whether there the table-sensors see anything.

This action limits speed to 0 if the table-sensors see anything in front of the
robot. The action will only work if the robot has table sensors, meaning that
the robots parameter file has them listed as true.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

78 Aria Class Documentation

4.19.2 Member Function Documentation

4.19.2.1 ArActionDesired ∗ ArActionLimiterTableSensor::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionLimiterTableSensor.h
• ArActionLimiterTableSensor.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.20 ArActionStallRecover Class Reference 79

4.20 ArActionStallRecover Class Reference

Action to recover from a stall.

#include <ArActionStallRecover.h>

Inheritance diagram for ArActionStallRecover::

ArActionStallRecover

ArAction

Public Methods

• ArActionStallRecover (const char ∗name=”stall recover”, double
obstacleDistance=225, int cyclesToMove=50, double speed=150, double
degreesToTurn=45)

Constructor.

• virtual ∼ArActionStallRecover (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.20.1 Detailed Description

Action to recover from a stall.

This action tries to recover if one of the wheels has stalled, it has a series of
actions it tries in order to get out of the stall.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

80 Aria Class Documentation

4.20.2 Constructor & Destructor Documentation

4.20.2.1 AREXPORT ArActionStallRecover::ArActionStall-
Recover (const char ∗ name = ”stall recover”, double
obstacleDistance = 225, int cyclesToMove = 50, double
speed = 150, double degreesToTurn = 45)

Constructor.

Parameters:
name name of the action

obstacleDistance distance at which not to move because of obstacle.
(mm)

cyclesToMove number of cycles to move (# of cycles)

speed speed at which to back up or go forward (mm/sec)

degreesToTurn number of degrees to turn (deg)

4.20.3 Member Function Documentation

4.20.3.1 AREXPORT ArActionDesired ∗ ArActionStall-
Recover::fire (ArActionDesired currentDesired)
[virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionStallRecover.h
• ArActionStallRecover.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.21 ArActionStop Class Reference 81

4.21 ArActionStop Class Reference

Action for stopping the robot.

#include <ArActionStop.h>

Inheritance diagram for ArActionStop::

ArActionStop

ArAction

Public Methods

• ArActionStop (const char ∗name=”stop”)
Constructor.

• virtual ∼ArActionStop (void)
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.21.1 Detailed Description

Action for stopping the robot.

This action simply sets the robot to a 0 velocity and a deltaHeading of 0.

4.21.2 Constructor & Destructor Documentation

4.21.2.1 ArActionStop::ArActionStop (const char ∗ name =
”stop”)

Constructor.

Parameters:
name name of the action

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

82 Aria Class Documentation

4.21.3 Member Function Documentation

4.21.3.1 ArActionDesired ∗ ArActionStop::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionStop.h
• ArActionStop.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.22 ArActionTurn Class Reference 83

4.22 ArActionTurn Class Reference

Action to turn when the behaviors with more priority have limited the speed.

#include <ArActionTurn.h>

Inheritance diagram for ArActionTurn::

ArActionTurn

ArAction

Public Methods

• ArActionTurn (const char ∗name=”turn”, double speedStartTurn=200,
double speedFullTurn=100, double turnAmount=15)

Constructor.

• virtual ∼ArActionTurn (void)

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.22.1 Detailed Description

Action to turn when the behaviors with more priority have limited the speed.

This action is basically made so that you can just have a ton of limiters of
different kinds and types to keep speed under control, then throw this into
the mix to have the robot wander. Note that the turn amount ramps up to
turnAmount starting at 0 at speedStartTurn and hitting the full amount at
speedFullTurn.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

84 Aria Class Documentation

4.22.2 Member Function Documentation

4.22.2.1 ArActionDesired ∗ ArActionTurn::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 40).

The documentation for this class was generated from the following files:

• ArActionTurn.h
• ArActionTurn.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.23 ArACTS 1 2 Class Reference 85

4.23 ArACTS 1 2 Class Reference

Driver for ACTS.

#include <ArACTS.h>

Public Types

• enum ActsConstants { NUM CHANNELS = 32, MAX BLOBS
= 10, BLOB DATA SIZE = 16, DATA HEADER = NUM -
CHANNELS ∗ 4, MAX DATA = 5300 }

Public Methods

• ArACTS 1 2 (void)

Constructor.

• virtual ∼ArACTS 1 2 (void)

Destructor.

• bool openPort (ArRobot ∗robot, const char ∗host=”localhost”, int
port=5001)

Opens the connection to ACTS.

• bool closePort (void)

Closes the connection.

• bool isConnected (void)

Finds out whether there is connection.

• ArRobot ∗ getRobot (void)

Gets the robot this class is connected to.

• void setRobot (ArRobot ∗robot)

Sets the robot this class is connected to.

• bool requestPacket (void)

Requests another packet.

• bool requestQuit (void)

Requests that ACTS quits.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

86 Aria Class Documentation

• bool receiveBlobInfo (void)

Gets the blob information from the connection to acts.

• int getNumBlobs (int channel)

Gets the number of blobs for the given chanel.

• bool getBlob (int channel, int blobNumber, ArACTSBlob ∗blob)

Gets the given blob from the given channel.

• void actsHandler (void)

A function that reads information from acts and requests packets.

• void invert (int width=160, int height=120)

This will make the image stats inverted (for use with an inverted camera).

Protected Methods

• int getData (char ∗rawData)

an iternal function to strip out the information from some bytes.

4.23.1 Detailed Description

Driver for ACTS.

4.23.2 Member Enumeration Documentation

4.23.2.1 enum ArACTS 1 2::ActsConstants

Enumeration values:
NUM CHANNELS Number of channels there are.

MAX BLOBS Number of blobs per channel.

BLOB DATA SIZE Size of the blob data.

DATA HEADER Size of the data header.

MAX DATA Maximum amount of data.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.23 ArACTS 1 2 Class Reference 87

4.23.3 Member Function Documentation

4.23.3.1 bool ArACTS 1 2::closePort (void)

Closes the connection.

Closes the port to the ACTS server

Returns:
true if the connection was closed properly, false otherwise

4.23.3.2 bool ArACTS 1 2::getBlob (int channel, int blobNumber,
ArACTSBlob ∗ blob)

Gets the given blob from the given channel.

Gets the blobNumber from the channel given, fills the information for that blob
into the given blob structure.

Parameters:
channel the channel to get the blob from
blobNumber the number of the blob to get from the given channel
blob the blob instance to fill in with the data about the requested blob

Returns:
true if the blob instance could be filled in from the

4.23.3.3 int ArACTS 1 2::getNumBlobs (int channel)

Gets the number of blobs for the given chanel.

Returns:
the number of blobs on the channel, or -1 if the channel is invalid

4.23.3.4 void ArACTS 1 2::invert (int width = 160, int height =
120)

This will make the image stats inverted (for use with an inverted camera).

This inverts the image, but since ACTS doesn’t tell this driver the height or
width, you need to provide both of those for the image, default is 160x120.

Parameters:
width the width of the images acts is grabbing (pixels)
height the height of the images acts is grabbing (pixels)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

88 Aria Class Documentation

4.23.3.5 bool ArACTS 1 2::openPort (ArRobot ∗ robot, const char
∗ host = ”localhost”, int port = 5001)

Opens the connection to ACTS.

Opens the port to the ACTS server

Parameters:
robot the robot to attach this to, which puts a sensorInterp on the robot

so that ArACTS will always have fresh data from ACTS... giving a
NULL value is perfectly acceptable, in this case ArACTS will not do
any processing or requesting and you’ll have to use receiveBlobInfo
and requestPacket (or just call actsHandler)

port the port the ACTS server is running on, default of 5001
host the host the ACTS server is running on, default is localhost (ie this

machine)

Returns:
true if the connection was established, false otherwise

4.23.3.6 bool ArACTS 1 2::receiveBlobInfo (void)

Gets the blob information from the connection to acts.

Checks the connection to the ACTS server for data, if data is there it fills in
the blob information, otherwise just returns false

Returns:
true if there was new data and the data could be read succesfully

4.23.3.7 bool ArACTS 1 2::requestPacket (void)

Requests another packet.

Requests a packet from the ACTS server, specifically it sends the request to the
acts server over its connection

Returns:
true if the command was sent succesfully, false otherwise

4.23.3.8 bool ArACTS 1 2::requestQuit (void)

Requests that ACTS quits.

Sends a command to the ACTS server requesting that ACTS quit

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.23 ArACTS 1 2 Class Reference 89

Returns:
true if the request was sent succesfully, false otherwise

The documentation for this class was generated from the following files:

• ArACTS.h
• ArACTS.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

90 Aria Class Documentation

4.24 ArACTSBlob Class Reference

A class for the acts blob.

#include <ArACTS.h>

Public Methods

• ArACTSBlob (void)
Constructor.

• virtual ∼ArACTSBlob (void)
Destructor.

• int getArea (void)
Gets the number of pixels (area) covered by the blob.

• int getXCG (void)
Gets the X Center of Gravity of the blob.

• int getYCG (void)
Gets the Y Center of Gravity of the blob.

• int getLeft (void)
Gets the left border of the blob.

• int getRight (void)
Gets the right border of the blob.

• int getTop (void)
Gets the top border of the blob.

• int getBottom (void)
Gets the bottom border of the blob.

• void setArea (int area)
Sets the number of pixels (area) covered by the blob.

• void setXCG (int xcg)
Sets the X Center of Gravity of the blob.

• void setYCG (int ycg)
Sets the Y Center of Gravity of the blob.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.24 ArACTSBlob Class Reference 91

• void setLeft (int left)
Sets the left border of the blob.

• void setRight (int right)
Sets the right border fo the blob.

• void setTop (int top)
Sets the top border of the blob.

• void setBottom (int bottom)
Sets the bottom border of the blob.

• void print (void)
Prints the stats of the blob.

4.24.1 Detailed Description

A class for the acts blob.

The documentation for this class was generated from the following file:

• ArACTS.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

92 Aria Class Documentation

4.25 ArAMPTU Class Reference

Driver for the AMPUT.

#include <ArAMPTU.h>

Inheritance diagram for ArAMPTU::

ArAMPTU

ArPTZ

Public Methods

• ArAMPTU (ArRobot ∗robot, int unitNumber=0)
Constructor.

• virtual ∼ArAMPTU (void)
Destructor.

• virtual bool init (void)
Initializes the camera.

• virtual bool pan (int deg)
Pans to the given degrees.

• virtual bool panRel (int deg)
Pans relative to current position by given degrees.

• virtual bool tilt (int deg)
Tilts to the given degrees.

• virtual bool tiltRel (int deg)
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int panDeg, int tiltDeg)
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int panDeg, int tiltDeg)
Pans and tilts relatives to the current position by the given degrees.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.25 ArAMPTU Class Reference 93

• bool panSlew (int deg)
Sets the rate that the camera pans at.

• bool tiltSlew (int deg)
Sets the rate the camera tilts at.

• virtual bool canZoom (void)
Returns true if camera can zoom (or rather, if it is controlled by this).

• virtual int getMaxPosPan (void)
Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void)
Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void)
Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void)
Gets the lowest negative degree the camera can tilt to.

• bool pause (void)
Stops current pan/tilt, can be resumed later.

• bool resume (void)
Resumes a previously paused pan/tilt.

• bool purge (void)
Stops motion and purges last command.

• bool requestStatus (void)
Retrieves the camera status.

• virtual int getPan (void)
Gets the angle the camera is panned to.

• virtual int getTilt (void)
Gets the angle the camera is tilted to.

4.25.1 Detailed Description

Driver for the AMPUT.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

94 Aria Class Documentation

4.25.2 Constructor & Destructor Documentation

4.25.2.1 ArAMPTU::ArAMPTU (ArRobot ∗ robot, int unitNumber
= 0)

Constructor.

Parameters:
robot the robot to attach to

unitNumber the unit number for this packet, this needs to be 0-7

The documentation for this class was generated from the following files:

• ArAMPTU.h
• ArAMPTU.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.26 ArAMPTUCommands Class Reference 95

4.26 ArAMPTUCommands Class Reference

A class with the commands for the AMPTU.

#include <ArAMPTU.h>

Public Types

• enum { ABSTILT = 0x35, RELTILTU = 0x36, RELTILTD = 0x37,
ABSPAN = 0x31, RELPANCW = 0x32, RELPANCCW = 0x33,
PANTILT = 0x28, PANTILTUCW = 0x29, PANTILTDCW =
0x2A, PANTILTUCCW = 0x2B, PANTILTDCCW = 0x2C, ZOOM
= 0x3F, PAUSE = 0x39, CONT = 0x3A, PURGE = 0x3B, STATUS
= 0x3C, INIT = 0x3D, RESP = 0x3E, PANSLEW = 0x34, TILT-
SLEW = 0x38 }

4.26.1 Detailed Description

A class with the commands for the AMPTU.

4.26.2 Member Enumeration Documentation

4.26.2.1 anonymous enum

Enumeration values:
ABSTILT Absolute tilt.

RELTILTU Relative tilt, up.

RELTILTD Relative tilt, down.

ABSPAN Absolute pan.

RELPANCW Relative pan, clockwise.

RELPANCCW Relative pan, counter clockwise.

PANTILT Pan and tilt absolute.

PANTILTUCW Relative tilt up, pan clockwise.

PANTILTDCW Relative tilt down, pan clockwise.

PANTILTUCCW Relative tilt up, pan counter-clockwise.

PANTILTDCCW Relative tilt down, pan counter-clockwise.

ZOOM Zoom.

PAUSE Pause the current movement.

CONT Continue paused movement.

PURGE Stops movement and purges commands.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

96 Aria Class Documentation

STATUS Requests a status packet.

INIT Initializes the camera.

RESP Response.

PANSLEW Sets the pan slew rate.

TILTSLEW Sets the tilt slew rate.

The documentation for this class was generated from the following file:

• ArAMPTU.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.27 ArAMPTUPacket Class Reference 97

4.27 ArAMPTUPacket Class Reference

A class for for making commands to send to the AMPTU.

#include <ArAMPTU.h>

Inheritance diagram for ArAMPTUPacket::

ArAMPTUPacket

ArBasePacket

Public Methods

• ArAMPTUPacket (ArTypes::UByte2 bufferSize=30)

Constructor.

• virtual ∼ArAMPTUPacket (void)

Destructor.

• unsigned char getUnitNumber (void)

Gets the unit number this packet is for.

• bool setUnitNumber (unsigned char unitNumber)

Sets the unit number htis packet is for.

• virtual void byteToBuf (ArTypes::Byte val)

Puts ArTypes::Byte (p. 481) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)

Puts ArTypes::Byte2 (p. 481) into packets buffer.

• virtual void finalize (void)

Finalizes the packet in preparation for sending, must be done.

4.27.1 Detailed Description

A class for for making commands to send to the AMPTU.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

98 Aria Class Documentation

There are only a few functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

See also:
getUnitNumber (p. 98) , setUnitNumber (p. 98)

4.27.2 Member Function Documentation

4.27.2.1 unsigned char ArAMPTUPacket::getUnitNumber (void)

Gets the unit number this packet is for.

Each AMPTU has a unit number, so that you can daisy chain multiple ones
together. This number is incorporated into the packet header, thus the packet
has to know what the number is.

Returns:
the unit number this packet has

4.27.2.2 bool ArAMPTUPacket::setUnitNumber (unsigned char
unitNumber)

Sets the unit number htis packet is for.

Each AMPTU has a unit number, so that you can daisy chain multiple ones
together. This number is incorporated into the packet header, thus the packet
has to know what the number is.

Parameters:
unitNumber the unit number for this packet, this needs to be 0-7

Returns:
true if the number is acceptable, false otherwise

The documentation for this class was generated from the following files:

• ArAMPTU.h
• ArAMPTU.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.28 ArArg Class Reference 99

4.28 ArArg Class Reference

Argument class, mostly for actions, could be used for other things.

#include <ArArg.h>

Public Types

• enum Type { INVALID, INT, DOUBLE, STRING, BOOL, POSE
}

Public Methods

• ArArg (void)
Default empty contructor.

• ArArg (std::string name, int ∗pointer, std::string description=””)
Constructor for making an integer argument.

• ArArg (std::string name, double ∗pointer, std::string description=””)
Constructor for making a double argument.

• ArArg (std::string name, std::string ∗pointer, std::string description=””)
Constructor for making a string argument.

• ArArg (std::string name, bool ∗pointer, std::string description=””)
Constructor for making a boolean argument.

• ArArg (std::string name, ArPose ∗pointer, std::string description=””)
Constructor for making a position argument.

• ArArg (const ArArg &arg)
Copy constructor.

• virtual ∼ArArg (void)
Destructor.

• Type getType (void)
Gets the type of the argument.

• std::string getName (void)
Gets the name of the argument.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

100 Aria Class Documentation

• std::string getDescription (void)

Gets the long description of the argument.

• void setInt (int val)

Sets the argument value, for int arguments.

• void setDouble (double val)

Sets the argument value, for double arguments.

• void setString (std::string str)

Sets the argument value, for string arguments.

• void setBool (bool val)

Sets the argument value, for bool arguments.

• void setPose (ArPose pose)

Sets the argument value, for ArPose (p. 274) arguments.

• int getInt (void)

Gets the argument value, for int arguments.

• double getDouble (void)

Gets the argument value, for double arguments.

• std::string getString (void)

Gets the argument value, for string arguments.

• bool getBool (void)

Gets the argument value, for bool arguments.

• ArPose getPose (void)

Gets the argument value, for pose arguments.

• void print (void)

Logs the type, name, and value of this argument.

• void clearPointers (void)

Internal helper function.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.28 ArArg Class Reference 101

4.28.1 Detailed Description

Argument class, mostly for actions, could be used for other things.

This is designed to be easy to add another type to the arguments... All you
have to do to do so, is add an enum to the Type enum, add a newType getNew-
Type(void), add a void setNewType(newType nt), and add a case statement for
the newType to ArArg::print (p. 100). You should probably also add an

See also:
newType to the documentation for ArArg::getType (p. 101).

4.28.2 Member Enumeration Documentation

4.28.2.1 enum ArArg::Type

Enumeration values:
INVALID An invalid argument, the argument wasn’t created correctly.

INT Integer argument.

DOUBLE Double argument.

STRING String argument.

BOOL Boolean argument.

POSE ArPose (p. 274) argument.

4.28.3 Member Function Documentation

4.28.3.1 ArArg::Type ArArg::getType (void)

Gets the type of the argument.

See also:
INVALID (p. 101) , INT (p. 101) , DOUBLE (p. 101) , STRING
(p. 101) , BOOL (p. 101) , POSE (p. 101)

The documentation for this class was generated from the following files:

• ArArg.h
• ArArg.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

102 Aria Class Documentation

4.29 ArArgumentBuilder Class Reference

This class is to build arguments for things that require argc and argv.

#include <ariaUtil.h>

Public Methods

• ArArgumentBuilder (size t argvLen=256)
Constructor.

• virtual ∼ArArgumentBuilder (void)
Destructor.

• void add (char ∗str,...)
Adds the given string, with varargs, seperates if there are spaces.

• void print (void)
Prints out the arguments.

• size t getArgc (void)
Gets the argc.

• char ∗∗ getArgv (void)
Gets the argv.

4.29.1 Detailed Description

This class is to build arguments for things that require argc and argv.

The documentation for this class was generated from the following files:

• ariaUtil.h
• ariaUtil.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.30 ArArgumentParser Class Reference 103

4.30 ArArgumentParser Class Reference

Class for parsing arguments.

#include <ariaUtil.h>

Public Methods

• ArArgumentParser (int ∗argc, char ∗∗argv)

Constructor, takes the argc argv.

• ∼ArArgumentParser (void)

Destructor.

• bool checkArgument (char ∗argument)

Returns true if the argument was found.

• char ∗ checkParameterArgument (char ∗argument)

Returns the word/argument after given argument or NULL if it is not
present.

4.30.1 Detailed Description

Class for parsing arguments.

This class is made for parsing arguments form an argc/argv set... if you’re using
a winmain you can first toss your string at the ArArgumentBuilder (p. 102)
above class ArArgumentParser and then use this parser on it

4.30.2 Constructor & Destructor Documentation

4.30.2.1 ArArgumentParser::ArArgumentParser (int ∗ argc, char
∗∗ argv)

Constructor, takes the argc argv.

Parameters:
argc a pointer to the argc used

argv argv

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

104 Aria Class Documentation

4.30.3 Member Function Documentation

4.30.3.1 bool ArArgumentParser::checkArgument (char ∗
argument)

Returns true if the argument was found.

Parameters:
argument the string to check for, if the argument is found its pulled from

the list of arguments

Returns:
true if the argument was found, false otherwise

4.30.3.2 char ∗ ArArgumentParser::checkParameterArgument
(char ∗ argument)

Returns the word/argument after given argument or NULL if it is not present.

Parameters:
argument the string to check for, if the argument is found its pulled from

the list of arguments

Returns:
NULL if the argument wasn’t found, the argument after the one given if
the argument was found, or NULL again if the argument was found as the
last item

The documentation for this class was generated from the following files:

• ariaUtil.h
• ariaUtil.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.31 ArASyncTask Class Reference 105

4.31 ArASyncTask Class Reference

Asynchronous task (runs in its own thread).

#include <ArASyncTask.h>

Inheritance diagram for ArASyncTask::

ArASyncTask

ArThread

ArRangeDeviceThreaded ArRecurrentTask ArSignalHandler ArSyncLoop ArTimer

ArSick

Public Methods

• ArASyncTask ()
Constructor.

• virtual ∼ArASyncTask ()
Destructor.

• virtual void ∗ runThread (void ∗arg)=0
The main run loop.

• virtual int create (bool joinable=true, bool lowerPriority=true)
Create the task and start it going.

• virtual void ∗ runInThisThread (void ∗arg=0)
Run the code of the task syncronously.

4.31.1 Detailed Description

Asynchronous task (runs in its own thread).

The ArAsynTask is a task that runs in its own thread. This is a rather simple
class. The user simply needs to derive their own class from ArAsyncTask and
define the runThread() (p. 106) function. They then need to create an instance
of their task and call create() (p. 105). The standard way to stop a task is to
call stopRunning() (p. 472) which sets ArThread::myRunning (p. 474) to
false. In their run loop, they should pay attention to the getRunning() (p. 473)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

106 Aria Class Documentation

or the ArThread::myRunning (p. 474) variable. If this value goes to false,
the task should clean up after itself and exit its runThread() (p. 106) function.

4.31.2 Member Function Documentation

4.31.2.1 void ∗ ArASyncTask::runInThisThread (void ∗ arg = 0)
[virtual]

Run the code of the task syncronously.

This will run the code of the ArASyncTask without creating a new thread to
run it in. It performs the needed setup then calls runThread() (p. 106). This
is good if you have a task which you wish to run multiple instances of and you
want to use the main() thread instead of having it block, waiting for exit of the
program.

Parameters:
arg the argument to pass to the runThread() (p. 106)

4.31.2.2 virtual void∗ ArASyncTask::runThread (void ∗ arg) [pure
virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 473) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 106) should return.

Reimplemented in ArRangeDeviceThreaded (p. 308), ArRecurrentTask
(p. 311), ArSick (p. 421), and ArSignalHandler (p. 442).

The documentation for this class was generated from the following files:

• ArASyncTask.h
• ArASyncTask.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.32 ArBasePacket Class Reference 107

4.32 ArBasePacket Class Reference

Base packet class.

#include <ArBasePacket.h>

Inheritance diagram for ArBasePacket::

ArBasePacket

ArAMPTUPacket ArDPPTUPacket ArRobotPacket ArSickPacket ArSonyPacket ArVCC4Packet

Public Methods

• ArBasePacket (ArTypes::UByte2 bufferSize=0, ArTypes::UByte2
headerLength=0, char ∗buf=NULL)

Constructor.

• virtual ∼ArBasePacket (void)
Destructor.

• virtual void empty (void)
resets the length for more data to be added.

• virtual void finalize (void)
Finalizes the packet in preparation for sending, must be done.

• virtual void print (void)
ArLogs the contents of the packet.

• virtual void printHex (void)
ArLogs the contents of the packet in hex.

• virtual void byteToBuf (ArTypes::Byte val)
Puts ArTypes::Byte (p. 481) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)
Puts ArTypes::Byte2 (p. 481) into packets buffer.

• virtual void byte4ToBuf (ArTypes::Byte4 val)
Puts ArTypes::Byte4 (p. 481) into packets buffer.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

108 Aria Class Documentation

• virtual void uByteToBuf (ArTypes::UByte val)

Puts ArTypes::UByte (p. 481) into packets buffer.

• virtual void uByte2ToBuf (ArTypes::UByte2 val)

Puts ArTypes::UByte2 (p. 481) into packet buffer.

• virtual void uByte4ToBuf (ArTypes::UByte4 val)

Puts ArTypes::UByte (p. 481) 4 into packet buffer.

• virtual void strToBuf (std::string str)

Puts a string into packet buffer.

• virtual void strNToBuf (const char ∗str, int length)

Copies length bytes from str into packet buffer.

• virtual void strToBufPadded (const char ∗str, int length)

Copies length bytes from str, if str ends before length, pads data.

• virtual void dataToBuf (const char ∗data, int length)

Copies length bytes from data into packet buffer.

• virtual ArTypes::Byte bufToByte (void)

Gets a ArTypes::Byte (p. 481) from the buffer.

• virtual ArTypes::Byte2 bufToByte2 (void)

Gets a ArTypes::Byte2 (p. 481) from the buffer.

• virtual ArTypes::Byte4 bufToByte4 (void)

Gets a ArTypes::Byte4 (p. 481) from the buffer.

• virtual ArTypes::UByte bufToUByte (void)

Gets a ArTypes::UByte (p. 481) from the buffer.

• virtual ArTypes::UByte2 bufToUByte2 (void)

Gets a ArTypes::UByte2 (p. 481) from the buffer.

• virtual ArTypes::UByte4 bufToUByte4 (void)

Gets a ArTypes::UByte4 (p. 481) from the buffer.

• virtual void bufToStr (char ∗buf, int len)

Gets a string from the buffer.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.32 ArBasePacket Class Reference 109

• virtual void bufToData (char ∗data, int length)
Gets length bytes from buffer and puts them into data.

• virtual void resetRead (void)
Restart the reading process.

• virtual ArTypes::UByte2 getLength (void)
Gets the total length of the packet.

• virtual ArTypes::UByte2 getReadLength (void)
Gets how the length of the packet that has been read.

• virtual ArTypes::UByte2 getHeaderLength (void)
Gets the length of the header.

• virtual ArTypes::UByte2 getMaxLength (void)
Gets the maximum length packet.

• virtual const char ∗ getBuf (void)
Gets a pointer to the buffer the packet uses.

• virtual void setBuf (char ∗buf)
Sets the buffer the packet is using.

• virtual bool setLength (ArTypes::UByte2 length)
Sets the length of the packet.

• virtual bool setHeaderLength (ArTypes::UByte2 length)
Sets the length of the header.

• virtual void duplicatePacket (ArBasePacket ∗packet)
Makes this packet a duplicate of another packet.

4.32.1 Detailed Description

Base packet class.

This class is a base class for all packets... most software will never need to use
this class, it is there mostly to help people do more advanced client and server
communications.

All of the functions are virtual so it can be completely overridden if desired...
but the few most likely ones to be overridden are empty and finalize...

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

110 Aria Class Documentation

The theory of the packet works like this, the packet has a buffer, headerLength,
readLength, length, and a maxLength. When the packet is initialized it is given
a buffer and its maxLength. All of the functions that are somethingToBuf put
data in at the current length of the packet, and advance the length. All of the
functions that do bufToSomething get the data from where readLength points,
and advance read length. resetRead sets readLength back to the header (since no
one outside of the person who writes the class should touch the header). empty
likewise sets the length back to the header since the header will be calculated
in the finalize method.

The base class and most classes of this kind will have an integer before the
string, denoting the strings length... this is hidden by the function calls, but
something someone may want to be aware of... it should not matter much as
this same packet class should be used on both sides.

Uses of this class that don’t get newed and deleted a lot can just go ahead and
use the constructor with buf = NULL, as this will have the packet manage its
own memory, making life easier.

4.32.2 Constructor & Destructor Documentation

4.32.2.1 ArBasePacket::ArBasePacket (ArTypes::UByte2
bufferSize = 0, ArTypes::UByte2 headerLength = 0, char
∗ buf = NULL)

Constructor.

Parameters:
bufferSize size of the buffer
headerLength length of the header
buf buffer packet uses, if NULL, instance will allocate memory

4.32.3 Member Function Documentation

4.32.3.1 void ArBasePacket::bufToData (char ∗ data, int length)
[virtual]

Gets length bytes from buffer and puts them into data.

copies length bytes from the buffer into data, length is passed in, not read from
packet

Parameters:
data character array to copy the data into
length number of bytes to copy into data

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.32 ArBasePacket Class Reference 111

4.32.3.2 void ArBasePacket::bufToStr (char ∗ buf, int len)
[virtual]

Gets a string from the buffer.

puts a string from the packets buffer into the given buffer, stopping when it
reaches the end of the packets buffer or the length of the given buffer or a ’\0’

4.32.3.3 void ArBasePacket::dataToBuf (const char ∗ data, int
length) [virtual]

Copies length bytes from data into packet buffer.

puts data into the buffer without putting in length first

Parameters:
data chacter array to copy into buffer

legnth how many botes to copy from data into packet

4.32.3.4 void ArBasePacket::duplicatePacket (ArBasePacket ∗
packet) [virtual]

Makes this packet a duplicate of another packet.

Copies the given packets buffer into the buffer of this packet, also sets this length
and readlength to what the given packet has

Parameters:
packet the packet to duplicate

4.32.3.5 void ArBasePacket::empty (void) [virtual]

resets the length for more data to be added.

Sets the packet length back to be the packets header length again

4.32.3.6 void ArBasePacket::resetRead (void) [virtual]

Restart the reading process.

Sets the length read back to the header length so the packet can be reread using
the other methods

Reimplemented in ArRobotPacket (p. 394), and ArSickPacket (p. 434).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

112 Aria Class Documentation

4.32.3.7 void ArBasePacket::strNToBuf (const char ∗ str, int
length) [virtual]

Copies length bytes from str into packet buffer.

first puts the length of the string into the buffer, then puts in string

Parameters:
str character array to copy into buffer

length how many bytes to copy from the str into packet

4.32.3.8 void ArBasePacket::strToBuf (std::string str) [virtual]

Puts a string into packet buffer.

first puts the length of the string into the buffer, then puts in string

Parameters:
str string to copy into buffer

4.32.3.9 void ArBasePacket::strToBufPadded (const char ∗ str, int
length) [virtual]

Copies length bytes from str, if str ends before length, pads data.

first puts the length of the string into the buffer, then puts in string, if string
ends before length it pads the string

Parameters:
str character array to copy into buffer

length how many bytes to copy from the str into packet

The documentation for this class was generated from the following files:

• ArBasePacket.h
• ArBasePacket.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.33 ArCommands Class Reference 113

4.33 ArCommands Class Reference

A class with an enum of the commands that can be sent to the robot.

#include <ArCommands.h>

Public Types

• enum Commands { PULSE = 0, OPEN = 1, CLOSE = 2,
POLLING = 3, ENABLE = 4, SETA = 5, SETV = 6, SETO = 7,
MOVE = 8, ROTATE = 9, SETRV = 10, VEL = 11, HEAD = 12,
DHEAD = 13, SAY = 15, CONFIG = 18, ENCODER = 19, RVEL
= 21, DCHEAD = 22, SETRA = 23, SONAR = 28, STOP = 29,
DIGOUT = 30, VEL2 = 32, GRIPPER = 33, ADSEL = 35, GRIP-
PERVAL = 36, GRIPPERPACREQUEST = 37, IOREQUEST =
40, PTUPOS = 41, TTY2 = 42, GETAUX = 43, BUMPSTALL =
44, TCM2 = 45, JOYDRIVE = 47, ESTOP = 55 , LOADPARAM =
61, ENDSIM = 62, LOADWORLD = 63, STEP = 64, CALCOMP
= 65, SETSIMORIGINX = 66, SETSIMORIGINY = 67, SETSI-
MORIGINTH = 68, RESETSIMTOORIGIN = 69, SOUND = 90,
PLAYLIST = 91, SOUNDTOG = 92 }

4.33.1 Detailed Description

A class with an enum of the commands that can be sent to the robot.

A class with an enum of the commands that can be sent to the robot, see the
operations manual for more detailed descriptions.

4.33.2 Member Enumeration Documentation

4.33.2.1 enum ArCommands::Commands

Enumeration values:
PULSE none, keep alive command, so watchdog doesn’t trigger.

OPEN none, sent after connection to initiate connection.

CLOSE none, sent to close the connection to the robot.

POLLING string, string that sets sonar polling sequence.

ENABLE int, enable (1) or disable (0) motors.

SETA int, sets translational accel (+) or decel (-) (mm/sec/sec).

SETV int, sets maximum velocity (mm/sec).

SETO int, resets robots origin back to 0, 0, 0.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

114 Aria Class Documentation

MOVE int, translational move (mm).

ROTATE int, set rotational velocity, duplicate of RVEL (deg/sec).

SETRV int, sets the maximum rotational velocity (deg/sec).

VEL int, set the translational velocity (mm/sec).

HEAD int, turn to absolute heading 0-359 (degrees).

DHEAD int, turn relative to current heading (degrees).

SAY string, makes the robot beep. up to 20 pairs of duration (20 ms
incrs) and tones (halfcycle)

CONFIG int, request configuration packet.

ENCODER int, > 0 to request continous stream of packets, 0 to stop.

RVEL int, set rotational velocity (deg/sec).

DCHEAD int, colbert relative heading setpoint (degrees).

SETRA int, sets rotational accel(+) or decel(-) (deg/sec).

SONAR int, enable (1) or disable (0) sonar.

STOP int, stops the robot.

DIGOUT int, sets the digout lines.

VEL2 2bytes, independent wheel velocities, first byte = right, second =
left

GRIPPER int, gripper server command, see gripper manual for detail.

ADSEL int, select the port given as argument.

GRIPPERVAL p2 gripper server value, see gripper manual for details.

GRIPPERPACREQUEST p2 gripper packet request.

IOREQUEST request iopackets from p2os.

PTUPOS most-sig byte is port number, least-sig byte is pulse width.

TTY2 string, send string argument to serial dev connected to aux.

GETAUX int, requests 1-200 bytes from aux serial channel, 0 flush.

BUMPSTALL int, stop and register a stall if front (1), rear (2), or both
(3) bump rings are triggered, Off (default) is 0

TCM2 TCM2 module commands, see p2 tcm2 manual for details.

JOYDRIVE Command to tell p2os to drive with the joystick plugged
into the robot

ESTOP none, emergency stop, overrides decel.

LOADPARAM string, Sim Specific, causes the sim to load the given
param file.

ENDSIM none, Sim Specific, causes the simulator to close and exit.

LOADWORLD string, Sim Specific, causes the sim to load given world.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.33 ArCommands Class Reference 115

STEP none, Sim Specific, single step mode.

CALCOMP int, commands for calibrating compass, see compass man-
ual.

SETSIMORIGINX int, sets the X origin in the simulator.

SETSIMORIGINY int, sets the Y origin in the simulator.

SETSIMORIGINTH int, sets the heading at origin in the simulator.

RESETSIMTOORIGIN int, resets the sim robots poseiton to origin.

SOUND int, AmigoBot specific, plays sound with given number.

PLAYLIST int, AmigoBot specific, requests name of sound, 0 for all,
otherwise for specific sound

SOUNDTOG int, AmigoBot specific, enable(1) or diable(0) sound.

The documentation for this class was generated from the following file:

• ArCommands.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

116 Aria Class Documentation

4.34 ArCondition Class Reference

Threading condition wrapper class.

#include <ArCondition.h>

Public Types

• enum typedef { STATUS FAILED = 1, STATUS FAILED -
DESTROY, STATUS FAILED INIT, STATUS WAIT -
TIMEDOUT, STATUS WAIT INTR, STATUS MUTEX -
FAILED INIT, STATUS MUTEX FAILED }

Public Methods

• ArCondition ()

Constructor.

• virtual ∼ArCondition ()

Desctructor.

• int signal ()

Signal the thread waiting.

• int broadcast ()

Broadcast a signal to all threads waiting.

• int wait ()

Wait for a signal.

• int timedWait (unsigned int msecs)

Wait for a signal for a period of time in milliseconds.

• std::string getError (int messageNumber)

Translate error into string.

4.34.1 Detailed Description

Threading condition wrapper class.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.34 ArCondition Class Reference 117

4.34.2 Member Enumeration Documentation

4.34.2.1 enum ArCondition::typedef

Enumeration values:
STATUS FAILED General failure.

STATUS FAILED DESTROY Another thread is waiting on this con-
dition so it can not be destroyed.

STATUS FAILED INIT Failed to initialize thread. Requested action
is imposesible.

STATUS WAIT TIMEDOUT The timedwait timed out before sig-
naling.

STATUS WAIT INTR The wait was interupted by a signal.

STATUS MUTEX FAILED INIT The underlying mutex failed to
init.

STATUS MUTEX FAILED The underlying mutex failed in some
fashion.

The documentation for this class was generated from the following files:

• ArCondition.h
• ArCondition LIN.cpp
• ArCondition WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

118 Aria Class Documentation

4.35 ArDeviceConnection Class Reference

Base class for device connections.

#include <ArDeviceConnection.h>

Inheritance diagram for ArDeviceConnection::

ArDeviceConnection

ArLogFileConnection ArSerialConnection ArTcpConnection

Public Types

• enum Status { STATUS NEVER OPENED = 1, STATUS OPEN,
STATUS OPEN FAILED, STATUS CLOSED NORMALLY,
STATUS CLOSED ERROR }

Public Methods

• ArDeviceConnection (void)
constructor.

• virtual ∼ArDeviceConnection (void)
destructor also forces a close on the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)=0

Reads data from connection.

• virtual int writePacket (ArBasePacket ∗packet)
Writes data to connection.

• virtual int write (const char ∗data, unsigned int size)=0
Writes data to connection.

• virtual int getStatus (void)=0
Gets the status of the connection, which is one of the enum status.

• std::string getStatusMessage (int messageNumber)
Gets the description string associated with the status.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.35 ArDeviceConnection Class Reference 119

• virtual bool openSimple (void)=0

Opens the connection again, using the values from setLocation or.

• virtual bool close (void)

Closes the connection.

• virtual std::string getOpenMessage (int messageNumber)=0

Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)=0

Gets the time data was read in.

• virtual bool isTimeStamping (void)=0

sees if timestamping is really going on or not.

4.35.1 Detailed Description

Base class for device connections.

Base class for device connections, this is mostly for connections to the robot or
simulator but could also be used for a connection to a laser or other device

Note that this is mostly a base class, so if you’ll want to use one of the classes
which inherit from this one... also note that in those classes is where you’ll
find setPort which sets the place the device connection will try to connect to...
the inherited classes also have an open which returns more detailed information
about the open attempt, and which takes the parameters for where to connect

4.35.2 Member Enumeration Documentation

4.35.2.1 enum ArDeviceConnection::Status

Enumeration values:
STATUS NEVER OPENED Never opened.

STATUS OPEN Currently open.

STATUS OPEN FAILED Tried to open, but failed.

STATUS CLOSED NORMALLY Closed by a close call.

STATUS CLOSED ERROR Closed because of error.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

120 Aria Class Documentation

4.35.3 Member Function Documentation

4.35.3.1 virtual bool ArDeviceConnection::close (void) [inline,
virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented in ArLogFileConnection (p. 226), ArSerialConnection
(p. 413), and ArTcpConnection (p. 468).

4.35.3.2 virtual std::string ArDeviceConnection::getOpenMessage
(int messageNumber) [pure virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented in ArLogFileConnection (p. 227), ArSerialConnection
(p. 413), and ArTcpConnection (p. 468).

4.35.3.3 virtual int ArDeviceConnection::getStatus (void) [pure
virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 121)

Reimplemented in ArLogFileConnection (p. 227), ArSerialConnection
(p. 414), and ArTcpConnection (p. 469).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.35 ArDeviceConnection Class Reference 121

4.35.3.4 std::string ArDeviceConnection::getStatusMessage (int
messageNumber)

Gets the description string associated with the status.

Parameters:
messageNumber the int from getStatus you want the string for

Returns:
the description associated with the status

See also:
getStatus (p. 120)

4.35.3.5 virtual ArTime ArDeviceConnection::getTimeRead (int
index) [pure virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented in ArLogFileConnection (p. 228), ArSerialConnection
(p. 414), and ArTcpConnection (p. 469).

4.35.3.6 virtual bool ArDeviceConnection::isTimeStamping (void)
[pure virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented in ArLogFileConnection (p. 228), ArSerialConnection
(p. 415), and ArTcpConnection (p. 469).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

122 Aria Class Documentation

4.35.3.7 virtual int ArDeviceConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [pure
virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 122), writePacket (p. 123)

Reimplemented in ArLogFileConnection (p. 228), ArSerialConnection
(p. 415), and ArTcpConnection (p. 470).

4.35.3.8 virtual int ArDeviceConnection::write (const char ∗ data,
unsigned int size) [pure virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 122), writePacket (p. 123)

Reimplemented in ArLogFileConnection (p. 229), ArSerialConnection
(p. 416), and ArTcpConnection (p. 471).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.35 ArDeviceConnection Class Reference 123

4.35.3.9 virtual int ArDeviceConnection::writePacket
(ArBasePacket ∗ packet) [inline, virtual]

Writes data to connection.

Writes data to connection from a packet

Parameters:
packet pointer to a packet to write the data from

Returns:
number of bytes written, or -1 for failure

See also:
read (p. 122), write (p. 122)

The documentation for this class was generated from the following files:

• ArDeviceConnection.h
• ArDeviceConnection.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

124 Aria Class Documentation

4.36 ArDPPTU Class Reference

Driver for the DPPTU.

#include <ArDPPTU.h>

Inheritance diagram for ArDPPTU::

ArDPPTU

ArPTZ

Public Types

• enum { , MIN PAN = -158, MAX TILT = 30, MIN TILT = -46,
MAX PAN SLEW = 149, MIN PAN SLEW = 2, MAX TILT -
SLEW = 149, MIN TILT SLEW = 2, MAX PAN ACCEL = 102,
MIN PAN ACCEL = 2, MAX TILT ACCEL = 102, MIN TILT -
ACCEL = 2 }

Public Methods

• ArDPPTU (ArRobot ∗robot)
Constructor.

• virtual ∼ArDPPTU (void)
Destructor.

• bool init (void)
Initializes the camera.

• bool canZoom (void)
Returns true if camera can zoom (or rather, if it is controlled by this).

• bool blank (void)
Sends a delimiter only.

• bool resetCalib (void)
Perform reset calibration.

• bool disableReset (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.36 ArDPPTU Class Reference 125

Disable power-on reset.

• bool resetTilt (void)

Reset tilt axis.

• bool resetPan (void)

Reset pan axis only.

• bool resetAll (void)

Reset pan and tilt axes on power-on.

• bool saveSet (void)

Save current settings as defaults.

• bool restoreSet (void)

Restore stored defaults.

• bool factorySet (void)

Restore factory defaults.

• bool panTilt (int pdeg, int tdeg)

Pans and tilts to the given degrees.

• bool pan (int deg)

Pans to the given degrees.

• bool panRel (int deg)

Pans relative to current position by given degrees.

• bool tilt (int deg)

Tilts to the given degrees.

• bool tiltRel (int deg)

Tilts relative to the current position by given degrees.

• bool panTiltRel (int pdeg, int tdeg)

Pans and tilts relatives to the current position by the given degrees.

• bool limitEnforce (bool val)

Enables or disables the position limit enforcement.

• bool immedExec (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

126 Aria Class Documentation

Sets unit to immediate-execution mode for positional commands.

• bool slaveExec (void)

Sets unit to slaved-execution mode for positional commands.

• bool awaitExec (void)

Instructs unit to await completion of the last issued command.

• bool haltAll (void)

Halts all pan-tilt movement.

• bool haltPan (void)

Halts pan axis movement.

• bool haltTilt (void)

Halts tilt axis movement.

• int getMaxPosPan (void)

Gets the highest positive degree the camera can pan to.

• int getMaxNegPan (void)

Gets the lowest negative degree the camera can pan to.

• int getMaxPosTilt (void)

Gets the highest positive degree the camera can tilt to.

• int getMaxNegTilt (void)

Gets the lowest negative degree the camera can tilt to.

• bool initMon (int deg1, int deg2, int deg3, int deg4)

Sets monitor mode - pan pos1/pos2, tilt pos1/pos2.

• bool enMon (void)

Enables monitor mode at power up.

• bool disMon (void)

Disables monitor mode at power up.

• bool offStatPower (void)

Sets stationary power mode to off.

• bool regStatPower (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.36 ArDPPTU Class Reference 127

Sets regular stationary power mode.

• bool lowStatPower (void)

Sets low stationary power mode.

• bool highMotPower (void)

Sets high in-motion power mode.

• bool regMotPower (void)

Sets regular in-motion power mode.

• bool lowMotPower (void)

Sets low in-motion power mode.

• bool panAccel (int deg)

Sets acceleration for pan axis.

• bool tiltAccel (int deg)

Sets acceleration for tilt axis.

• bool basePanSlew (int deg)

Sets the start-up pan slew.

• bool baseTiltSlew (int deg)

Sets the start-up tilt slew.

• bool upperPanSlew (int deg)

Sets the upper pan slew.

• bool lowerPanSlew (int deg)

Sets the lower pan slew.

• bool upperTiltSlew (int deg)

Sets the upper tilt slew.

• bool lowerTiltSlew (int deg)

Sets the lower pan slew.

• bool indepMove (void)

Sets motion to indenpendent control mode.

• bool velMove (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

128 Aria Class Documentation

Sets motion to pure velocity control mode.

• bool panSlew (int deg)
Sets the rate that the unit pans at.

• bool tiltSlew (int deg)
Sets the rate the unit tilts at.

• bool panSlewRel (int deg)
Sets the rate that the unit pans at, relative to current slew.

• bool tiltSlewRel (int deg)
Sets the rate the unit tilts at, relative to current slew.

• int getPan (void)
The angle the camera was last told to pan to.

• int getTilt (void)
The angle the camera was last told to tilt to.

• int getPanSlew (void)
Gets the current pan slew.

• int getTiltSlew (void)
Gets the current tilt slew.

• int getBasePanSlew (void)
Gets the base pan slew.

• int getBaseTiltSlew (void)
Gets the base tilt slew.

• int getPanAccel (void)
Gets the current pan acceleration rate.

• int getTiltAccel (void)
Gets the current tilt acceleration rate.

4.36.1 Detailed Description

Driver for the DPPTU.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.36 ArDPPTU Class Reference 129

4.36.2 Member Enumeration Documentation

4.36.2.1 anonymous enum

Enumeration values:
MIN PAN Maximum pan range of 3090 positions.

MAX TILT Minimum pan range of -3090 positions.

MIN TILT Maximum tilt range of 600 positions.

MAX PAN SLEW Minimum tilt range of -900 positions.

MIN PAN SLEW Maximum pan slew of 2902 positions/sec.

MAX TILT SLEW Minimum tilt slew of 31 positions/sec.

MIN TILT SLEW Maximum tilt slew of 2902 positions/sec.

MAX PAN ACCEL Minimum tilt slew of 31 positions/sec.

MIN PAN ACCEL Maximum pan acceleration of 2000
positions/sec∧2.

MAX TILT ACCEL Minimum pan acceleration of 0 positions/sec∧2.

MIN TILT ACCEL Maximum tilt acceleration of 2000
positions/sec∧2.

The documentation for this class was generated from the following files:

• ArDPPTU.h
• ArDPPTU.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

130 Aria Class Documentation

4.37 ArDPPTUCommands Class Reference

A class with the commands for the DPPTU.

#include <ArDPPTU.h>

Public Types

• enum {DELIM = 0x20, INIT = 0x40, ACCEL = 0x61, BASE = 0x62,
CONTROL = 0x63, DISABLE = 0x64, ENABLE = 0x65, FAC-
TORY = 0x66, HALT = 0x68, IMMED = 0x69, LIMIT = 0x6C,
MONITOR = 0x6D, OFFSET = 0x6F, PAN = 0x70, RESET =
0x72, SPEED = 0x73, TILT = 0x74, UPPER = 0x75, VELOCITY
= 0x76 }

4.37.1 Detailed Description

A class with the commands for the DPPTU.

This class is for controlling the Directed Perceptions Pan-Tilt Unit

Note that there are far too many functions enabled in here, most of which are
extraneous. The important ones are defined in the ArPTZ (p. 287) class and
include the basic pan, tilt commands.

The DPPTU’s pan and tilt commands work on a number of units equal to
(degrees / 0.514). The panTilt function always rounds the conversion closer to
zero, so that a magnitude greater than the allowable range of movement is not
sent to the camera.

4.37.2 Member Enumeration Documentation

4.37.2.1 anonymous enum

Enumeration values:
DELIM Space - Carriage return delimeter.

INIT Init character.

ACCEL Acceleration, Await position-command completion.

BASE Base speed.

CONTROL Speed control.

DISABLE Disable character, Delta, Default.

ENABLE Enable character, Echoing.

FACTORY Restore factory defaults.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.37 ArDPPTUCommands Class Reference 131

HALT Halt, Hold, High.

IMMED Immediate position-command execution mode, Independent
control mode.

LIMIT Position limit character, Low.

MONITOR Monitor, In-motion power mode.

OFFSET Offset position, Off.

PAN Pan.

RESET Reset calibration, Restore stored defaults, Regular.

SPEED Speed, Slave.

TILT Tilt.

UPPER Upper speed limit.

VELOCITY Velocity control mode.

The documentation for this class was generated from the following file:

• ArDPPTU.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

132 Aria Class Documentation

4.38 ArDPPTUPacket Class Reference

A class for for making commands to send to the DPPTU.

#include <ArDPPTU.h>

Inheritance diagram for ArDPPTUPacket::

ArDPPTUPacket

ArBasePacket

Public Methods

• ArDPPTUPacket (ArTypes::UByte2 bufferSize=30)
Constructor.

• virtual ∼ArDPPTUPacket (void)
Destructor.

• virtual void finalize (void)
Finalizes the packet in preparation for sending, must be done.

4.38.1 Detailed Description

A class for for making commands to send to the DPPTU.

There are only a few functioning ways to put things into this packet, you MUST
use these, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

The documentation for this class was generated from the following files:

• ArDPPTU.h
• ArDPPTU.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.39 ArFunctor Class Reference 133

4.39 ArFunctor Class Reference

Base class for functors.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor::

ArFunctor

ArFunctor1 ArFunctor2 ArFunctor3 ArFunctorC ArGlobalFunctor ArRetFunctor

ArFunctor1C

ArGlobalFunctor1

ArFunctor2C

ArGlobalFunctor2

ArFunctor3C

ArGlobalFunctor3

ArGlobalRetFunctor

ArRetFunctor1

ArRetFunctor2

ArRetFunctor3

ArRetFunctorC

Public Methods

• virtual ∼ArFunctor (void)
Destructor.

• virtual void invoke (void)=0
Invokes the functor.

• virtual void operator() ()=0
Invokes the functor.

4.39.1 Detailed Description

Base class for functors.

Functors are meant to encapsulate the idea of a pointer to a function which is a
member of a class. To use a pointer to a member function, you must have a C
style function pointer, ’void(Class::∗)()’, and a pointer to an instance of the class
in which the function is a member of. This is because all non-static member
functions must have a ’this’ pointer. If they dont and if the member function
uses any member data or even other member functions it will not work right
and most likely crash. This is because the ’this’ pointer is not the correct value
and is most likely a random uninitialized value. The virtue of static member
functions is that they do not require a ’this’ pointer to be run. But the compiler
will never let you access any member data or functions from within a static
member function.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

134 Aria Class Documentation

Because of the design of C++ never allowed for encapsulating these two pointers
together into one language supported construct, this has to be done by hand. For
conviences sake, there are functors (ArGlobalFunctor (p. 165), ArGlobal-
RetFunctor (p. 181)) which take a pure C style function pointer (a non-member
function). This is in case you want to use a functor that refers to a global C
style function.

Aria (p. 204) makes use of functors by using them as callback functions. Since
Aria (p. 204) is programmed using the object oriented programming paradigm,
all the callback functions need to be tied to an object and a particular instance.
Thus the need for functors. Most of the use of callbacks simply take an Ar-
Functor, which is the base class for all the functors. This class only has the
ability to invoke a functor. All the derivitave functors have the ability to invoke
the correct function on the correct object.

Because functions have different signatures because they take different types of
parameters and have different number of parameters, templates were used to
create the functors. These are the base classes for the functors. These classes
encapsulate everything except for the class type that the member function is
a member of. This allows someone to accept a functor of type ArFunctor1
(p. 135)<int> which has one parameter of type ’int’. But they never have to
know that the function is a member function of class ’SomeUnknownType’.
These classes are:

ArFunctor, ArFunctor1 (p. 135), ArFunctor2 (p. 141), ArRetFunctor
(p. 314), ArRetFunctor1 (p. 315), ArRetFunctor2 (p. 321)

These 6 functors are the only thing a piece of code that wants a functor will
ever need. But these classes are abstract classes and can not be instantiated.
On the other side, the piece of code that wants to be called back will need the
functor classes that know about the class type. These functors are:

ArFunctorC (p. 162), ArFunctor1C (p. 137), ArFunctor2C (p. 144),
ArRetFunctorC (p. 339), ArRetFunctor1C (p. 317), ArRetFunctor2C
(p. 323)

These functors are meant to be instantiated and passed of to a piece of code
that wants to use them. That piece of code should only know the functor as
one of the functor classes without the ’C’ in it.

See the example functor.cpp for a simple example of using functors.

See the test program functortest.cpp for the full use of all the functors.

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.40 ArFunctor1 Class Template Reference 135

4.40 ArFunctor1 Class Template Reference

Base class for functors with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor1::

ArFunctor1

ArFunctor

ArFunctor1C ArGlobalFunctor1

Public Methods

• virtual ∼ArFunctor1 (void)

Destructor.

• virtual void invoke (void)=0

Invokes the functor.

• virtual void invoke (P1 p1)=0

Invokes the functor.

• virtual void operator() ()=0

Invokes the functor.

• virtual void operator() (P1 p1)=0

Invokes the functor.

4.40.1 Detailed Description

template<class P1> class ArFunctor1< P1 >

Base class for functors with 1 parameter.

This is the base class for functors with 1 parameter. Code that has a reference
to a functor that takes 1 parameter should use this class name. This allows

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

136 Aria Class Documentation

the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 133).

4.40.2 Member Function Documentation

4.40.2.1 template<class P1> virtual void ArFunctor1< P1
>::invoke (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor1 (p. 168), and ArFunctor1C (p. 139).

4.40.2.2 template<class P1> virtual void ArFunctor1< P1
>::operator() (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor1 (p. 169), and ArFunctor1C (p. 139).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.41 ArFunctor1C Class Template Reference 137

4.41 ArFunctor1C Class Template Reference

Functor for a member function with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor1C::

ArFunctor1C

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArFunctor1C (void)
Constructor.

• ArFunctor1C (T &obj, void(T::∗func)(P1))
Constructor - supply function pointer.

• ArFunctor1C (T &obj, void(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor1C (T ∗obj, void(T::∗func)(P1))
Constructor - supply function pointer.

• ArFunctor1C (T ∗obj, void(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor1C (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void operator() ()

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

138 Aria Class Documentation

Invokes the functor.

• virtual void operator() (P1 p1)
Invokes the functor.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

• virtual void setP1 (P1 p1)
Set the default parameter.

4.41.1 Detailed Description

template<class T, class P1> class ArFunctor1C< T, P1 >

Functor for a member function with 1 parameter.

This is a class for member functions which take 1 parameter. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

4.41.2 Constructor & Destructor Documentation

4.41.2.1 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T & obj, void(T::∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.41.2.2 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T & obj, void(T::∗ func)(P1), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.41 ArFunctor1C Class Template Reference 139

Parameters:
func member function pointer
p1 default first parameter

4.41.2.3 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T ∗ obj, void(T::∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.41.2.4 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T ∗ obj, void(T::∗ func)(P1), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

4.41.3 Member Function Documentation

4.41.3.1 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::invoke (P1 p1) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 136).

4.41.3.2 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::operator() (P1 p1) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 136).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

140 Aria Class Documentation

4.41.3.3 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.41.3.4 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setThis (T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.41.3.5 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setThis (T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.42 ArFunctor2 Class Template Reference 141

4.42 ArFunctor2 Class Template Reference

Base class for functors with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor2::

ArFunctor2

ArFunctor

ArFunctor2C ArGlobalFunctor2

Public Methods

• virtual ∼ArFunctor2 (void)

Destructor.

• virtual void invoke (void)=0

Invokes the functor.

• virtual void invoke (P1 p1)=0

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)=0

Invokes the functor.

• virtual void operator() ()=0

Invokes the functor.

• virtual void operator() (P1 p1)=0

Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)=0

Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

142 Aria Class Documentation

4.42.1 Detailed Description

template<class P1, class P2> class ArFunctor2< P1, P2 >

Base class for functors with 2 parameters.

This is the base class for functors with 2 parameters. Code that has a reference
to a functor that takes 2 parameters should use this class name. This allows
the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 133).

4.42.2 Member Function Documentation

4.42.2.1 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::invoke (P1 p1, P2 p2) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented in ArGlobalFunctor2 (p. 172), and ArFunctor2C (p. 147).

4.42.2.2 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::invoke (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor2 (p. 172), and ArFunctor2C (p. 147).

4.42.2.3 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::operator() (P1 p1, P2 p2) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented in ArGlobalFunctor2 (p. 173), and ArFunctor2C (p. 148).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.42 ArFunctor2 Class Template Reference 143

4.42.2.4 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::operator() (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor2 (p. 173), and ArFunctor2C (p. 148).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

144 Aria Class Documentation

4.43 ArFunctor2C Class Template Reference

Functor for a member function with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor2C::

ArFunctor2C

ArFunctor2< P1, P2 >

ArFunctor

Public Methods

• ArFunctor2C (void)
Constructor.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor2C (void)
Destructor.

• virtual void invoke (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.43 ArFunctor2C Class Template Reference 145

Invokes the functor.

• virtual void invoke (P1 p1)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)

Invokes the functor.

• virtual void operator() ()

Invokes the functor.

• virtual void operator() (P1 p1)

Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)

Invokes the functor.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

4.43.1 Detailed Description

template<class T, class P1, class P2> class ArFunctor2C< T, P1, P2
>

Functor for a member function with 2 parameters.

This is a class for member functions which take 2 parameters. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

146 Aria Class Documentation

4.43.2 Constructor & Destructor Documentation

4.43.2.1 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.43.2.2 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2),
P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.43.2.3 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2),
P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.43.2.4 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.43 ArFunctor2C Class Template Reference 147

4.43.2.5 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2),
P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.43.2.6 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2),
P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.43.3 Member Function Documentation

4.43.3.1 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor2 (p. 142).

4.43.3.2 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::invoke (P1 p1) [inline,
virtual]

Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

148 Aria Class Documentation

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 142).

4.43.3.3 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::operator() (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor2 (p. 142).

4.43.3.4 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::operator() (P1 p1) [inline,
virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 143).

4.43.3.5 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.43.3.6 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.43 ArFunctor2C Class Template Reference 149

Parameters:
p2 default second parameter

4.43.3.7 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setThis (T & obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.43.3.8 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setThis (T ∗ obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

150 Aria Class Documentation

4.44 ArFunctor3 Class Template Reference

Base class for functors with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor3::

ArFunctor3

ArFunctor

ArFunctor3C ArGlobalFunctor3

Public Methods

• virtual ∼ArFunctor3 (void)
Destructor.

• virtual void invoke (void)=0
Invokes the functor.

• virtual void invoke (P1 p1)=0
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)=0
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)=0
Invokes the functor.

• virtual void operator() ()=0
Invokes the functor.

• virtual void operator() (P1 p1)=0
Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)=0
Invokes the functor.

• virtual void operator() (P1 p1, P2 p2, P3 p3)=0

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.44 ArFunctor3 Class Template Reference 151

Invokes the functor.

4.44.1 Detailed Description

template<class P1, class P2, class P3> class ArFunctor3< P1, P2, P3
>

Base class for functors with 3 parameters.

This is the base class for functors with 3 parameters. Code that has a reference
to a functor that takes 3 parameters should use this class name. This allows
the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 133).

4.44.2 Member Function Documentation

4.44.2.1 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2, P3 p3)
[pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented in ArGlobalFunctor3 (p. 178), and ArFunctor3C (p. 158).

4.44.2.2 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2) [pure
virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented in ArGlobalFunctor3 (p. 178), and ArFunctor3C (p. 159).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

152 Aria Class Documentation

4.44.2.3 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1) [pure
virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor3 (p. 178), and ArFunctor3C (p. 159).

4.44.2.4 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::operator() (P1 p1, P2 p2, P3
p3) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented in ArGlobalFunctor3 (p. 179), and ArFunctor3C (p. 159).

4.44.2.5 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::operator() (P1 p1, P2 p2)
[pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented in ArGlobalFunctor3 (p. 179), and ArFunctor3C (p. 159).

4.44.2.6 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::operator() (P1 p1) [pure
virtual]

Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.44 ArFunctor3 Class Template Reference 153

Parameters:
p1 first parameter

Reimplemented in ArGlobalFunctor3 (p. 179), and ArFunctor3C (p. 160).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

154 Aria Class Documentation

4.45 ArFunctor3C Class Template Reference

Functor for a member function with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor3C::

ArFunctor3C

ArFunctor3< P1, P2, P3 >

ArFunctor

Public Methods

• ArFunctor3C (void)
Constructor.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.45 ArFunctor3C Class Template Reference 155

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor3C (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)
Invokes the functor.

• virtual void operator() ()
Invokes the functor.

• virtual void operator() (P1 p1)
Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)
Invokes the functor.

• virtual void operator() (P1 p1, P2 p2, P3 p3)
Invokes the functor.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

156 Aria Class Documentation

• virtual void setP3 (P3 p3)

Set the default third parameter.

4.45.1 Detailed Description

template<class T, class P1, class P2, class P3> class ArFunctor3C<
T, P1, P2, P3 >

Functor for a member function with 3 parameters.

This is a class for member functions which take 3 parameters. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

4.45.2 Constructor & Destructor Documentation

4.45.2.1 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.45.2.2 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.45 ArFunctor3C Class Template Reference 157

4.45.2.3 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter

4.45.2.4 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T &
obj, void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter
p3 default third parameter

4.45.2.5 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.45.2.6 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

158 Aria Class Documentation

4.45.2.7 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.45.2.8 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗
obj, void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

p3 default third parameter

4.45.3 Member Function Documentation

4.45.3.1 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1, P2
p2, P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArFunctor3 (p. 151).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.45 ArFunctor3C Class Template Reference 159

4.45.3.2 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1, P2
p2) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor3 (p. 151).

4.45.3.3 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 152).

4.45.3.4 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::operator() (P1 p1,
P2 p2, P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor3 (p. 152).

4.45.3.5 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::operator() (P1 p1,
P2 p2) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

160 Aria Class Documentation

p2 second parameter

Reimplemented from ArFunctor3 (p. 152).

4.45.3.6 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::operator() (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 152).

4.45.3.7 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.45.3.8 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.45.3.9 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP3 (P3 p3)
[inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.45 ArFunctor3C Class Template Reference 161

4.45.3.10 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setThis (T & obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.45.3.11 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setThis (T ∗ obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

162 Aria Class Documentation

4.46 ArFunctorC Class Template Reference

Functor for a member function.

#include <ArFunctor.h>

Inheritance diagram for ArFunctorC::

ArFunctorC

ArFunctor

Public Methods

• ArFunctorC (void)

Constructor.

• ArFunctorC (T &obj, void(T::∗func)(void))

Constructor - supply function pointer.

• ArFunctorC (T ∗obj, void(T::∗func)(void))

Constructor - supply function pointer.

• virtual ∼ArFunctorC (void)

Destructor.

• virtual void invoke (void)

Invokes the functor.

• virtual void operator() ()

Invokes the functor.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.46 ArFunctorC Class Template Reference 163

4.46.1 Detailed Description

template<class T> class ArFunctorC< T >

Functor for a member function.

This is a class for member functions. This class contains the knowledge on how
to call a member function on a particular instance of a class. This class should
be instantiated by code that wishes to pass off a functor to another piece of
code.

For an overall description of functors, see ArFunctor (p. 133).

4.46.2 Constructor & Destructor Documentation

4.46.2.1 template<class T> ArFunctorC< T >::ArFunctorC (T &
obj, void(T::∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.46.2.2 template<class T> ArFunctorC< T >::ArFunctorC (T ∗
obj, void(T::∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.46.3 Member Function Documentation

4.46.3.1 template<class T> virtual void ArFunctorC< T >::setThis
(T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

164 Aria Class Documentation

4.46.3.2 template<class T> virtual void ArFunctorC< T >::setThis
(T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.47 ArGlobalFunctor Class Reference 165

4.47 ArGlobalFunctor Class Reference

Functor for a global function with no parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor::

ArGlobalFunctor

ArFunctor

Public Methods

• ArGlobalFunctor (void)

Constructor.

• ArGlobalFunctor (void(∗func)(void))

Constructor - supply function pointer.

• virtual ∼ArGlobalFunctor (void)

Destructor.

• virtual void invoke (void)

Invokes the functor.

• virtual void operator() ()

Invokes the functor.

4.47.1 Detailed Description

Functor for a global function with no parameters.

This is a class for global functions. This ties a C style function pointer into the
functor class hierarchy as a convience. Code that has a reference to this class
and treat it as an ArFunctor (p. 133) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

166 Aria Class Documentation

4.47.2 Constructor & Destructor Documentation

4.47.2.1 ArGlobalFunctor::ArGlobalFunctor (void(∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.48 ArGlobalFunctor1 Class Template Reference 167

4.48 ArGlobalFunctor1 Class Template Refer-
ence

Functor for a global function with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor1::

ArGlobalFunctor1

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArGlobalFunctor1 (void)
Constructor.

• ArGlobalFunctor1 (void(∗func)(P1))
Constructor - supply function pointer.

• ArGlobalFunctor1 (void(∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor1 (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void operator() ()
Invokes the functor.

• virtual void operator() (P1 p1)
Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

168 Aria Class Documentation

• virtual void setP1 (P1 p1)
Set the default parameter.

4.48.1 Detailed Description

template<class P1> class ArGlobalFunctor1< P1 >

Functor for a global function with 1 parameter.

This is a class for global functions which take 1 parameter. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 133) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 133).

4.48.2 Constructor & Destructor Documentation

4.48.2.1 template<class P1> ArGlobalFunctor1< P1
>::ArGlobalFunctor1 (void(∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.48.2.2 template<class P1> ArGlobalFunctor1< P1
>::ArGlobalFunctor1 (void(∗ func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter

4.48.3 Member Function Documentation

4.48.3.1 template<class P1> virtual void ArGlobalFunctor1< P1
>::invoke (P1 p1) [inline, virtual]

Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.48 ArGlobalFunctor1 Class Template Reference 169

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 136).

4.48.3.2 template<class P1> virtual void ArGlobalFunctor1< P1
>::operator() (P1 p1) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 136).

4.48.3.3 template<class P1> virtual void ArGlobalFunctor1< P1
>::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

170 Aria Class Documentation

4.49 ArGlobalFunctor2 Class Template Refer-
ence

Functor for a global function with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor2::

ArGlobalFunctor2

ArFunctor2< P1, P2 >

ArFunctor

Public Methods

• ArGlobalFunctor2 (void)
Constructor.

• ArGlobalFunctor2 (void(∗func)(P1, P2))
Constructor - supply function pointer.

• ArGlobalFunctor2 (void(∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor2 (void(∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor2 (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)
Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.49 ArGlobalFunctor2 Class Template Reference 171

• virtual void operator() ()

Invokes the functor.

• virtual void operator() (P1 p1)

Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)

Invokes the functor.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

4.49.1 Detailed Description

template<class P1, class P2> class ArGlobalFunctor2< P1, P2 >

Functor for a global function with 2 parameters.

This is a class for global functions which take 2 parameters. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 133) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 133).

4.49.2 Constructor & Destructor Documentation

4.49.2.1 template<class P1, class P2> ArGlobalFunctor2< P1, P2
>::ArGlobalFunctor2 (void(∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

172 Aria Class Documentation

4.49.2.2 template<class P1, class P2> ArGlobalFunctor2< P1,
P2 >::ArGlobalFunctor2 (void(∗ func)(P1, P2), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.49.2.3 template<class P1, class P2> ArGlobalFunctor2< P1, P2
>::ArGlobalFunctor2 (void(∗ func)(P1, P2), P1 p1, P2 p2)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

p2 default second parameter

4.49.3 Member Function Documentation

4.49.3.1 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor2 (p. 142).

4.49.3.2 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::invoke (P1 p1) [inline,
virtual]

Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.49 ArGlobalFunctor2 Class Template Reference 173

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 142).

4.49.3.3 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::operator() (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor2 (p. 142).

4.49.3.4 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::operator() (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 143).

4.49.3.5 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.49.3.6 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

174 Aria Class Documentation

Parameters:
p2 default second parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArGlobalFunctor3 Class Template Reference 175

4.50 ArGlobalFunctor3 Class Template Refer-
ence

Functor for a global function with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor3::

ArGlobalFunctor3

ArFunctor3< P1, P2, P3 >

ArFunctor

Public Methods

• ArGlobalFunctor3 (void)
Constructor.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor3 (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

176 Aria Class Documentation

• virtual void invoke (P1 p1, P2 p2)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)

Invokes the functor.

• virtual void operator() ()

Invokes the functor.

• virtual void operator() (P1 p1)

Invokes the functor.

• virtual void operator() (P1 p1, P2 p2)

Invokes the functor.

• virtual void operator() (P1 p1, P2 p2, P3 p3)

Invokes the functor.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

• virtual void setP3 (P3 p3)

Set the default third parameter.

4.50.1 Detailed Description

template<class P1, class P2, class P3> class ArGlobalFunctor3< P1,
P2, P3 >

Functor for a global function with 3 parameters.

This is a class for global functions which take 3 parameters. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 133) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArGlobalFunctor3 Class Template Reference 177

4.50.2 Constructor & Destructor Documentation

4.50.2.1 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.50.2.2 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.50.2.3 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

p2 default second parameter

4.50.2.4 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1, P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

178 Aria Class Documentation

p1 default first parameter

p2 default second parameter

p3 default third parameter

4.50.3 Member Function Documentation

4.50.3.1 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2,
P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArFunctor3 (p. 151).

4.50.3.2 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor3 (p. 151).

4.50.3.3 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 152).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArGlobalFunctor3 Class Template Reference 179

4.50.3.4 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::operator() (P1 p1, P2
p2, P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter
p3 third parameter

Reimplemented from ArFunctor3 (p. 152).

4.50.3.5 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::operator() (P1 p1, P2
p2) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArFunctor3 (p. 152).

4.50.3.6 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::operator() (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 152).

4.50.3.7 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

180 Aria Class Documentation

4.50.3.8 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.50.3.9 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP3 (P3 p3) [inline,
virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.51 ArGlobalRetFunctor Class Template Reference 181

4.51 ArGlobalRetFunctor Class Template Ref-
erence

Functor for a global function with return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor::

ArGlobalRetFunctor

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor (void)
Constructor.

• ArGlobalRetFunctor (Ret(∗func)(void))
Constructor - supply function pointer.

• virtual ∼ArGlobalRetFunctor (void)
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

4.51.1 Detailed Description

template<class Ret> class ArGlobalRetFunctor< Ret >

Functor for a global function with return value.

This is a class for global functions which return a value. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 133) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

182 Aria Class Documentation

4.51.2 Constructor & Destructor Documentation

4.51.2.1 template<class Ret> ArGlobalRetFunctor< Ret
>::ArGlobalRetFunctor (Ret(∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.52 ArGlobalRetFunctor1 Class Template Reference 183

4.52 ArGlobalRetFunctor1 Class Template Ref-
erence

Functor for a global function with 1 parameter and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor1::

ArGlobalRetFunctor1

ArRetFunctor1< Ret, P1 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor1 (void)
Constructor.

• ArGlobalRetFunctor1 (Ret(∗func)(P1))
Constructor - supply function pointer.

• ArGlobalRetFunctor1 (Ret(∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor1 (void)
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

184 Aria Class Documentation

4.52.1 Detailed Description

template<class Ret, class P1> class ArGlobalRetFunctor1< Ret, P1
>

Functor for a global function with 1 parameter and return value.

This is a class for global functions which take 1 parameter and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 133) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 133).

4.52.2 Constructor & Destructor Documentation

4.52.2.1 template<class Ret, class P1> ArGlobalRetFunctor1<
Ret, P1 >::ArGlobalRetFunctor1 (Ret(∗ func)(P1))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.52.2.2 template<class Ret, class P1> ArGlobalRetFunctor1<
Ret, P1 >::ArGlobalRetFunctor1 (Ret(∗ func)(P1), P1
p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.52.3 Member Function Documentation

4.52.3.1 template<class Ret, class P1> virtual Ret
ArGlobalRetFunctor1< Ret, P1 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.52 ArGlobalRetFunctor1 Class Template Reference 185

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor1 (p. 316).

4.52.3.2 template<class Ret, class P1> virtual void
ArGlobalRetFunctor1< Ret, P1 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

186 Aria Class Documentation

4.53 ArGlobalRetFunctor2 Class Template Ref-
erence

Functor for a global function with 2 parameters and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor2::

ArGlobalRetFunctor2

ArRetFunctor2< Ret, P1, P2 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor2 (void)
Constructor.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2))
Constructor - supply function pointer.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor2 (void)
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.53 ArGlobalRetFunctor2 Class Template Reference 187

• virtual Ret invokeR (P1 p1, P2 p2)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

4.53.1 Detailed Description

template<class Ret, class P1, class P2> class ArGlobalRetFunctor2<
Ret, P1, P2 >

Functor for a global function with 2 parameters and return value.

This is a class for global functions which take 2 parameters and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 133) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 133).

4.53.2 Constructor & Destructor Documentation

4.53.2.1 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.53.2.2 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

188 Aria Class Documentation

4.53.2.3 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p2 default second parameter

4.53.3 Member Function Documentation

4.53.3.1 template<class Ret, class P1, class P2> virtual Ret
ArGlobalRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1,
P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArRetFunctor2 (p. 322).

4.53.3.2 template<class Ret, class P1, class P2> virtual Ret
ArGlobalRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor2 (p. 322).

4.53.3.3 template<class Ret, class P1, class P2> virtual void
ArGlobalRetFunctor2< Ret, P1, P2 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.53 ArGlobalRetFunctor2 Class Template Reference 189

4.53.3.4 template<class Ret, class P1, class P2> virtual void
ArGlobalRetFunctor2< Ret, P1, P2 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

190 Aria Class Documentation

4.54 ArGlobalRetFunctor3 Class Template Ref-
erence

Functor for a global function with 2 parameters and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor3::

ArGlobalRetFunctor3

ArRetFunctor3< Ret, P1, P2, P3 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor3 (void)
Constructor.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor3 (void)
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.54 ArGlobalRetFunctor3 Class Template Reference 191

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

• virtual void setP3 (P2 p3)
Set the default third parameter.

4.54.1 Detailed Description

template<class Ret, class P1, class P2, class P3> class ArGlobalRet-
Functor3< Ret, P1, P2, P3 >

Functor for a global function with 2 parameters and return value.

This is a class for global functions which take 2 parameters and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 133) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 133).

4.54.2 Constructor & Destructor Documentation

4.54.2.1 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

192 Aria Class Documentation

4.54.2.2 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter

4.54.2.3 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1,
P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter
p2 default second parameter

4.54.2.4 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1,
P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter
p2 default second parameter

4.54.3 Member Function Documentation

4.54.3.1 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1, P2 p2, P3 p3) [inline, virtual]

Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.54 ArGlobalRetFunctor3 Class Template Reference 193

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArRetFunctor3 (p. 330).

4.54.3.2 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1, P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor3 (p. 330).

4.54.3.3 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor3 (p. 330).

4.54.3.4 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP1 (P1
p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

194 Aria Class Documentation

4.54.3.5 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP2 (P2
p2) [inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.54.3.6 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP3 (P2
p3) [inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGripper Class Reference 195

4.55 ArGripper Class Reference

A class of convenience functions for using the gripper.

#include <ArGripper.h>

Public Types

• enum Type { QUERYTYPE, GENIO, USERIO, GRIPPAC, NO-
GRIPPER }

These are the types for the gripper.

Public Methods

• ArGripper (ArRobot ∗robot, int gripperType=QUERYTYPE)

Constructor.

• virtual ∼ArGripper (void)

Destructor.

• bool gripOpen (void)

Opens the gripper paddles.

• bool gripClose (void)

Closes the gripper paddles.

• bool gripStop (void)

Stops the gripper paddles.

• bool liftUp (void)

Raises the lift to the top.

• bool liftDown (void)

Lowers the lift to the bottom.

• bool liftStop (void)

Stops the lift.

• bool gripperStore (void)

Puts the gripper in a storage position.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

196 Aria Class Documentation

• bool gripperDeploy (void)

Puts the gripper in a deployed position, ready for use.

• bool gripperHalt (void)

Halts the lift and the gripper paddles.

• bool gripPressure (int mSecIntervals)

Sets the amount of pressure the gripper applies.

• bool liftCarry (int mSecIntervals)

Raises the lift by a given amount of time.

• bool isGripMoving (void)

Returns true if the gripper paddles are moving.

• bool isLiftMoving (void)

Returns true if the lift is moving.

• int getGripState (void)

Returns the state of the gripper paddles.

• int getPaddleState (void)

Returns the state of each gripper paddle.

• int getBreakBeamState (void)

Returns the state of the gripper’s breakbeams.

• bool isLiftMaxed (void)

Returns the state of the lift.

• int getType (void)

Gets the type of the gripper.

• void setType (int type)

Sets the type of the gripper.

• long getMSecSinceLastPacket (void)

Gets the number of mSec since the last gripper packet.

• int getGraspTime (void)

Gets the grasp time.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGripper Class Reference 197

• void printState (void)

logs the gripper state.

• bool packetHandler (ArRobotPacket ∗packet)

Parses the gripper packet.

• void connectHandler (void)

The handler for when the robot connects.

4.55.1 Detailed Description

A class of convenience functions for using the gripper.

The commands which start with grip are for the gripper paddles, the ones which
start with lift are the for the lift, and the ones which start with gripper are for
the entire unit.

4.55.2 Member Enumeration Documentation

4.55.2.1 enum ArGripper::Type

These are the types for the gripper.

Enumeration values:
QUERYTYPE Finds out what type from the robot, default.

GENIO Uses general IO.

USERIO Uses the user IO.

GRIPPAC Uses a packet requested from the robot.

NOGRIPPER There isn’t a gripper.

4.55.3 Constructor & Destructor Documentation

4.55.3.1 ArGripper::ArGripper (ArRobot ∗ robot, int gripperType
= QUERYTYPE)

Constructor.

Parameters:
robot The robot this gripper is attached to

useGenIO Whether the gripper on this robot is using GenIO or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

198 Aria Class Documentation

4.55.4 Member Function Documentation

4.55.4.1 int ArGripper::getBreakBeamState (void)

Returns the state of the gripper’s breakbeams.

Returns:
0 if no breakbeams broken, 1 if inner breakbeam broken, 2 if outter break-
beam broken, 3 if both breakbeams broken

4.55.4.2 int ArGripper::getGraspTime (void)

Gets the grasp time.

If you are using this as anything other than GRIPPAC and you want to find out
the grasp time again, just do a setType with QUERYTYPE and it will query
the robot again and get the grasp time from the robot.

Returns:
the number of 20 MSec intervals the gripper will continue grasping for after
both paddles are triggered

4.55.4.3 int ArGripper::getGripState (void)

Returns the state of the gripper paddles.

Returns:
0 if gripper paddles between open and closed, 1 if gripper paddles are open,
2 if gripper paddles are closed

4.55.4.4 long ArGripper::getMSecSinceLastPacket (void)

Gets the number of mSec since the last gripper packet.

Returns:
the number of milliseconds since the last packet

4.55.4.5 int ArGripper::getPaddleState (void)

Returns the state of each gripper paddle.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGripper Class Reference 199

Returns:
0 if no gripper paddles are triggered, 1 if the left paddle is triggered, 2 if
the right paddle is triggered, 3 if both are triggered

4.55.4.6 int ArGripper::getType (void)

Gets the type of the gripper.

Returns:
the gripper type

See also:
Type (p. 197)

4.55.4.7 bool ArGripper::gripClose (void)

Closes the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.55.4.8 bool ArGripper::gripOpen (void)

Opens the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.55.4.9 bool ArGripper::gripperDeploy (void)

Puts the gripper in a deployed position, ready for use.

Returns:
whether the command was sent to the robot or not

4.55.4.10 bool ArGripper::gripperHalt (void)

Halts the lift and the gripper paddles.

Returns:
whether the command was sent to the robot or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

200 Aria Class Documentation

4.55.4.11 bool ArGripper::gripperStore (void)

Puts the gripper in a storage position.

Returns:
whether the command was sent to the robot or not

4.55.4.12 bool ArGripper::gripPressure (int mSecIntervals)

Sets the amount of pressure the gripper applies.

Returns:
whether the command was sent to the robot or not

4.55.4.13 bool ArGripper::gripStop (void)

Stops the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.55.4.14 bool ArGripper::isGripMoving (void)

Returns true if the gripper paddles are moving.

Returns:
true if the gripper paddles are moving

4.55.4.15 bool ArGripper::isLiftMaxed (void)

Returns the state of the lift.

Returns:
false if lift is between up and down, true is either all the way up or down

4.55.4.16 bool ArGripper::isLiftMoving (void)

Returns true if the lift is moving.

Returns:
true if the lift is moving

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGripper Class Reference 201

4.55.4.17 bool ArGripper::liftCarry (int mSecIntervals)

Raises the lift by a given amount of time.

Returns:
whether the command was sent to the robot or not

4.55.4.18 bool ArGripper::liftDown (void)

Lowers the lift to the bottom.

Returns:
whether the command was sent to the robot or not

4.55.4.19 bool ArGripper::liftStop (void)

Stops the lift.

Returns:
whether the command was sent to the robot or not

4.55.4.20 bool ArGripper::liftUp (void)

Raises the lift to the top.

Returns:
whether the command was sent to the robot or not

4.55.4.21 void ArGripper::setType (int type)

Sets the type of the gripper.

Parameters:
type the type of gripper to set it to

The documentation for this class was generated from the following files:

• ArGripper.h
• ArGripper.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

202 Aria Class Documentation

4.56 ArGripperCommands Class Reference

A class with an enum of the commands for the gripper.

#include <ArGripper.h>

Public Types

• enum Commands { GRIP OPEN = 1, GRIP CLOSE = 2, GRIP -
STOP = 3, LIFT UP = 4, LIFT DOWN = 5, LIFT STOP = 6,
GRIPPER STORE = 7, GRIPPER DEPLOY = 8, GRIPPER -
HALT = 15, GRIP PRESSURE = 16, LIFT CARRY = 17 }

4.56.1 Detailed Description

A class with an enum of the commands for the gripper.

A class with an enum of the commands for the gripper, see the p2 operations
manual and the gripper guide for more detailed descriptions. The enum values
which start with GRIP are for the gripper paddles, the ones which start with
LIFT are the for the lift, and the ones which start with GRIPPER are for the
entire unit.

4.56.2 Member Enumeration Documentation

4.56.2.1 enum ArGripperCommands::Commands

Enumeration values:
GRIP OPEN open the gripper paddles fully.

GRIP CLOSE close the gripper paddles all the way.

GRIP STOP stop the gripper paddles where they are.

LIFT UP raises the lift to the top of its range.

LIFT DOWN lowers the lift to the bottom of its range.

LIFT STOP stops the lift where it is.

GRIPPER STORE closes the paddles and raises the lift simultane-
ously, this is for storage not for grasping/carrying an object

GRIPPER DEPLOY opens the paddles and lowers the lieft simultane-
ously, this is for getting ready to grasp an object, not for object drops

GRIPPER HALT stops the gripper paddles and lift from moving.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.56 ArGripperCommands Class Reference 203

GRIP PRESSURE sets the time delay in 20 msec increments after the
gripper paddles first grasp an object before they stop moving, regulates
grasp pressure

LIFT CARRY raises or lowers the lieft, the argument is the number of
20 msec increments to raise or lower the lift, poseitive arguments for
raise, negative for lower

The documentation for this class was generated from the following file:

• ArGripper.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

204 Aria Class Documentation

4.57 Aria Class Reference

This class performs global initialization and deinitialization.

#include <ariaInternal.h>

Public Types

• enum SigHandleMethod { SIGHANDLE SINGLE, SIGHAN-
DLE THREAD, SIGHANDLE NONE }

Static Public Methods

• void init (SigHandleMethod method=SIGHANDLE SINGLE, bool
initSockets=true)

Performs OS-specific initialization.

• void uninit ()

Performs OS-specific deinitialization.

• void addInitCallBack (ArFunctor ∗cb, ArListPos::Pos position)

Adds a callback to call when Aria is inited.

• void addUninitCallBack (ArFunctor ∗cb, ArListPos::Pos posi-
tion)

Adds a callback to call when Aria is uninited.

• void shutdown ()

Shutdown all Aria processes/threads.

• void exit ()

Force an exit of all Aria processes/threads.

• void addRobot (ArRobot ∗robot)

Add a robot to the global list of robots.

• void delRobot (ArRobot ∗robot)

Remove a robot from the global list of robots.

• ArRobot ∗ findRobot (char ∗name)

Finds a robot in the global list of robots, by name.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.57 Aria Class Reference 205

• std::list< ArRobot ∗> ∗ getRobotList ()
Get a copy of the global robot list.

• void setDirectory (const char ∗directory)
Sets the directory that ARIA resides in.

• std::string getDirectory (void)
Gets the directory that ARIA resides in.

• void setKeyHandler (ArKeyHandler ∗keyHandler)
Sets the key handler, so that other classes can find it.

• ArKeyHandler ∗ getKeyHandler (void)
Gets the key handler if one has been set.

• void signalHandlerCB (int sig)
Internal, the callback for the signal handling.

4.57.1 Detailed Description

This class performs global initialization and deinitialization.

4.57.2 Member Enumeration Documentation

4.57.2.1 enum Aria::SigHandleMethod

Enumeration values:
SIGHANDLE SINGLE Setup signal handlers in a global, non-thread

way.

SIGHANDLE THREAD Setup a dedicated signal handling thread.

SIGHANDLE NONE Do no signal handling.

4.57.3 Member Function Documentation

4.57.3.1 void Aria::addInitCallBack (ArFunctor ∗ cb,
ArListPos::Pos position) [static]

Adds a callback to call when Aria is inited.

This will add a callback to the list of callbacks to call when Aria has been
initialized. It can be called before anything else.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

206 Aria Class Documentation

4.57.3.2 void Aria::addUninitCallBack (ArFunctor ∗ cb,
ArListPos::Pos position) [static]

Adds a callback to call when Aria is uninited.

This will add a callback to the list of callbacks to call right before Aria is un-
initialized. It can be called before anything else. This facilitates code that
in operating system signal handlers simply calls Aria::uninit() (p. 208) and
packages that are based on Aria are unitited as well. It simplifies the entire
uninit process.

4.57.3.3 void Aria::exit () [static]

Force an exit of all Aria processes/threads.

This calls cancel() on all AtThread’s and ArASyncTask (p. 105)’s. It forces
each thread to exit and should only be used in the case of a thread hanging or
getting stuck in an infinite loop. This works fine in Linux. In Windows it is
not recommended at all that this function be called. Windows can not handle
cleanly killing off a thread. See the help in the VC++ compiler on the WIN32
function TerminateThread. The biggest problem is that the state of DLL’s can
be destroyed.

4.57.3.4 ArRobot ∗ Aria::findRobot (char ∗ name) [static]

Finds a robot in the global list of robots, by name.

Parameters:
name the name of the robot you want to find

Returns:
NULL if there is no robot of that name, otherwise the robot with that name

4.57.3.5 std::string Aria::getDirectory (void) [static]

Gets the directory that ARIA resides in.

This gets the directory that ARIA is located in, this is so ARIA can find param
files and the like.

Returns:
the directory ARIA is located in

See also:
setDirectory (p. 207)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.57 Aria Class Reference 207

4.57.3.6 void Aria::init (SigHandleMethod method =
SIGHANDLE SINGLE, bool initSockets = true) [static]

Performs OS-specific initialization.

This must be called first before any other Aria functions. It initializes the
thread layer and the signal handling method. For Windows it iniatializes the
socket layer as well. This also sets the directory Aria is located in from the
ARIA environmental variable, for a description of this see getDirectory and
setDirectory.

For Linux the default signal handling method is to cleanly close down the pro-
gram, cause all the instances of ArRobot (p. 342) to stop their run loop and
disconnect from their robot. The program will exit on the following signals:
SigHUP, SigINT, SigQUIT, and SigTERM.

For Windows, there is no signal handling.

Parameters:
method the method in which to handle signals. Defaulted to SIGHAN-

DLE SINGLE.

initSockets specify whether or not to initialize the socket layer. This is
only meaningfull for Windows. Defaulted to true.

See also:
ArSignalHandler (p. 438) , ArSocket (p. 444)

4.57.3.7 void Aria::setDirectory (const char ∗ directory) [static]

Sets the directory that ARIA resides in.

This sets the directory that ARIA is located in, so ARIA can find param files and
the like. This can also be controlled by the environment variable ARIA, which
this is set to (if it exists) when Aria::init (p. 207) is done. So for setDirectory
to be effective, it must be done after the Aria::init (p. 207).

Parameters:
directory the directory Aria is located in

See also:
getDirectory (p. 206)

4.57.3.8 void Aria::shutdown () [static]

Shutdown all Aria processes/threads.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

208 Aria Class Documentation

This calls stop() on all ArThread (p. 472)’s and ArASyncTask (p. 105)’s. It
will block until all ArThread (p. 472)’s and ArASyncTask (p. 105)’s exit. It
is expected that all the tasks will obey the ArThread::myRunning (p. 474)
variable and exit when it is false.

4.57.3.9 void Aria::uninit () [static]

Performs OS-specific deinitialization.

This must be called last, after all other Aria functions. For both Linux and
Windows, it closes all the open ArModules. For Windows it deinitializes the
socket layer as well.

The documentation for this class was generated from the following files:

• ariaInternal.h
• Aria.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.58 ArInterpolation Class Reference 209

4.58 ArInterpolation Class Reference

#include <ArInterpolation.h>

Public Methods

• ArInterpolation (size t numberOfReadings=100)

Constructor.

• virtual ∼ArInterpolation (void)

Destructor.

• bool addReading (ArTime timeOfReading, ArPose position)

Adds a new reading.

• int getPose (ArTime timeStamp, ArPose ∗position)

Finds a position.

• void setNumberOfReadings (size t numberOfReadings)

Sets the number of readings this instance holds back in time.

• size t getNumberOfReadings (void)

Gets the number of readings this instance holds back in time.

• void reset (void)

Empties the interpolated positions.

4.58.1 Detailed Description

This class takes care of storing in readings of position vs time, and then interpo-
lating between them to find where the robot was at a particular point in time.
It has two lists, one containing the times, and one containing the positions at
those same times (per position), they must be walked through jointly to main-
tain cohesion. The new entries are at the front of the list, while the old ones
are at the back. numberOfReadings and the setNumberOfReadings control the
number of entries in the list. If a size is set that is smaller than the current size,
then the old ones are chopped off.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

210 Aria Class Documentation

4.58.2 Member Function Documentation

4.58.2.1 int ArInterpolation::getPose (ArTime timeStamp, ArPose
∗ position)

Finds a position.

Parameters:
timeStamp the time we are interested in

position the pose to set to the given position

Returns:
1 its good interpolation, 0 its predicting, -1 its too far to predict, -2 its too
old, -3 there’s not enough data to predict

The documentation for this class was generated from the following files:

• ArInterpolation.h
• ArInterpolation.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.59 ArIrrfDevice Class Reference 211

4.59 ArIrrfDevice Class Reference

A class for connecting to a PB-9 and managing the resulting data.

#include <ArIrrfDevice.h>

Inheritance diagram for ArIrrfDevice::

ArIrrfDevice

ArRangeDevice

Public Methods

• ArIrrfDevice (size t currentBufferSize=91, size t cumulativeBuffer-
Size=273, const char ∗name=”irrf”)

Constructor.

• ∼ArIrrfDevice (void)

Destructor.

• bool packetHandler (ArRobotPacket ∗packet)

The packet handler for use when connecting to an H8 micro-controller.

• void setCumulativeMaxRange (double r)

Maximum range for a reading to be added to the cumulative buffer (mm).

• virtual void setRobot (ArRobot ∗)
Sets the robot this device is attached to.

4.59.1 Detailed Description

A class for connecting to a PB-9 and managing the resulting data.

This class is for use with a PB9 IR rangefinder. It has the packethandler neces-
sary to process the packets, and will put the data into ArRangeBuffers for use
with obstacle avoidance, etc.

The PB9 is still under development, and only works on an H8 controller running
AROS.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

212 Aria Class Documentation

4.59.2 Member Function Documentation

4.59.2.1 bool ArIrrfDevice::packetHandler (ArRobotPacket ∗
packet)

The packet handler for use when connecting to an H8 micro-controller.

This is the packet handler for the PB9 data, which is sent via the micro con-
troller, to the client. This will read the data from the packets, and then call
processReadings to filter add the data to the current and cumulative buffers.

The documentation for this class was generated from the following files:

• ArIrrfDevice.h
• ArIrrfDevice.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArJoyHandler Class Reference 213

4.60 ArJoyHandler Class Reference

Interfaces to a joystick.

#include <ArJoyHandler.h>

Public Methods

• ArJoyHandler (bool useOSCal=true)
Constructor.

• ∼ArJoyHandler (void)
Destructor.

• bool init (void)
Intializes the joystick, returns true if successful.

• void setUseOSCal (bool useOSCal)
Sets whether to just use OS calibration or not.

• bool getUseOSCal (void)
Gets whether to just use OS calibration or not.

• bool haveJoystick (void)
Returns if the joystick was successfully initialized or not.

• void setSpeeds (int x, int y)
Sets the max that X or Y will return.

• void getAdjusted (int ∗x, int ∗y)
Gets the adjusted reading, as integers, based on the setSpeed.

• void getDoubles (double ∗x, double ∗y)
Gets the adjusted reading, as floats, between -1.0 and 1.0.

• bool getButton (int button)
Checkes whether the given button is pressed or not.

• void startCal (void)
Starts the calibration process.

• void endCal (void)
Ends the calibration process.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

214 Aria Class Documentation

• void getUnfiltered (int ∗x, int ∗y)

Gets the unfilitered reading, mostly for internal use, maybe useful for Cali-
bration.

• void getStats (int ∗maxX, int ∗minX, int ∗maxY, int ∗minY, int ∗cenX,
int ∗cenY)

Gets the stats for the joystick, useful after calibrating to save values.

• void setStats (int maxX, int minX, int maxY, int minY, int cenX, int
cenY)

Sets the stats for the joystick, useful for restoring calibrated settings.

• void getSpeeds (int ∗x, int ∗y)

Gets the speeds that X and Y are set to.

4.60.1 Detailed Description

Interfaces to a joystick.

The joystick handler keeps track of the minimum and maximums for both axes,
updating them to constantly be better calibrated. The speeds set influence what
is returned by getAdjusted...

The joystick is not opened until init is called. What should basically be done to
use this class is to ’init’ a joystick, do a ’setSpeed’ so you can use ’getAdusted’,
then at some point do a ’getButton’ to see if a button is pressed, and then do
a ’getAdjusted’ to get the values to act on.

Also note that x is usually rotational velocity (since it right/left), whereas Y is
translational (since it is up/down).

You can also use this to do multiple uses with the joystick, for example to have
button 1 drive the robot while to have button 2 move the camera, you can get
the different values you want (don’t want to move the camera as quickly or as
far as the robot) by using setSpeed before doing getAdjusted since setSpeed is
fast and won’t take any time.

4.60.2 Constructor & Destructor Documentation

4.60.2.1 ArJoyHandler::ArJoyHandler (bool useOSCal = true)

Constructor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArJoyHandler Class Reference 215

Parameters:
useOSCal if this is set then the joystick will just rely on the OS to cali-

brate, otherwise it will keep track of center min and max and use those
values for calibration

4.60.3 Member Function Documentation

4.60.3.1 void ArJoyHandler::endCal (void)

Ends the calibration process.

Ends the calibration, which also sets the center to where the joystick is when
the function is called... the center is never reset except in this function, whereas
the min and maxes are constantly checked

See also:
startCal (p. 217)

4.60.3.2 void ArJoyHandler::getAdjusted (int ∗ x, int ∗ y)

Gets the adjusted reading, as integers, based on the setSpeed.

if useOSCal is true then this returns the readings as calibrated from the OS. If
useOSCal is false this finds the percentage of the distance between center and
max (or min) then takes this percentage and multiplies it by the speeds given
the class, and returns the values computed from this.

Parameters:
x pointer to an integer in which to store the x value, which is between - x

given in set speeds and x given in set speeds

y pointer to an integer in which to store the y value, which is between - y
given in set speeds and y given in set speeds

4.60.3.3 bool ArJoyHandler::getButton (int button)

Checkes whether the given button is pressed or not.

Parameters:
button button to test for pressed, buttons are 1 through 4

Returns:
true if the button is pressed, false otherwise

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

216 Aria Class Documentation

4.60.3.4 void ArJoyHandler::getDoubles (double ∗ x, double ∗ y)

Gets the adjusted reading, as floats, between -1.0 and 1.0.

If useOSCal is true then this returns the readings as calibrated from the OS. If
useOSCal is false this finds the percentage of the distance between center and
max (or min) then takes this percentage and multiplies it by the speeds given
the class, and returns the values computed from this.

Parameters:
x pointer to a double in which to store the x value, this value is a value

between -1.0 and 1.0, for where the stick is on that axis

y pointer to a double in which to store the y value, this value is a value
between -1.0 and 1.0, for where the stick is on that axis

4.60.3.5 void ArJoyHandler::getUnfiltered (int ∗ x, int ∗ y)

Gets the unfilitered reading, mostly for internal use, maybe useful for Calibra-
tion.

This returns the raw value from the joystick... with X and Y varying between
-128 and poseitive 128... this shouldn’t be used except in calibration since it’ll
give very strange readings. For example its not uncommon for a joystick to move
10 to the right but 50 or 100 to the left, so if you aren’t adjusting for this you get
a robot (or whatever) that goes left really fast, but will hardly go right, hence
you should use getAdjusted exclusively except for display in calibration.

Parameters:
x pointer to an integer in which to store x value

y pointer to an integer in which to store y value

4.60.3.6 bool ArJoyHandler::getUseOSCal (void)

Gets whether to just use OS calibration or not.

Returns:
if useOSCal is set then the joystick will just rely on the OS to calibrate,
otherwise it will keep track of center min and max and use those values for
calibration

4.60.3.7 void ArJoyHandler::setUseOSCal (bool useOSCal)

Sets whether to just use OS calibration or not.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArJoyHandler Class Reference 217

Parameters:
useOSCal if this is set then the joystick will just rely on the OS to cali-

brate, otherwise it will keep track of center min and max and use those
values for calibration

4.60.3.8 void ArJoyHandler::startCal (void)

Starts the calibration process.

Starts the calibration, which resets all the min and max variables as well as the
center variables.

See also:
endCal (p. 215)

The documentation for this class was generated from the following files:

• ArJoyHandler.h
• ArJoyHandler.cpp
• ArJoyHandler LIN.cpp
• ArJoyHandler WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

218 Aria Class Documentation

4.61 ArKeyHandler Class Reference

This class will read input from the keyboard.

#include <ArKeyHandler.h>

Public Types

• enum KEY { UP = 256, DOWN, LEFT, RIGHT, ESCAPE,
SPACE, TAB, ENTER, BACKSPACE, F1, F2, F3, F4 }

These are enums for the non-ascii keys.

Public Methods

• ArKeyHandler (bool blocking=false)

Constructor.

• ∼ArKeyHandler (void)

Destructor.

• bool addKeyHandler (int keyToHandle, ArFunctor ∗functor)

This adds a keyhandler, when the keyToHandle is hit, functor will fire.

• bool remKeyHandler (int keyToHandler)

This removes a key handler, by key.

• bool remKeyHandler (ArFunctor ∗functor)

This removes a key handler, by key.

• void restore (void)

Sets stdin back to its original settings, if its been restored it won’t read any-
more.

• void checkKeys (void)

intnernal, use addKeyHandler, Checks for keys and handles them.

• int getKey (void)

internal, use addKeyHandler instead... Gets a key from the stdin if ones
available, -1 if there aren’t any available.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.61 ArKeyHandler Class Reference 219

4.61.1 Detailed Description

This class will read input from the keyboard.

This class is for handling input from the keyboard, you just addKeyHandler the
keys you want to deal with.

You should also register the keyhandler with Aria::setKeyHandler (p. 205),
and before you create a key handler you should see if one is already there with
Aria::getKeyHandler (p. 205).

You can attach a key handler to a robot with ArRobot::attachKeyHandler
(p. 364) which will put a task into the robots list of tasks so that it’ll get checked
every cycle or you can just call checkKeys yourself (like in its own thread or in
the main thread). You should only attach a key handler to one robot, even if
you’re using multiple robots.

4.61.2 Member Enumeration Documentation

4.61.2.1 enum ArKeyHandler::KEY

These are enums for the non-ascii keys.

Enumeration values:
UP Up arrow (keypad or 4 key dirs).
DOWN Down arrow (keypad or 4 key dirs).
LEFT Left arrow (keypad or 4 key dirs).
RIGHT Right arrow (keypad or 4 key dirs).
ESCAPE Escape key.
SPACE Space key.
TAB Tab key.
ENTER Enter key.
BACKSPACE Backspace key.
F1 F1.
F2 F2.
F3 F3.
F4 F4.

4.61.3 Constructor & Destructor Documentation

4.61.3.1 ArKeyHandler::ArKeyHandler (bool blocking = false)

Constructor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

220 Aria Class Documentation

Parameters:
blocking whether or not to block waiting on keys, default is false, ie not

to wait... you probably only want to block if you are using check-
Keys yourself like after you start a robot run or in its own thread or
something along those lines

4.61.4 Member Function Documentation

4.61.4.1 bool ArKeyHandler::addKeyHandler (int keyToHandle,
ArFunctor ∗ functor)

This adds a keyhandler, when the keyToHandle is hit, functor will fire.

Parameters:
keyToHandle this is an ascii character, such as ’a’ or ’1’ or ’[’, or a member

of the KEY enum.
functor a functor to call when the given key is pressed

Returns:
true if the addKeyHandler succeeded, which means that the key added was
unique and it will be handled... false means that the add failed, because
there was already a keyHandler in place for that key

4.61.4.2 bool ArKeyHandler::remKeyHandler (ArFunctor ∗
functor)

This removes a key handler, by key.

Parameters:
keyToHandle the functor to remove

Returns:
true if the remKeyHandler succeeded, which means that the key wad found
and rmeoved... false means that the remove failed because there was no
key for that

4.61.4.3 bool ArKeyHandler::remKeyHandler (int keyToHandle)

This removes a key handler, by key.

Parameters:
keyToHandle this is an ascii character, such as ’a’ or ’1’ or ’[’, or a member

of the KEY enum.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.61 ArKeyHandler Class Reference 221

Returns:
true if the remKeyHandler succeeded, which means that the key wad found
and rmeoved... false means that the remove failed because there was no
key for that

The documentation for this class was generated from the following files:

• ArKeyHandler.h
• ArKeyHandler.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

222 Aria Class Documentation

4.62 ArListPos Class Reference

has enum for position in list.

#include <ariaTypedefs.h>

Public Types

• enum Pos { FIRST = 1, LAST = 2 }

4.62.1 Detailed Description

has enum for position in list.

4.62.2 Member Enumeration Documentation

4.62.2.1 enum ArListPos::Pos

Enumeration values:
FIRST place item first in the list.

LAST place item last in the list.

The documentation for this class was generated from the following file:

• ariaTypedefs.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.63 ArLog Class Reference 223

4.63 ArLog Class Reference

Logging utility class.

#include <ArLog.h>

Public Types

• enum LogType { StdOut, StdErr, File, Colbert, None }
• enum LogLevel { Terse, Normal, Verbose }

Static Public Methods

• void log (LogLevel level, char ∗str,...)
Log a message.

• bool init (LogType type, LogLevel level, const char ∗fileName=””)

Initialize the logging utility.

• void close ()

Close the logging utility.

4.63.1 Detailed Description

Logging utility class.

ArLog is a utility class to log all messages from Aria (p. 204) to a choosen
destintation. Messages can be logged to stdout, stderr, a file, and turned off
completely. Logging by default is set to stdout. The level of logging can be
changed as well. Allowed levels are Terse, Normal, and Verbose. By default the
level is set to Normal.

4.63.2 Member Enumeration Documentation

4.63.2.1 enum ArLog::LogLevel

Enumeration values:
Terse Use terse logging.

Normal Use normal logging.

Verbose Use verbose logging.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

224 Aria Class Documentation

4.63.2.2 enum ArLog::LogType

Enumeration values:
StdOut Use stdout for logging.

StdErr Use stderr for logging.

File Use a file for logging.

Colbert Use a Colbert stream for logging.

None Disable logging.

4.63.3 Member Function Documentation

4.63.3.1 bool ArLog::init (LogType type, LogLevel level, const char
∗ fileName = ””) [static]

Initialize the logging utility.

Initialize the logging utility by supplying the type of logging and the level of
logging. If the type is File, the fileName needs to be supplied.

Parameters:
type type of Logging

level level of logging

fileName the name of the file for File type of logging

4.63.3.2 void ArLog::log (LogLevel level, char ∗ str, ...) [static]

Log a message.

This function is used like printf(). If the supplied level is less than or equal to
the set level, it will be printed.

Parameters:
level level of logging

str printf() like formating string

The documentation for this class was generated from the following files:

• ArLog.h
• ArLog.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.64 ArLogFileConnection Class Reference 225

4.64 ArLogFileConnection Class Reference

For connecting through a log file.

#include <ArLogFileConnection.h>

Inheritance diagram for ArLogFileConnection::

ArLogFileConnection

ArDeviceConnection

Public Types

• enum Open { OPEN FILE NOT FOUND = 1, OPEN NOT A -
LOG FILE }

Public Methods

• ArLogFileConnection (void)
Constructor.

• virtual ∼ArLogFileConnection (void)
Destructor also closes connection.

• int open (const char ∗fname=NULL)
Opens a connection to the given host and port.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

226 Aria Class Documentation

• virtual int write (const char ∗data, unsigned int size)
Writes data to connection.

• virtual std::string getOpenMessage (int messageNumber)
Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)
Gets the time data was read in.

• virtual bool isTimeStamping (void)
sees if timestamping is really going on or not.

• const char ∗ getLogFile (void)
Gets the name of the host connected to.

• ArPose getLogPose (void)
Gets the initial pose of the robot.

• int internalOpen (void)
Internal function used by open and openSimple.

4.64.1 Detailed Description

For connecting through a log file.

4.64.2 Member Enumeration Documentation

4.64.2.1 enum ArLogFileConnection::Open

Enumeration values:
OPEN FILE NOT FOUND Can’t find the file.

OPEN NOT A LOG FILE Doesn’t look like a log file.

4.64.3 Member Function Documentation

4.64.3.1 bool ArLogFileConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.64 ArLogFileConnection Class Reference 227

Reimplemented from ArDeviceConnection (p. 120).

4.64.3.2 const char ∗ ArLogFileConnection::getLogFile (void)

Gets the name of the host connected to.

Returns:
the name of the log file

4.64.3.3 std::string ArLogFileConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 120).

4.64.3.4 int ArLogFileConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 121)

Reimplemented from ArDeviceConnection (p. 120).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

228 Aria Class Documentation

4.64.3.5 ArTime ArLogFileConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 121).

4.64.3.6 bool ArLogFileConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 121).

4.64.3.7 int ArLogFileConnection::open (const char ∗ fname =
NULL)

Opens a connection to the given host and port.

Parameters:
fname the file to connect to, if NULL (default) then robot.log

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 227)

4.64.3.8 int ArLogFileConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.64 ArLogFileConnection Class Reference 229

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 229), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

4.64.3.9 int ArLogFileConnection::write (const char ∗ data,
unsigned int size) [virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 228), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

The documentation for this class was generated from the following files:

• ArLogFileConnection.h
• ArLogFileConnection.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

230 Aria Class Documentation

4.65 ArMath Class Reference

This class has static members to do common math operations.

#include <ariaUtil.h>

Static Public Methods

• double addAngle (double ang1, double ang2)
This adds two angles together and fixes the result to [-180, 180].

• double subAngle (double ang1, double ang2)
This subtracts one angle from another and fixes the result to [-180,180].

• double fixAngle (double angle)
Takes an angle and returns the angle in range (-180,180].

• double degToRad (double deg)
Converts an angle in degrees to an angle in radians.

• double radToDeg (double rad)
Converts an angle in radians to an angle in degrees.

• double cos (double angle)
Finds the cos, from angles in degrees.

• double sin (double angle)
Finds the sin, from angles in degrees.

• double atan2 (double y, double x)
Finds the arctan of the given y/x pair.

• bool angleBetween (double angle, double startAngle, double endAngle)
Finds if one angle is between two other angles.

• double fabs (double val)
Finds the absolute value of a double.

• int roundInt (double val)
Finds the closest integer to double given.

• void pointRotate (double ∗x, double ∗y, double th)
Rotates a point around 0 by degrees given.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.65 ArMath Class Reference 231

• long random (void)
Returns a long between 0 and some arbitrary huge number.

• double distanceBetween (double x1, double y1, double x2, double y2)
Finds the distance between two coordinates.

4.65.1 Detailed Description

This class has static members to do common math operations.

4.65.2 Member Function Documentation

4.65.2.1 double ArMath::addAngle (double ang1, double ang2)
[inline, static]

This adds two angles together and fixes the result to [-180, 180].

Parameters:
ang1 first angle

ang2 second angle, added to first

Returns:
sum of the angles, in range [-180,180]

See also:
subAngle (p. 234) , fixAngle (p. 233)

4.65.2.2 double ArMath::atan2 (double y, double x) [inline,
static]

Finds the arctan of the given y/x pair.

Parameters:
y the y distance

x the x distance

Returns:
the angle y and x form

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

232 Aria Class Documentation

4.65.2.3 double ArMath::cos (double angle) [inline, static]

Finds the cos, from angles in degrees.

Parameters:
angle angle to find the cos of, in degrees

Returns:
the cos of the angle

See also:
sin (p. 234)

4.65.2.4 double ArMath::degToRad (double deg) [inline, static]

Converts an angle in degrees to an angle in radians.

Parameters:
deg the angle in degrees

Returns:
the angle in radians

See also:
radToDeg (p. 233)

4.65.2.5 double ArMath::distanceBetween (double x1, double y1,
double x2, double y2) [inline, static]

Finds the distance between two coordinates.

Parameters:
x1 the first coords x position

y1 the first coords y position

x2 the second coords x position

y2 the second coords y position

Returns:
the distance between (x1, y1) and (x2, y2)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.65 ArMath Class Reference 233

4.65.2.6 double ArMath::fabs (double val) [inline, static]

Finds the absolute value of a double.

Parameters:
val the number to find the absolute value of

Returns:
the absolute value of the number

4.65.2.7 double ArMath::fixAngle (double angle) [inline, static]

Takes an angle and returns the angle in range (-180,180].

Parameters:
angle the angle to fix

Returns:
the angle in range (-180,180]

See also:
addAngle (p. 231) , subAngle (p. 234)

4.65.2.8 double ArMath::radToDeg (double rad) [inline, static]

Converts an angle in radians to an angle in degrees.

Parameters:
rad the angle in radians

Returns:
the angle in degrees

See also:
degToRad (p. 232)

4.65.2.9 int ArMath::roundInt (double val) [inline, static]

Finds the closest integer to double given.

Parameters:
val the double to find the nearest integer to

Returns:
the integer the value is nearest to

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

234 Aria Class Documentation

4.65.2.10 double ArMath::sin (double angle) [inline, static]

Finds the sin, from angles in degrees.

Parameters:
angle angle to find the sin of, in degrees

Returns:
the sin of the angle

See also:
cos (p. 232)

4.65.2.11 double ArMath::subAngle (double ang1, double ang2)
[inline, static]

This subtracts one angle from another and fixes the result to [-180,180].

Parameters:
ang1 first angle

ang2 second angle, subtracted from first angle

Returns:
resulting angle, in range [-180,180]

See also:
addAngle (p. 231) , fixAngle (p. 233)

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.66 ArMode Class Reference 235

4.66 ArMode Class Reference

A class for different modes, mostly as related to keyboard input.

#include <ArMode.h>

Inheritance diagram for ArMode::

ArMode

ArModeBumps

ArModeCamera

ArModeGripper

ArModeIO

ArModeLaser

ArModePosition

ArModeSonar

ArModeTeleop

ArModeWander

Public Methods

• ArMode (ArRobot ∗robot, const char ∗name, char key, char key2)

Constructor.

• virtual ∼ArMode (void)

Destructor.

• const char ∗ getName (void)

Gets the name of the mode.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

236 Aria Class Documentation

• virtual void activate (void)=0
The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)=0
The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)
The ArMode’s user task, don’t need one, subclass must provide if needed.

• virtual void help (void)
The mode’s help print out... subclass must provide if needed.

• bool baseActivate (void)
The base activation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

• bool baseDeactivate (void)
The base deactivation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

• char getKey (void)
An internal function to get the first key this is bound to.

• char getKey2 (void)
An internal function to get the second key this is bound to.

Static Public Methods

• void baseHelp (void)
This is the base help function, its internal, bound to ? and h and H.

4.66.1 Detailed Description

A class for different modes, mostly as related to keyboard input.

Each mode is going to need to add its keys to the keyHandler... each mode
should only use the keys 1-0, the arrow keys (movement), the space bar (stop),
z (zoom in), x (zoom out), and e (exercise)... then when its activate is called
by that key handler it needs to first deactivate the ourActiveMode (if its not
itself, in which case its done) then add its key handling stuff... activate and
deactivate will need to add and remove their user tasks (or call the base class

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.66 ArMode Class Reference 237

activate/deactivate to do it) as well as the key handling things for their other
part of modes. This mode will ALWAYS bind help to /, ?, h, and H when the
first instance of an ArMode is made.

4.66.2 Constructor & Destructor Documentation

4.66.2.1 ArMode::ArMode (ArRobot ∗ robot, const char ∗ name,
char key, char key2)

Constructor.

Parameters:
robot the robot we’re attaching to

name the name of this mode

key the first key to switch to this mode on... it can be ’\0’ if you don’t
want to use this

key the first key to switch to this mode on... it can be ’\0’ if you don’t
want to use this

4.66.3 Member Function Documentation

4.66.3.1 bool ArMode::baseActivate (void)

The base activation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

Inheriting modes must first call this to get their user task called and to deactivate
the active mode.... if it returns false then the inheriting class must return, as it
means that his mode is already active

4.66.3.2 bool ArMode::baseDeactivate (void)

The base deactivation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

This gets called when the mode is deactivated, it removes the user task from
the robot

4.66.3.3 virtual void ArMode::help (void) [inline, virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

238 Aria Class Documentation

Reimplemented in ArModeTeleop (p. 245), ArModeWander (p. 247), Ar-
ModeGripper (p. 242), ArModeCamera (p. 240), and ArModeSonar
(p. 244).

The documentation for this class was generated from the following files:

• ArMode.h
• ArMode.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.67 ArModeCamera Class Reference 239

4.67 ArModeCamera Class Reference

Mode for controlling the gripper.

#include <ArModes.h>

Inheritance diagram for ArModeCamera::

ArModeCamera

ArMode

Public Methods

• ArModeCamera (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeCamera (void)

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 235)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.67.1 Detailed Description

Mode for controlling the gripper.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

240 Aria Class Documentation

4.67.2 Member Function Documentation

4.67.2.1 void ArModeCamera::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 237).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.68 ArModeGripper Class Reference 241

4.68 ArModeGripper Class Reference

Mode for controlling the gripper.

#include <ArModes.h>

Inheritance diagram for ArModeGripper::

ArModeGripper

ArMode

Public Methods

• ArModeGripper (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeGripper (void)

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 235)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.68.1 Detailed Description

Mode for controlling the gripper.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

242 Aria Class Documentation

4.68.2 Member Function Documentation

4.68.2.1 void ArModeGripper::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 237).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.69 ArModeSonar Class Reference 243

4.69 ArModeSonar Class Reference

Mode for displaying the sonar.

#include <ArModes.h>

Inheritance diagram for ArModeSonar::

ArModeSonar

ArMode

Public Methods

• ArModeSonar (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeSonar (void)

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 235)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.69.1 Detailed Description

Mode for displaying the sonar.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

244 Aria Class Documentation

4.69.2 Member Function Documentation

4.69.2.1 void ArModeSonar::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 237).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.70 ArModeTeleop Class Reference 245

4.70 ArModeTeleop Class Reference

Mode for teleoping the robot with joystick + keyboard.

#include <ArModes.h>

Inheritance diagram for ArModeTeleop::

ArModeTeleop

ArMode

Public Methods

• ArModeTeleop (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeTeleop (void)

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.70.1 Detailed Description

Mode for teleoping the robot with joystick + keyboard.

4.70.2 Member Function Documentation

4.70.2.1 void ArModeTeleop::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

246 Aria Class Documentation

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 237).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.71 ArModeWander Class Reference 247

4.71 ArModeWander Class Reference

Mode for wandering around.

#include <ArModes.h>

Inheritance diagram for ArModeWander::

ArModeWander

ArMode

Public Methods

• ArModeWander (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeWander (void)

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.71.1 Detailed Description

Mode for wandering around.

4.71.2 Member Function Documentation

4.71.2.1 void ArModeWander::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

248 Aria Class Documentation

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 237).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.72 ArModule Class Reference 249

4.72 ArModule Class Reference

Dynamicly loaded module base class, read warning in more.

#include <ArModule.h>

Public Methods

• ArModule ()

Constructor.

• virtual ∼ArModule ()

Destructor.

• virtual bool init (ArRobot ∗robot, void ∗argument=NULL)=0

Initialize the module. The module should use the supplied ArRobot (p. 342)
pointer.

• virtual bool exit ()=0

Close down the module and have it exit.

• ArRobot ∗ getRobot ()

Get the ArRobot (p. 342) pointer the module should be using.

• void setRobot (ArRobot ∗robot)

Set the ArRobot (p. 342) pointer.

Protected Attributes

• ArRobot ∗ myRobot

Stored ArRobot (p. 342) pointer that the module should use.

4.72.1 Detailed Description

Dynamicly loaded module base class, read warning in more.

Right now only one module’s init will be called, that is the first one, its a bug
that I just don’t have time to fix at the moment. I’ll get to it when I have time
or if someone needs it... someone else wrote this code so it’ll take me a little
longer to fix it.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

250 Aria Class Documentation

This class defines a dyanicmly loaded module of code. This is usefull for an
application to load piece of code that it does not know about. The ArModule
defines and interface in which to invoke that piece of code that the program does
not know about. For instance, a module could contain an ArAction (p. 37) and
the modules init() (p. 250) could instantiate the ArAction (p. 37) and add it
to the supplied ArRobot (p. 342). The init() (p. 250) takes a reference to an
ArRobot (p. 342). The module should use that robot for its purposes. If the
module wants to use more robots, assuming there are multiple robots, it can use
Aria::getRobotList() (p. 205) to find all the ArRobot (p. 342) instantiated.
The module should do all its clean up in exit() (p. 249).

The user should derive their own class from ArModule and implement the init()
(p. 250) and exit() (p. 249) functions. The users code should always clean up
when exit() (p. 249) is called. exit() (p. 249) is called right before the module
(dynamic library .dll/.so) is closed and removed from the program.

The macro ARDEF MODULE() must be called within the .cpp file of the users
module. A global instance of the users module must be defined and a reference
to that instance must be passed to ARDEF MODULE(). This allows the Ar-
ModuleLoader (p. 252) to find the users module class and invoke it.

One thing to note about the use of code wrapped in ArModules and staticly
linking in that code. To be able to staticly link .cpp files which contain an
ArModule, the define of ARIA STATIC should be defined. This will cause
the ARDEF MODULE() to do nothing. If it defined its normal functions and
variables, the linker would fail to staticly link in multiple modules since they all
have symbols with the same name.

See also ArModuleLoader (p. 252) to see how to load an ArModule into a
program.

See also the example programs simpleMod.cpp and simpleModule.cpp. For a
more complete example, see the example programs joydriveActionMod.cpp and
joydriveActionModule.cpp.

4.72.2 Member Function Documentation

4.72.2.1 virtual bool ArModule::init (ArRobot ∗ robot, void ∗
argument = NULL) [pure virtual]

Initialize the module. The module should use the supplied ArRobot (p. 342)
pointer.

Parameters:
robot Robot this module should attach to, can be NULL for none, so make

sure you handle that case

modArgument an optional string argument to the module, this defaults

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.72 ArModule Class Reference 251

to NULL, you’ll need to cast this to whatever you want it to be...
you’ll want to document this clearly with the module

The documentation for this class was generated from the following files:

• ArModule.h
• ArModule.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

252 Aria Class Documentation

4.73 ArModuleLoader Class Reference

Dynamic ArModule (p. 249) loader.

#include <ArModuleLoader.h>

Public Types

• enum Status { STATUS SUCCESS = 0, STATUS ALREADY -
LOADED, STATUS FAILED OPEN, STATUS INVALID, STA-
TUS INIT FAILED, STATUS EXIT FAILED, STATUS NOT -
FOUND }

Static Public Methods

• Status load (const char ∗modName, ArRobot ∗robot, void ∗mod-
Argument=NULL, bool quiet=false)

Load an ArModule (p. 249).

• Status reload (const char ∗modName, ArRobot ∗robot, void ∗mod-
Argument=NULL, bool quiet=false)

Close and then reload an ArModule (p. 249).

• Status close (const char ∗modName, bool quiet=false)

Close an ArModule (p. 249).

• void closeAll ()

Close all open ArModule (p. 249).

4.73.1 Detailed Description

Dynamic ArModule (p. 249) loader.

The ArModuleLoader is used to load ArModules into a program and invoke
them.

See also ArModule (p. 249) to see how to define an ArModule (p. 249).

See also the example programs simpleMod.cpp and simpleModule.cpp. For a
more complete example, see the example programs joydriveActionMod.cpp and
joydriveActionModule.cpp.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.73 ArModuleLoader Class Reference 253

4.73.2 Member Enumeration Documentation

4.73.2.1 enum ArModuleLoader::Status

Enumeration values:
STATUS SUCCESS Load succeded.

STATUS ALREADY LOADED Module already loaded.

STATUS FAILED OPEN Could not find or open the module.

STATUS INVALID Invalid module file format.

STATUS INIT FAILED The module failed its init stage.

STATUS EXIT FAILED The module failed its exit stage.

STATUS NOT FOUND The module was not found.

4.73.3 Member Function Documentation

4.73.3.1 ArModuleLoader::Status ArModuleLoader::close (const
char ∗ modName, bool quiet = false) [static]

Close an ArModule (p. 249).

Calls ArModule::exit() (p. 249) on the module, then closes the library.

Parameters:
modName filename of the module without the extension (.dll or .so)

quiet whether to print out a message if this fails or not, defaults to false

4.73.3.2 ArModuleLoader::Status ArModuleLoader::load (const
char ∗ modName, ArRobot ∗ robot, void ∗ modArgument
= NULL, bool quiet = false) [static]

Load an ArModule (p. 249).

THIS ONLY LOADS one init on the module right now, if its called again it’ll
load the same init over. I’ll fix it later... read the more verbose description in
ArModule.h.

Takes a string name of the module which is just the file name of the module
without the extension (.dll or .so). It will figure out the correct extension
based on wheter its a Linux or Windows build. It will also uses the standard
operating systems ability to find the library. So the library must be located
within the PATH variable for Windows and the LD LIBRARY PATH for Linux.
You can also just give the absolute path to the library, or the relative path from
the directory the program was started in (ie ./simpleMod). The ArModule

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

254 Aria Class Documentation

(p. 249) will be passed the ArRobot (p. 342) reference that load() (p. 253)
takes. This is the ArRobot (p. 342) that the ArModule (p. 249) will use for
its processing.

Parameters:
modName filename of the module without the extension (.dll or .so)

robot ArRobot (p. 342) reference which the module is to use, this can be
NULL

modArgument A void pointer argument to pass to the module, if its a
const value you’ll need to cast it to a non-const value to get it to work
(for example if you were using a constant string). This value defaults
to NULL.

quiet whether to print out a message if this fails or not, defaults to false

4.73.3.3 ArModuleLoader::Status ArModuleLoader::reload (const
char ∗ modName, ArRobot ∗ robot, void ∗ modArgument
= NULL, bool quiet = false) [static]

Close and then reload an ArModule (p. 249).

reload() (p. 254) is similiar to load() (p. 253), except that it will call close()
(p. 253) on the module and then call load() (p. 253).

Parameters:
modName filename of the module without the extension (.dll or .so)

The documentation for this class was generated from the following files:

• ArModuleLoader.h
• ArModuleLoader.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.74 ArMutex Class Reference 255

4.74 ArMutex Class Reference

Mutex wrapper class.

#include <ArMutex.h>

Public Types

• enum Status { STATUS FAILED INIT = 1, STATUS FAILED,
STATUS ALREADY LOCKED }

Public Methods

• ArMutex ()
Constructor.

• virtual ∼ArMutex ()
Destructor.

• virtual int lock ()
Lock the mutex.

• virtual int tryLock ()
Try to lock the mutex, but do not block.

• virtual int unlock ()
Unlock the mutex, allowing another thread to obtain the lock.

• virtual std::string getError (int messageNumber)
Get a human readable error message from an error code.

• virtual MutexType & getMutex ()
Get a reference to the underlying mutex variable.

4.74.1 Detailed Description

Mutex wrapper class.

This class wraps the operating systems mutex functions. It allows mutualy
exclusive access to a critical section. This is extremely usefull for multiple
threads which want to use the same variable. ArMutex simply uses the POSIX
pthread interface in an object oriented manner. It also applies the same concept
to Windows using Windows own abilities to restrict access to critical sections.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

256 Aria Class Documentation

4.74.2 Member Enumeration Documentation

4.74.2.1 enum ArMutex::Status

Enumeration values:
STATUS FAILED INIT Failed to initialize.

STATUS FAILED General failure.

STATUS ALREADY LOCKED Mutex already locked.

4.74.3 Member Function Documentation

4.74.3.1 int ArMutex::lock () [virtual]

Lock the mutex.

Lock the mutex. This function will block until no other thread has this mutex
locked. If it returns 0, then it obtained the lock and the thread is free to use
the critical section that this mutex protects. Else it returns an error code. See
getError() (p. 255).

4.74.3.2 int ArMutex::tryLock () [virtual]

Try to lock the mutex, but do not block.

Try to lock the mutex. This function will not block if another thread has the
mutex locked. It will return instantly if that is the case. It will return STATUS -
ALREADY LOCKED if another thread has the mutex locked. If it obtains the
lock, it will return 0.

The documentation for this class was generated from the following files:

• ArMutex.h
• ArMutex LIN.cpp
• ArMutex WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.75 ArNetServer Class Reference 257

4.75 ArNetServer Class Reference

Class for running a simple net server to send/recv commands via text.

#include <ArNetServer.h>

Public Methods

• ArNetServer (void)
Constructor.

• ∼ArNetServer (void)
Destructor.

• bool open (ArRobot ∗robot, unsigned int port, const char ∗password,
bool multipleClients)

Initializes the server.

• void close (void)
Closes the server.

• bool addCommand (const char ∗command, ArFunctor3< char ∗∗, int,
ArSocket ∗> ∗functor, const char ∗help)

Adds a new command.

• bool remCommand (const char ∗command)
Removes a command.

• void sendToAllClients (const char ∗str,...)
Sends the given string to all the clients.

• bool isOpen (void)
Sees if the server is running and open.

• void runOnce (void)
the internal sync task we use for our loop.

• void internalGreeting (ArSocket ∗socket)
the internal function that gives the greeting message.

• void internalHelp (ArSocket ∗socket)
The internal function that does the help.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

258 Aria Class Documentation

• void internalHelp (char ∗∗argv, int argc, ArSocket ∗socket)
The internal function for the help cb.

• void internalQuit (char ∗∗argv, int argc, ArSocket ∗socket)
The internal function for closing this connection.

• void internalShutdown (char ∗∗argv, int argc, ArSocket ∗socket)
The internal function for shutting down.

4.75.1 Detailed Description

Class for running a simple net server to send/recv commands via text.

This class is for running a simple net server which will have a list of commands
to use and a fairly simple set of interactions... Start the server with the open
function, add commands with the addCommand function and remove commands
with remCommand, and close the server with the close function.

4.75.2 Member Function Documentation

4.75.2.1 bool ArNetServer::addCommand (const char ∗ command,
ArFunctor3< char ∗∗, int, ArSocket ∗> ∗ functor, const
char ∗ help)

Adds a new command.

This adds a command to the list, when the command is given the broken up
argv and argc are given along with the socket it came from (so that acks can
occur)

4.75.2.2 bool ArNetServer::open (ArRobot ∗ robot, unsigned int
port, const char ∗ password, bool multipleClients)

Initializes the server.

Open the server, if you supply a robot this will run in the robots attached, if
you do not supply a robot then it will be open and you’ll have to call runOnce
yourself (this is only recommended for advanced users)

Parameters:
robot the robot that this should be attached to and run in the sync task

of or NULL not to run in any robot’s task

port the port to start up the service on

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.75 ArNetServer Class Reference 259

password the password needed to use the service

multipleClients if false only one client is allowed to connect, if false mul-
tiple clients are allowed to connect or just one

Returns:
true if the server could be started, false otherwise

4.75.2.3 bool ArNetServer::remCommand (const char ∗ command)

Removes a command.

Parameters:
command the command to remove

Returns:
true if the command was there to remove, false otherwise

4.75.2.4 void ArNetServer::sendToAllClients (const char ∗ str, ...)

Sends the given string to all the clients.

This sends the given string to all the clients, this string cannot be more than
2048 number of bytes

The documentation for this class was generated from the following files:

• ArNetServer.h
• ArNetServer.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

260 Aria Class Documentation

4.76 ArP2Arm Class Reference

Arm Control class.

#include <ArP2Arm.h>

Public Types

• enum State { SUCCESS, ALREADY INITED, NOT INITED,
ROBOT NOT SETUP, NO ARM FOUND, COMM FAILED,
COULD NOT OPEN PORT, COULD NOT SET UP PORT,
ALREADY CONNECTED, NOT CONNECTED, INVALID -
JOINT, INVALID POSITION }

General error conditions possible from most of the arm related functions.

• enum PacketType { StatusPacket, InfoPacket }
Type of arm packet identifiers. Used in ArP2Arm::setPacketCB()
(p. 262).

• enum StatusType { StatusOff = 0, StatusSingle = 1, Status-
Continuous = 2 }

Type of status packets to request for. Used in ArP2Arm::requestStatus()
(p. 270).

Public Methods

• ArP2Arm ()
Constructor.

• virtual ∼ArP2Arm ()
Destructor.

• void setRobot (ArRobot ∗robot)
Set the robot to use to talk to the arm.

• virtual State init ()
Init the arm class.

• virtual State uninit ()
Uninit the arm class.

• virtual State powerOn (bool doWait=true)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 261

Power on the arm.

• virtual State powerOff ()

Power off the arm.

• virtual State requestInfo ()

Request the arm info packet.

• virtual State requestStatus (StatusType status)

Request the arm status packet.

• virtual State requestInit ()

Request arm initialization.

• virtual State checkArm (bool waitForResponse=true)

Check to see if the arm is still connected.

• virtual State home (int joint=-1)

Home the arm.

• virtual State park ()

Home the arm and power if off.

• virtual State moveTo (int joint, float pos, unsigned char vel=0)

Move a joint to a position in degrees.

• virtual State moveToTicks (int joint, unsigned char pos)

Move a joint to a position in low level arm controller ticks.

• virtual State moveStep (int joint, float pos, unsigned char vel=0)

Move a joint step degrees.

• virtual State moveStepTicks (int joint, signed char pos)

Move a joint step ticks.

• virtual State moveVel (int joint, int vel)

Set the joint to move at the given velocity.

• virtual State stop ()

Stop the arm.

• virtual State setAutoParkTimer (int waitSecs)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

262 Aria Class Documentation

Set the auto park timer value.

• virtual State setGripperParkTimer (int waitSecs)
Set the gripper park timer value.

• virtual void setStoppedCB (ArFunctor ∗func)
Set the arm stopped callback.

• virtual void setPacketCB (ArFunctor1< PacketType > ∗func)
set the arm packet callback.

• virtual std::string getArmVersion ()
Get the arm version.

• virtual float getJointPos (int joint)
Get the joints position in degrees.

• virtual unsigned char getJointPosTicks (int joint)
Get the joints position in ticks.

• virtual bool getMoving (int joint=-1)
Check to see if the arm is moving.

• virtual bool isPowered ()
Check to see if the arm is powered.

• virtual bool isGood ()
Check to see if the arm is communicating.

• virtual int getStatus ()
Get the two byts of status info from P2OS.

• virtual ArTime getLastStatusTime ()
Get when the last arm status packet came in.

• virtual ArRobot ∗ getRobot ()
Get the robot that the arm is on.

• virtual P2ArmJoint ∗ getJoint (int joint)
Get the joints data structure.

• virtual bool convertDegToTicks (int joint, float pos, unsigned char
∗ticks)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 263

Converts degrees to low level arm controller ticks.

• virtual bool convertTicksToDeg (int joint, unsigned char pos, float
∗degrees)

Converts low level arm controller ticks to degrees.

Static Public Attributes

• const int ArmJoint1 = 0x1
Bit for joint 1 in arm status byte.

• const int ArmJoint2 = 0x2
Bit for joint 2 in arm status byte.

• const int ArmJoint3 = 0x4
Bit for joint 3 in arm status byte.

• const int ArmJoint4 = 0x8
Bit for joint 4 in arm status byte.

• const int ArmJoint5 = 0x10
Bit for joint 5 in arm status byte.

• const int ArmJoint6 = 0x20
Bit for joint 6 in arm status byte.

• const int ArmGood = 0x100
Bit for arm good state in arm status byte.

• const int ArmInited = 0x200
Bit for arm initialized in arm status byte.

• const int ArmPower = 0x400
Bit for arm powered on in arm status byte.

• const int ArmHoming = 0x800
Bit for arm homing in arm status byte.

• int NumJoints = 6
Number of joints that the arm has.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

264 Aria Class Documentation

4.76.1 Detailed Description

Arm Control class.

ArP2Arm is the interface to the AROS/P2OS-based Pioneer 2 Arm servers.
The P2 Arm is attached to the robot’s microcontroller via an auxiliary serial
port.

To use ArmP2, you must first set up an ArRobot (p. 342) and have it connect
with the robot. The ArRobot (p. 342) needs to be run so that it reads and
writes packets to and from server. The easiest way is ArRobot::runAsync()
(p. 383) which runs the ArRobot (p. 342) in its own thread.

Then call ArP2Arm::setRobot() (p. 260) with ArRobot (p. 342), and finally
initialized with ArmP2::init(). Once initialized, use the various ArP2Arm meth-
ods to power the P2 Arm servos, move joints, and so on.

For simple examples on how to use ArP2Arm, look in the Aria
(p. 204)/examples directory for P2ArmSimple.cpp and P2ArmJoydrive.cpp.

See the Aria (p. 204) documentation on how to use Aria (p. 204).

4.76.2 Member Enumeration Documentation

4.76.2.1 enum ArP2Arm::PacketType

Type of arm packet identifiers. Used in ArP2Arm::setPacketCB() (p. 262).

Enumeration values:
StatusPacket The status packet type.

InfoPacket The info packet type.

4.76.2.2 enum ArP2Arm::State

General error conditions possible from most of the arm related functions.

Enumeration values:
SUCCESS Succeded.

ALREADY INITED The class is already initialized.

NOT INITED The class is not initialized.

ROBOT NOT SETUP The ArRobot (p. 342) class is not setup prop-
erly.

NO ARM FOUND The arm can not be found.

COMM FAILED Communications has failed.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 265

COULD NOT OPEN PORT Could not open the communications
port.

COULD NOT SET UP PORT Could not setup the communications
port.

ALREADY CONNECTED Already connected to the arm.

NOT CONNECTED Not connected with the arm, connect first.

INVALID JOINT Invalid joint specified.

INVALID POSITION Invalid position specified.

4.76.2.3 enum ArP2Arm::StatusType

Type of status packets to request for. Used in ArP2Arm::requestStatus()
(p. 270).

Enumeration values:
StatusOff Stop sending status packets.

StatusSingle Send a single status packets.

StatusContinuous Send continous packets. Once every 100ms.

4.76.3 Member Function Documentation

4.76.3.1 ArP2Arm::State ArP2Arm::checkArm (bool
waitForResponse = true) [virtual]

Check to see if the arm is still connected.

Requests that P2OS checks to see if the arm is still alive and immediately exits.
This is not a full init and differs that P2OS will still accept arm commands and
the arm will not be parked. If P2OS fails to find the arm it will change the
status byte accordingly and stop accepting arm related commands except for
init commands. If the parameter waitForResponse is true then checkArm()
(p. 265) will wait the appropriate amoutn of time and check the status of the
arm. If you wish to do the waiting else where the arm check sequence takes
about 200ms, so the user should wait 300ms then send a ArP2Arm::request-
Status() (p. 270) to get the results of the check arm request. Since there is a
very noticable time delay, the user should use the ArP2Arm::setPacketCB()
(p. 262) to set a callback so the user knows when the packet has been recieved.

This can be usefull for telling if the arm is still alive. The arm controller can
be powered on/off seperately from the robot.

Parameters:
waitForResponse cause the function to block until their is a response

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

266 Aria Class Documentation

See also:
requestInit (p. 269) , setPacketCB (p. 262)

4.76.3.2 ArP2Arm::State ArP2Arm::home (int joint = -1)
[virtual]

Home the arm.

Tells the arm to go to the home position. While the arm is homing, the status
byte will reflect it with the ArP2Arm::ArmHoming (p. 263) flag. If joint is
set to -1, then all the joints will be homed at a safe speed. If a single joint is
specified, that joint will be told to go to its home position at the current speed
its set at.

Parameters:
joint home only that joint

4.76.3.3 ArP2Arm::State ArP2Arm::init (void) [virtual]

Init the arm class.

Initialize the P2 Arm class. This must be called before anything else. The
setRobot() (p. 260) must be called to let ArP2Arm know what instance of an
ArRobot (p. 342) to use. It talks to the robot and makes sure that there is an
arm on it and it is in a good condition. The AROS/P2OS arm servers take care
of AUX port serial communications with the P2 Arm controller.

4.76.3.4 ArP2Arm::State ArP2Arm::moveStep (int joint, float pos,
unsigned char vel = 0) [virtual]

Move a joint step degrees.

Step the joint pos degrees from its current position at the given speed. If vel is
0, then the currently set speed will be used.

See ArP2Arm::moveToTicks() (p. 268) for a description of how positions are
defined. See ArP2Arm::moveVel() (p. 268) for a description of how speeds
are defined.

Parameters:
joint the joint to move
pos the position in degrees to step
vel the speed at which to move. 0 will use the currently set speed

See also:
moveTo (p. 267) , moveVel (p. 268)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 267

4.76.3.5 ArP2Arm::State ArP2Arm::moveStepTicks (int joint,
signed char pos) [virtual]

Move a joint step ticks.

Move the joint pos ticks from its current position. A tick is the arbitrary position
value that the arm controller uses. The arm controller uses a single unsigned
byte to represent all the possible positions in the range of the servo for each
joint. So the range of ticks is 0-255 which is mapped to the physical range of
the servo. Due to the design of the arm, certain joints range are limited by the
arm itself. P2OS will bound the position to physical range of each joint. This
is a lower level of controlling the arm position than using ArP2Arm::move-
To() (p. 267). ArP2Arm::moveStep() (p. 266) uses a conversion factor which
converts degrees to ticks.

Parameters:
joint the joint to move

pos the position, in ticks, to move to

See also:
moveStep (p. 266)

4.76.3.6 ArP2Arm::State ArP2Arm::moveTo (int joint, float pos,
unsigned char vel = 0) [virtual]

Move a joint to a position in degrees.

Move the joint to the position at the given speed. If vel is 0, then the currently
set speed will be used. The position is in degrees. Each joint has about a +-90
degree range, but they all differ due to the design.

See ArP2Arm::moveToTicks() (p. 268) for a description of how positions are
defined. See ArP2Arm::moveVel() (p. 268) for a description of how speeds
are defined.

Parameters:
joint the joint to move

pos the position in degrees to move to

vel the speed at which to move. 0 will use the currently set speed

See also:
moveToTicks (p. 268) , moveVel (p. 268)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

268 Aria Class Documentation

4.76.3.7 ArP2Arm::State ArP2Arm::moveToTicks (int joint,
unsigned char pos) [virtual]

Move a joint to a position in low level arm controller ticks.

Move the joint to the given position in ticks. A tick is the arbitrary position
value that the arm controller uses. The arm controller uses a single unsigned
byte to represent all the possible positions in the range of the servo for each
joint. So the range of ticks is 0-255 which is mapped to the physical range of
the servo. Due to the design of the arm, certain joints range are limited by the
arm itself. P2OS will bound the position to physical range of each joint. This
is a lower level of controlling the arm position than using ArP2Arm::move-
To() (p. 267). ArP2Arm::moveTo() (p. 267) uses a conversion factor which
converts degrees to ticks.

Parameters:
joint the joint to move
pos the position, in ticks, to move to

See also:
moveTo (p. 267)

4.76.3.8 ArP2Arm::State ArP2Arm::moveVel (int joint, int vel)
[virtual]

Set the joint to move at the given velocity.

Set the joints velocity. The arm controller has no way of controlling the speed of
the servos in the arm. So to control the speed of the arm, P2OS will incrementaly
send a string of position commands to the arm controller to get the joint to move
to its destination. To vary the speed, the amount of time to wait between each
point in the path is varied. The velocity parameter is simply the number of
milliseconds to wait between each point in the path. 0 is the fastest and 255 is
the slowest. A reasonable range is around 10-40.

Parameters:
joint the joint to move
vel the velocity to move at

4.76.3.9 ArP2Arm::State ArP2Arm::powerOff () [virtual]

Power off the arm.

Powers off the arm. This should only be called when the arm is in a good position
to power off. Due to the design, it will go limp when the power is turned off.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 269

A more safe way to power off the arm is to use the ArP2Arm::park() (p. 261)
function. Which will home the arm, then power if off.

See also:
park (p. 261)

4.76.3.10 ArP2Arm::State ArP2Arm::powerOn (bool doSleep =
true) [virtual]

Power on the arm.

Powers on the arm. The arm will shake for up to 2 seconds after powering on. If
the arm is told to move before it stops shaking, that vibration can be amplified
by moving. The default is to wait the 2 seconds for the arm to settle down.

Parameters:
doSleep if true, sleeps 2 seconds to wait for the arm to stop shaking

4.76.3.11 ArP2Arm::State ArP2Arm::requestInfo () [virtual]

Request the arm info packet.

Requests the arm info packet from P2OS and immediately returns. This packet
will be sent during the next 100ms cycle of P2OS. Since there is a very noticable
time delay, the user should use the ArP2Arm::setPacketCB() (p. 262) to set
a callback so the user knows when the packet has been recieved.

See also:
setPacketCB (p. 262)

4.76.3.12 ArP2Arm::State ArP2Arm::requestInit () [virtual]

Request arm initialization.

Requests that P2OS initialize the arm and immediately returns. The arm ini-
tialization procedure takes about 700ms to complete and a little more time for
the status information to be relayed back to the client. Since there is a very not-
icable time delay, the user should use the ArP2Arm::setPacketCB() (p. 262)
to set a callback so the user knows when the arm info packet has been recieved.
Then wait about 800ms, and send a ArP2Arm::requestStatus() (p. 270) to
get the results of the init request. While the init is proceding, P2OS will ignore
all arm related commands except requests for arm status and arm info packets.

ArP2Arm::checkArm() (p. 265) can be used to periodicly check to make sure
that the arm controller is still alive and responding.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

270 Aria Class Documentation

See also:
checkArm (p. 265) , setPacketCB (p. 262)

4.76.3.13 ArP2Arm::State ArP2Arm::requestStatus (StatusType
status) [virtual]

Request the arm status packet.

Requests the arm status packet from P2OS and immediately returns. This
packet will be sent during the next 100ms cycle of P2OS. Since there is a
very noticable time delay, the user should use the ArP2Arm::setPacket-
CB() (p. 262) to set a callback so the user knows when the packet has been
recieved.

See also:
setPacketCB (p. 262)

4.76.3.14 ArP2Arm::State ArP2Arm::setAutoParkTimer (int
waitSecs) [virtual]

Set the auto park timer value.

P2OS will automaticly park the arm if it gets no arm related packets after wait-
Secs. This is to help protect the arm when the program looses connection with
P2OS. Set the value to 0 to disable this timer. Default wait is 10 minutes.

Parameters:
waitSecs seconds to wait till parking the arm when idle

4.76.3.15 ArP2Arm::State ArP2Arm::setGripperParkTimer (int
waitSecs) [virtual]

Set the gripper park timer value.

P2OS/AROS automatically park the gripper after its been closed for more than
waitSecs. The gripper servo can overheat and burnout if it is holding something
for more than 10 minutes. Care must be taken to ensure that this does not
happen. If you wish to manage the gripper yourself, you can disable this timer
by setting it to 0.

Parameters:
waitSecs seconds to wait till parking the gripper once it has begun to grip

something

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArP2Arm Class Reference 271

4.76.3.16 ArP2Arm::State ArP2Arm::stop () [virtual]

Stop the arm.

Stop the arm from moving. This overrides all other actions except for the arms
initilization sequence.

4.76.3.17 ArP2Arm::State ArP2Arm::uninit () [virtual]

Uninit the arm class.

Uninitialize the arm class. This simply asks the arm to park itself and cleans
up its internal state. To completely uninitialize the P2 Arm itself have the
ArRobot (p. 342) disconnect from P2OS.

The documentation for this class was generated from the following files:

• ArP2Arm.h
• ArP2Arm.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

272 Aria Class Documentation

4.77 ArPeriodicTask Class Reference

A periodic task base class.

#include <ArPeriodicTask.h>

Public Methods

• ArPeriodicTask ()

Constructor.

• virtual ∼ArPeriodicTask ()

Destructor.

• virtual bool invoke ()

Invoke the task.

• virtual void runTask ()=0

Function to override for the task.

• void setRunning (bool yesno)

Function to set the task’s running variable.

• bool isRunning ()

Function to tell if the task is running.

4.77.1 Detailed Description

A periodic task base class.

This class is a base class for running periodic tasks that need to be run in their
own thread. Since the tasks are periodic and dont need to be run constantly,
they dont need their own thread all the time. Since threads can be a restricted
resource, there is this periodic task. The user simply needs to derive their own
class from ArPeriodicTask and override the runTask() (p. 272) function. The
function is guarenteed to be run in its own thread. It can run as long as it
wants and when its done the thread will be released to be used by another Ar-
PeriodicTask that may need it. To run the task, simply call invoke() (p. 272)
on it. The invoke() (p. 272) can be called multiple times.

See also ArTaskPool (p. 463).

The documentation for this class was generated from the following files:

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.77 ArPeriodicTask Class Reference 273

• ArPeriodicTask.h
• ArPeriodicTask.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

274 Aria Class Documentation

4.78 ArPose Class Reference

The class which represents a position.

#include <ariaUtil.h>

Inheritance diagram for ArPose::

ArPose

ArPoseWithTime

Public Methods

• ArPose (double x=0, double y=0, double th=0)
Constructor, with optional initial values.

• ArPose (const ArPose &pose)
Copy Constructor.

• virtual ∼ArPose (void)
Destructor.

• virtual void setPose (double x, double y, double th=0)
Sets the position to the given values.

• virtual void setPose (ArPose position)
Sets the position equal to the given position.

• void setX (double x)
Sets the x position.

• void setY (double y)
Sets the y position.

• void setTh (double th)
Sets the heading.

• void setThRad (double th)
Sets the heading, using radians.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.78 ArPose Class Reference 275

• double getX (void)

Gets the x position.

• double getY (void)

Gets the y position.

• double getTh (void)

Gets the heading.

• double getThRad (void)

Gets the heading, in radians.

• void getPose (double ∗x, double ∗y, double ∗th=NULL)

Gets the whole position in one function call.

• virtual double findDistanceTo (ArPose position)

Finds the distance from this position to the given position.

• virtual double findAngleTo (ArPose position)

Finds the angle between this position and the given position.

• virtual void print (void)

Logs the coordinates using ArLog (p. 223).

4.78.1 Detailed Description

The class which represents a position.

This class represents a robot position with heading. The heading defaults to
0, and so does not need to be used (this avoids having 2 types of positions).
Everything in the class is inline so it should be fast.

4.78.2 Constructor & Destructor Documentation

4.78.2.1 ArPose::ArPose (double x = 0, double y = 0, double th =
0) [inline]

Constructor, with optional initial values.

Sets the position with the given values, can be used with no variables, with just
x and y, or with x, y, and th

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

276 Aria Class Documentation

Parameters:
x the position to set the x position to, default of 0
y the position to set the y position to, default of 0
th the position to set the th position to, default of 0

4.78.3 Member Function Documentation

4.78.3.1 virtual double ArPose::findAngleTo (ArPose position)
[inline, virtual]

Finds the angle between this position and the given position.

Parameters:
position the position to find the angle to

Returns:
the angle to the given position from this instance, in degrees

4.78.3.2 virtual double ArPose::findDistanceTo (ArPose position)
[inline, virtual]

Finds the distance from this position to the given position.

Parameters:
position the position to find the distance to

Returns:
the distance to the position from this instance

4.78.3.3 void ArPose::getPose (double ∗ x, double ∗ y, double ∗ th
= NULL) [inline]

Gets the whole position in one function call.

Gets the whole position at once, by giving it 2 or 3 pointers to doubles. If you
give the function a null pointer for a value it won’t try to use the null pointer,
so you can pass in a NULL if you don’t care about that value. Also note that
th defaults to NULL so you can use this with just x and y.

Parameters:
x a pointer to a double to set the x position to
y a pointer to a double to set the y position to
th a pointer to a double to set the heading to, defaults to NULL

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.78 ArPose Class Reference 277

4.78.3.4 virtual void ArPose::setPose (ArPose position) [inline,
virtual]

Sets the position equal to the given position.

Parameters:
position the position value this instance should be set to

4.78.3.5 virtual void ArPose::setPose (double x, double y, double
th = 0) [inline, virtual]

Sets the position to the given values.

Sets the position with the given three values, but the theta does not need to be
given as it defaults to 0.

Parameters:
x the position to set the x position to

y the position to set the y position to

th the position to set the th position to, default of 0

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

278 Aria Class Documentation

4.79 ArPoseWithTime Class Reference

A subclass of pose that also has the time the pose was taken.

#include <ariaUtil.h>

Inheritance diagram for ArPoseWithTime::

ArPoseWithTime

ArPose

4.79.1 Detailed Description

A subclass of pose that also has the time the pose was taken.

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.80 ArPref Class Reference 279

4.80 ArPref Class Reference

Preference instance. Used by ArPreferences.

#include <ArPref.h>

Public Types

• enum ValType { Integer, Double, Boolean, String }

Public Methods

• ArPref (int section, int pref, const char ∗name, const char ∗val, const
char ∗∗validVals, ValType valType, const char ∗comment)

Constructor.

• ArPref (const ArPref &pref)
Copy constructor.

• virtual ∼ArPref ()
Destructor.

• virtual bool getBool ()
Get the value as a boolean.

• virtual int getInt ()
Get the value as an integer.

• virtual double getDouble ()
Get the value as a double.

• virtual std::string getString ()
Get the value as a std::string.

• virtual bool setBool (bool val, bool append=false)
Set the value to be the supplied boolean.

• virtual bool setInt (int val, bool append=false)
Set the value to be the supplied integer.

• virtual bool setDouble (double val, bool append=false)
Set the value to be the supplied doule.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

280 Aria Class Documentation

• virtual bool setString (const char ∗val, bool append=false)

Set the value to be the supplied std::string.

• virtual int getSetCount ()

Get the number of values that would be in the set regardless of type.

• virtual int getBoolSet (bool ∗boolArray, int size)

Get the value as multiple booleans.

• virtual int getIntSet (int ∗intArray, int size)

Get the value as multiple integers.

• virtual int getDoubleSet (double ∗doubleArray, int size)

Get the value as multiple doubles.

• virtual int getStringSet (std::string ∗stringArray, int size)

Get the value as multiple std::strings.

• virtual bool setBoolSet (bool append, int count,...)

Set the value to be the supplied booleans.

• virtual bool setIntSet (bool append, int count,...)

Set the value to be the supplied integers.

• virtual bool setDoubleSet (bool append, int count,...)

Set the value to be the supplied doubles.

4.80.1 Detailed Description

Preference instance. Used by ArPreferences.

This represents an individual preference which is loaded from compiled in de-
faults of from a preferences file. A preference can be one of four different
types: Integer, Double, Boolean, String. The preference itself is stored as a
string. There are accessors which convert from string to the desired format and
vice versa: getBool() (p. 281), getInt() (p. 282), getDouble() (p. 282), get-
String() (p. 283), setBool() (p. 283), setInt() (p. 284), setDouble() (p. 284),
setString() (p. 285). A preference can also have a set of values of all the same
type. In the file would look like:

<key> <int> <int> <int> ...

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.80 ArPref Class Reference 281

The ’set’ accessors can deal with an abitrary amount of values: getBool-
Set() (p. 281), getIntSet() (p. 282), getDoubleSet() (p. 282), getStringSet()
(p. 283), setBoolSet() (p. 284), setIntSet() (p. 285), setDoubleSet() (p. 284).

A preference can have an array of valid values. When the file is loaded, Ar-
Preferences checks all the values from the file against the supplied valid values.
The check is done with a string compare. It is most usefull for string values. So
it will apply to numbers as long as they are formated in the correct way.

4.80.2 Member Enumeration Documentation

4.80.2.1 enum ArPref::ValType

Enumeration values:
Integer integer number value.

Double double number value.

Boolean boolean value, expressed as ’true’ or ’false’ in the file.

String a string value.

4.80.3 Member Function Documentation

4.80.3.1 bool ArPref::getBool (void) [virtual]

Get the value as a boolean.

Get the value, formating it correctly. If the preference is not of the boolean
type or not found, it will return false.

4.80.3.2 int ArPref::getBoolSet (bool ∗ boolArray, int size)
[virtual]

Get the value as multiple booleans.

Get the value, formating it correctly. If the preference is not of the boolean
type or not found, it will return false.

Parameters:
boolArray the array to fill out with the values

size the size of the passed in array

Returns:
the number of values put into the array

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

282 Aria Class Documentation

4.80.3.3 double ArPref::getDouble (void) [virtual]

Get the value as a double.

Get the value, formating it correctly. If the preference is not of the double type
or not found, it will return 0.0.

4.80.3.4 int ArPref::getDoubleSet (double ∗ doubleArray, int size)
[virtual]

Get the value as multiple doubles.

Get the value, formating it correctly. If the preference is not of the double type
or not found, it will return an empty list.

Parameters:
doubleArray the array to fill out with the values

size the size of the passed in array

Returns:
the number of values put into the array

4.80.3.5 int ArPref::getInt (void) [virtual]

Get the value as an integer.

Get the value, formating it correctly. If the preference is not of the integer type
or not found, it will return 0.

4.80.3.6 int ArPref::getIntSet (int ∗ intArray, int size) [virtual]

Get the value as multiple integers.

Get the value, formating it correctly. If the preference is not of the integer type
or not found, it will return an empty list.

Parameters:
intArray the array to fill out with the values

size the size of the passed in array

Returns:
the number of values put into the array

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.80 ArPref Class Reference 283

4.80.3.7 int ArPref::getSetCount () [virtual]

Get the number of values that would be in the set regardless of type.

Get the number of values that is contained in this preference. This is indepen-
dent of the type of values. Use this to figure out how big of an array that you
need to get a set of values.

4.80.3.8 std::string ArPref::getString (void) [virtual]

Get the value as a std::string.

Get the value, formating it correctly. If the preference is not of the string type
or not found, it will return ””.

4.80.3.9 int ArPref::getStringSet (std::string ∗ stringArray, int
size) [virtual]

Get the value as multiple std::strings.

Get the value, formating it correctly. If the preference is not of the string type
or not found, it will return an empty list.

Parameters:
stringArray the array to fill out with the values

size the size of the passed in array

Returns:
the number of values put into the array

4.80.3.10 bool ArPref::setBool (bool val, bool append = false)
[virtual]

Set the value to be the supplied boolean.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
val the value to set the preference to

append create a new instance of this preference

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

284 Aria Class Documentation

4.80.3.11 bool ArPref::setBoolSet (bool append, int count, ...)
[virtual]

Set the value to be the supplied booleans.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
append create a new instance of this preference

count the number of values in the parameter list

4.80.3.12 bool ArPref::setDouble (double val, bool append = false)
[virtual]

Set the value to be the supplied doule.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
val the value to set the preference to

append create a new instance of this preference

4.80.3.13 bool ArPref::setDoubleSet (bool append, int count, ...)
[virtual]

Set the value to be the supplied doubles.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
append create a new instance of this preference

count the number of values in the parameter list

4.80.3.14 bool ArPref::setInt (int val, bool append = false)
[virtual]

Set the value to be the supplied integer.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.80 ArPref Class Reference 285

Parameters:
val the value to set the preference to

append create a new instance of this preference

4.80.3.15 bool ArPref::setIntSet (bool append, int count, ...)
[virtual]

Set the value to be the supplied integers.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
append create a new instance of this preference

count the number of values in the parameter list

4.80.3.16 bool ArPref::setString (const char ∗ val, bool append =
false) [virtual]

Set the value to be the supplied std::string.

If ’append’ is true, a copy of this instance with the supplied value will be created
and added to the ArPreferences.

Parameters:
val the value to set the preference to

append create a new instance of this preference

The documentation for this class was generated from the following files:

• ArPref.h
• ArPref.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

286 Aria Class Documentation

4.81 ArPriorityResolver Class Reference

(Default resolver), takes the action list and uses the priority to resolve.

#include <ArPriorityResolver.h>

Inheritance diagram for ArPriorityResolver::

ArPriorityResolver

ArResolver

Public Methods

• ArPriorityResolver (void)
Constructor.

• virtual ∼ArPriorityResolver (void)
Destructor.

4.81.1 Detailed Description

(Default resolver), takes the action list and uses the priority to resolve.

This is the default resolver for ArRobot (p. 342), meaning if you don’t do a
non-normal init on the robot, or a setResolver, you’ll have one these.

The documentation for this class was generated from the following files:

• ArPriorityResolver.h
• ArPriorityResolver.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.82 ArPTZ Class Reference 287

4.82 ArPTZ Class Reference

Base class which handles the PTZ cameras.

#include <ArPTZ.h>

Inheritance diagram for ArPTZ::

ArPTZ

ArAMPTU ArDPPTU ArSonyPTZ ArVCC4

Public Methods

• ArPTZ (ArRobot ∗robot)
• virtual ∼ArPTZ (void)

Destructor.

• virtual bool init (void)=0
Initializes the camera.

• virtual bool pan (int degrees)=0
Pans to the given degrees.

• virtual bool panRel (int degrees)=0
Pans relative to current position by given degrees.

• virtual bool tilt (int degrees)=0
Tilts to the given degrees.

• virtual bool tiltRel (int degrees)=0
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int degreesPan, int degreesTilt)=0
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int degreesPan, int degreesTilt)=0
Pans and tilts relatives to the current position by the given degrees.

• virtual bool canZoom (void)=0
Returns true if camera can zoom (or rather, if it is controlled by this).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

288 Aria Class Documentation

• virtual bool zoom (int zoomValue)
Zooms to the given value.

• virtual bool zoomRel (int zoomValue)
Zooms relative to the current value, by the given value.

• virtual int getPan (void)=0
The angle the camera was last told to pan to.

• virtual int getTilt (void)=0
The angle the camera was last told to tilt to.

• virtual int getZoom (void)
The value the camera was last told to zoom to.

• virtual bool canGetRealPanTilt (void)
If this driver can tell the real pan/tilt angle.

• virtual int getRealPan (void)
The angle the camera says its at.

• virtual int getRealTilt (void)
The angle the camera says its at.

• virtual bool canGetRealZoom (void)
If this driver can tell the real zoom.

• virtual int getRealZoom (void)
The zoom the camera says its at.

• virtual int getMaxPosPan (void)=0
Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void)=0
Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void)=0
Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void)=0
Gets the lowest negative degree the camera can tilt to.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.82 ArPTZ Class Reference 289

• virtual int getMaxZoom (void)
Gets the maximum value for the zoom on this camera.

• virtual int getMinZoom (void)
Gets the lowest value for the zoom on this camera.

• virtual bool setDeviceConnection (ArDeviceConnection
∗connection, bool driveFromRobotLoop=true)

Sets the device connection to be used by this PTZ camera, if set this camera
will send commands via this connection, otherwise its via robot.

• virtual ArDeviceConnection ∗ getDeviceConnection (void)
Gets the device connection used by this PTZ camera.

• virtual ArBasePacket ∗ readPacket (void)
Reads a packet from the device connection, MUST NOT BLOCK.

• virtual bool sendPacket (ArBasePacket ∗packet)
Sends a given packet to the camera (via robot or serial port, depending).

• virtual bool packetHandler (ArBasePacket ∗packet)
Handles a packet that was read from the device.

• virtual bool robotPacketHandler (ArRobotPacket ∗packet)
Handles a packet that was read by the robot.

• virtual void connectHandler (void)
Internal, attached to robot, inits the camera when robot connects.

• virtual void sensorInterpHandler (void)
Internal, for attaching to the robots sensor interp to read serial port.

4.82.1 Detailed Description

Base class which handles the PTZ cameras.

This class is mainly concerned with making all the cameras look the same for
outgoing data, it is also set up to facilitate the acquisition of incoming data
but that is described in the following paragraphs. There are two ways this can
be used. The first is the simplest and default behavior and should be used by
those whose cameras are attached to their robot’s microcontroller, a ArRobot

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

290 Aria Class Documentation

(p. 342) pointer is passed in to the contructor, this is where the commands will
be sent to the robot via the robot’s connection which will then send it along over
the second serial port. The second way is to pass an ArDeviceConnection
(p. 118) to setDeviceConnection, if this is done commands will be sent along the
given serial port, this should ONLY be done if the camera is attached straight
to a serial port on the computer this program is running on.

The next two paragraphs describe how to get data back from the cameras,
but this base class is set up so that by default it won’t try to get data back
and assumes you’re not trying to do that. If you are trying to get data back
the important functions are packetHandler, robotPacketHandler and readPacket
and you should read the docs on those.

If the camera is attached to the robot (and you are thus using the first method
described in the first paragraph) then the only way to get data back is to send
an ArCommands::GETAUX (p. 114), then set up a robotPacketHandler for
the AUX id and have it call the packetHandler you set up in in the class.

If the camera is attached to the serial port on the computer (and thus the second
method described in the first paragraph was used) then its more complicated...
the default way is to just pass in an ArDeviceConnection (p. 118) to set-
DeviceConnection and implement the readPacket method (which MUST not
block), and every time through the robot loop readPacket (with the sensor-
InterpHandler) will be called and any packets will be given to the packetHandler
(which you need to implement in your class) to be processed. The other way to
do this method is to pass both an ArDefaultConnection and false to setDevice-
Connection, this means the camera will not be read at all by default, and you’re
on your own for reading the data in (ie like your own thread).

4.82.2 Constructor & Destructor Documentation

4.82.2.1 ArPTZ::ArPTZ (ArRobot ∗ robot)

Parameters:
robot The robot this camera is attached to, can be NULL

4.82.3 Member Function Documentation

4.82.3.1 virtual bool ArPTZ::packetHandler (ArBasePacket ∗
packet) [inline, virtual]

Handles a packet that was read from the device.

This should work for the robot packet handler or for packets read in from read-
Packet (the joys of OO), but it can’t deal with the need to check the id on robot
packets, so you should check the id from robotPacketHandler and then call this

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.82 ArPTZ Class Reference 291

one so that your stuff can be used by both robot and serial port connections.

Parameters:
packet the packet to handle

Returns:
true if this packet was handled (ie this knows what it is), false otherwise

4.82.3.2 virtual ArBasePacket∗ ArPTZ::readPacket (void)
[inline, virtual]

Reads a packet from the device connection, MUST NOT BLOCK.

This should read in a packet from the myConn connection and return a pointer
to a packet if there was on to read in, or NULL if there wasn’t one... this
MUST not block if it is used with the default mode of being driven from the
sensorInterpHandler, since that is on the robot loop.

Returns:
packet read in, or NULL if there was no packet read

4.82.3.3 virtual bool ArPTZ::robotPacketHandler (ArRobotPacket
∗ packet) [inline, virtual]

Handles a packet that was read by the robot.

This handles packets read in from the robot, this function should just check
the ID of the robot packet and then return what packetHandler thinks of the
packet.

Parameters:
packet the packet to handle

Returns:
true if the packet was handled (ie this konws what it is), false otherwise

4.82.3.4 bool ArPTZ::sendPacket (ArBasePacket ∗ packet)
[virtual]

Sends a given packet to the camera (via robot or serial port, depending).

Parameters:
packet the packet to send

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

292 Aria Class Documentation

Returns:
true if the packet could be sent, false otherwise

4.82.3.5 bool ArPTZ::setDeviceConnection (ArDeviceConnection ∗
connection, bool driveFromRobotLoop = true) [virtual]

Sets the device connection to be used by this PTZ camera, if set this camera
will send commands via this connection, otherwise its via robot.

Parameters:
connection the device connection the camera is connected to, normally a

serial port

driveFromRobotLoop if this is true then a sensor interp callback wil be
set and that callback will read packets and call the packet handler on
them

Returns:
true if the serial port is opened or can be opened, false otherwise

The documentation for this class was generated from the following files:

• ArPTZ.h
• ArPTZ.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.83 ArRangeBuffer Class Reference 293

4.83 ArRangeBuffer Class Reference

This class is a buffer that holds ranging information.

#include <ArRangeBuffer.h>

Public Methods

• ArRangeBuffer (int size)
Constructor.

• virtual ∼ArRangeBuffer (void)
Destructor.

• size t getSize (void)
Gets the size of the buffer.

• void setSize (size t size)
Sets the size of the buffer.

• ArPose getPoseTaken ()
Gets the pose of the robot when readings were taken.

• void setPoseTaken (ArPose p)
Sets the pose of the robot when readings were taken.

• void addReading (double x, double y)
Adds a new reading to the buffer.

• void beginInvalidationSweep (void)
Begins a walk through the getBuffer list of readings.

• void invalidateReading (std::list< ArPose ∗>::iterator readingIt)
While doing an invalidation sweep a reading to the list to be invalidated.

• void endInvalidationSweep (void)
Ends the invalidation sweep.

• std::list< ArPose ∗> ∗ getBuffer (void)
Gets a pointer to a list of readings.

• double getClosestPolar (double startAngle, double endAngle, ArPose
position, unsigned int maxRange, double ∗angle=NULL)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

294 Aria Class Documentation

Gets the closest reading, on a polar system.

• double getClosestBox (double x1, double y1, double x2, double y2, Ar-
Pose position, unsigned int maxRange, ArPose ∗readingPos=NULL)

Gets the closest reading, from a rectangular box, in robot LOCAL coords.

• void applyTransform (ArTransform trans)
Applies a transform to the buffer.

• void reset (void)
Resets the range buffer to empty (invalidates all readings).

• void beginRedoBuffer (void)
This begins a redoing of the buffer.

• void redoReading (double x, double y)
Add a reading to the redoing of the buffer.

• void endRedoBuffer (void)
End redoing the buffer.

4.83.1 Detailed Description

This class is a buffer that holds ranging information.

4.83.2 Constructor & Destructor Documentation

4.83.2.1 ArRangeBuffer::ArRangeBuffer (int size)

Constructor.

Parameters:
size The size of the buffer, in number of readings

4.83.3 Member Function Documentation

4.83.3.1 void ArRangeBuffer::addReading (double x, double y)

Adds a new reading to the buffer.

Parameters:
x the x position of the reading

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.83 ArRangeBuffer Class Reference 295

y the y position of the reading

4.83.3.2 void ArRangeBuffer::applyTransform (ArTransform trans)

Applies a transform to the buffer.

Applies a transform to the buffers.. this is mostly useful for translating to/from
local/global coords, but may have other uses

Parameters:
trans the transform to apply to the data

4.83.3.3 void ArRangeBuffer::beginInvalidationSweep (void)

Begins a walk through the getBuffer list of readings.

This is a set of funkiness used to invalid readings in the buffer. It is fairly
complicated. But what you need to do, is set up the invalid sweeping with
beginInvalidationSweep, then walk through the list of readings, and pass the
iterator to a reading you want to invalidate to invalidateReading, then after
you are all through walking the list call endInvalidationSweep. Look at the
description of getBuffer for additional warnings.

See also:
invalidateReading (p. 297) , endInvalidationSweep (p. 295)

4.83.3.4 void ArRangeBuffer::beginRedoBuffer (void)

This begins a redoing of the buffer.

To redo the buffer means that you’re going to want to replace all of the read-
ings in the buffer, and get rid of the ones that you don’t replace (invalidate
them). The three functions beginRedoBuffer, redoReading, and endRedoBuffer
are all made to enable you to do this. What you do, is call beginRedo-
Buffer() (p. 295); then for each reading you want to be in the buffer, call
redoReading(double x, double y) (p. 298), then when you are done, call end-
RedoBuffer() (p. 296);

4.83.3.5 void ArRangeBuffer::endInvalidationSweep (void)

Ends the invalidation sweep.

See the description of beginInvalidationSweep, it describes how to use this func-
tion.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

296 Aria Class Documentation

See also:
beginInvalidationSweep (p. 295) , invalidateReading (p. 297)

4.83.3.6 void ArRangeBuffer::endRedoBuffer (void)

End redoing the buffer.

For a description of how to use this, see beginRedoBuffer

4.83.3.7 std::list< ArPose ∗> ∗ ArRangeBuffer::getBuffer (void)

Gets a pointer to a list of readings.

This function returns a pointer to a list that has all of the readings in it. This
list is mostly for reference, ie for finding some particular value or for using the
readings to draw them. Don’t do any modification at all to the list unless you
really know what you’re doing... and if you do you’d better lock the rangeDevice
this came from so nothing messes with the list while you are doing so.

Returns:
the list of positions this range buffer has

4.83.3.8 double ArRangeBuffer::getClosestBox (double x1, double
y1, double x2, double y2, ArPose startPos, unsigned int
maxRange, ArPose ∗ readingPos = NULL)

Gets the closest reading, from a rectangular box, in robot LOCAL coords.

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle).

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

startPos the position to find the closest reading to (usually the robots
position)

maxRange the maximum range to return (and what to return if nothing
found)

readingPos a pointer to a position in which to store the location of the
closest position

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.83 ArRangeBuffer Class Reference 297

position the origin of the local coords for the definition of the coordinates,
normally just ArRobot::getPosition

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.83.3.9 double ArRangeBuffer::getClosestPolar (double
startAngle, double endAngle, ArPose startPos, unsigned
int maxRange, double ∗ angle = NULL)

Gets the closest reading, on a polar system.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

startPos the position to find the closest reading to (usually the robots
position)

maxRange the maximum range to return (and what to return if nothing
found)

angle a pointer return of the angle to the found reading

position the origin of the local coords for the definition of the coordinates,
normally just ArRobot::getPosition

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.83.3.10 void ArRangeBuffer::invalidateReading (std::list<
ArPose ∗>::iterator readingIt)

While doing an invalidation sweep a reading to the list to be invalidated.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

298 Aria Class Documentation

See the description of beginInvalidationSweep, it describes how to use this func-
tion.

Parameters:
readingIt the ITERATOR to the reading you want to get rid of

See also:
beginInvaladationSweep , endInvalidationSweep (p. 295)

4.83.3.11 void ArRangeBuffer::redoReading (double x, double y)

Add a reading to the redoing of the buffer.

For a description of how to use this, see beginRedoBuffer

Parameters:
x the x param of the coord to add to the buffer

y the x param of the coord to add to the buffer

4.83.3.12 void ArRangeBuffer::setSize (size t size)

Sets the size of the buffer.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Parameters:
size number of readings to set the buffer to

The documentation for this class was generated from the following files:

• ArRangeBuffer.h
• ArRangeBuffer.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.84 ArRangeDevice Class Reference 299

4.84 ArRangeDevice Class Reference

The class for all devices which return range info (laser, sonar).

#include <ArRangeDevice.h>

Inheritance diagram for ArRangeDevice::

ArRangeDevice

ArIrrfDevice ArRangeDeviceThreaded ArSonarDevice

ArSick

Public Methods

• ArRangeDevice (size t currentBufferSize, size t cumulativeBufferSize,
const char ∗name, unsigned int maxRange)

Constructor.

• virtual ∼ArRangeDevice (void)
Destructor.

• virtual std::string getName (void)
Gets the name of the device.

• virtual void setRobot (ArRobot ∗robot)
Sets the robot this device is attached to.

• virtual ArRobot ∗ getRobot (void)
Gets the robot this device is attached to.

• virtual void setCurrentBufferSize (size t size)
Sets the size of the buffer for current readings.

• virtual void setCumulativeBufferSize (size t size)
Sets the size of the buffer for cumulative readings.

• virtual void addReading (double x, double y)
Adds a reading to the buffer.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

300 Aria Class Documentation

• virtual double currentReadingPolar (double startAngle, double end-
Angle, double ∗angle=NULL)

Gets the closest current reading in the given polar region.

• virtual double cumulativeReadingPolar (double startAngle, double
endAngle, double ∗angle=NULL)

Gets the closest cumulative reading in the given polar region.

• virtual double currentReadingBox (double x1, double y1, double x2,
double y2, ArPose ∗readingPos=NULL)

Gets the closest current reading from the given box region.

• virtual double cumulativeReadingBox (double x1, double y1, double
x2, double y2, ArPose ∗readingPos=NULL)

Gets the closest current reading from the given box region.

• virtual ArRangeBuffer ∗ getCurrentRangeBuffer (void)
Gets the current range buffer.

• virtual ArRangeBuffer ∗ getCumulativeRangeBuffer (void)
Gets the cumulative range buffer.

• virtual std::list< ArPose ∗> ∗ getCurrentBuffer (void)
Gets the current buffer of readings.

• virtual std::list< ArPose ∗> ∗ getCumulativeBuffer (void)
Gets the current buffer of readings.

• virtual std::list< ArSensorReading ∗> ∗ getRawReadings (void)
Gets the raw unfiltered readings from the device.

• virtual unsigned int getMaxRange (void)
Gets the maximum range for this device.

• virtual void setMaxRange (unsigned int maxRange)
Sets the maximum range for this device.

• virtual void applyTransform (ArTransform trans, bool do-
Cumulative=true)

Applies a transform to the buffers.

• virtual int lockDevice ()
Lock this device.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.84 ArRangeDevice Class Reference 301

• virtual int tryLockDevice ()

Try to lock this device.

• virtual int unlockDevice ()

Unlock this device.

4.84.1 Detailed Description

The class for all devices which return range info (laser, sonar).

This class has two buffers, a current buffer for storing just recent (relevant)
readings, and a cumulative buffer for a longer history... the sizes of both can be
set in the constructor.

This class should be used for all sensors like lasers and sonar, also note that
it has the locking functions for such a time when there is a device like a laser
that runs in its own thread, so that every device can be locked and unlocked
and the users don’t have to worry about the detail, because of functions on the
ArRobot (p. 342) structure which check all of the ArRangeDevice s attached
to a robot.

4.84.2 Constructor & Destructor Documentation

4.84.2.1 ArRangeDevice::ArRangeDevice (size t currentBufferSize,
size t cumulativeBufferSize, const char ∗ name, unsigned
int maxRange)

Constructor.

Parameters:
currentBufferSize number of readings to store in the current buffer

cumulativeBufferSize number of readings to store in the cumulative
buffer

name the name of this device

maxRange the max range of this device, if the device can’t find a reading
in a specified section, it returns this maxRange

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

302 Aria Class Documentation

4.84.3 Member Function Documentation

4.84.3.1 void ArRangeDevice::applyTransform (ArTransform trans,
bool doCumulative = true) [virtual]

Applies a transform to the buffers.

Applies a transform to the buffers.. this is mostly useful for translating to/from
local/global coords, but may have other uses

Parameters:
trans the transform to apply to the data

doCumulative whether to transform the cumulative buffer or not

4.84.3.2 double ArRangeDevice::cumulativeReadingBox (double
x1, double y1, double x2, double y2, ArPose ∗ pose =
NULL) [virtual]

Gets the closest current reading from the given box region.

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle) out of the cumulative buffer.

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

readingPos a pointer to a position in which to store the location of the
closest position

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.84.3.3 double ArRangeDevice::cumulativeReadingPolar (double
startAngle, double endAngle, double ∗ angle = NULL)
[virtual]

Gets the closest cumulative reading in the given polar region.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.84 ArRangeDevice Class Reference 303

thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

position the position to find the closest reading to

angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.84.3.4 double ArRangeDevice::currentReadingBox (double x1,
double y1, double x2, double y2, ArPose ∗ pose = NULL)
[virtual]

Gets the closest current reading from the given box region.

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle) out of the current buffer.

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

readingPos a pointer to a position in which to store the location of the
closest position

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

304 Aria Class Documentation

4.84.3.5 double ArRangeDevice::currentReadingPolar (double
startAngle, double endAngle, double ∗ angle = NULL)
[virtual]

Gets the closest current reading in the given polar region.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

position the position to find the closest reading to

angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.84.3.6 virtual std::list<ArSensorReading ∗>∗
ArRangeDevice::getRawReadings (void) [inline,
virtual]

Gets the raw unfiltered readings from the device.

The raw readings are the full set of unfiltered readings from the device, they are
the latest reading, you should manipulate the list you get from this function,
the only manipulation of this list should be done by the range device itself. Its
only pointers for speed.

4.84.3.7 virtual int ArRangeDevice::lockDevice (void) [inline,
virtual]

Lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented in ArRangeDeviceThreaded (p. 308).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.84 ArRangeDevice Class Reference 305

4.84.3.8 void ArRangeDevice::setCumulativeBufferSize (size t size)
[virtual]

Sets the size of the buffer for cumulative readings.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Parameters:
size number of readings to set the buffer to

4.84.3.9 void ArRangeDevice::setCurrentBufferSize (size t size)
[virtual]

Sets the size of the buffer for current readings.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Parameters:
size number of readings to set the buffer to

4.84.3.10 virtual int ArRangeDevice::tryLockDevice (void)
[inline, virtual]

Try to lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented in ArRangeDeviceThreaded (p. 309).

4.84.3.11 virtual int ArRangeDevice::unlockDevice (void)
[inline, virtual]

Unlock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented in ArRangeDeviceThreaded (p. 309).

The documentation for this class was generated from the following files:

• ArRangeDevice.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

306 Aria Class Documentation

• ArRangeDevice.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArRangeDeviceThreaded Class Reference 307

4.85 ArRangeDeviceThreaded Class Reference

A range device which can run in its own thread.

#include <ArRangeDeviceThreaded.h>

Inheritance diagram for ArRangeDeviceThreaded::

ArRangeDeviceThreaded

ArRangeDevice ArASyncTask

ArThread

ArSick

Public Methods

• ArRangeDeviceThreaded (size t currentBufferSize, size t cumulative-
BufferSize, const char ∗name, unsigned int maxRange)

Constructor.

• virtual ∼ArRangeDeviceThreaded (void)
Destructor.

• virtual void ∗ runThread (void ∗arg)=0
The main run loop.

• void run (void)
Runs the device in this thread.

• void runAsync (void)
Runs the device in its own thread.

• virtual int lockDevice (void)
Lock this device.

• virtual int tryLockDevice (void)
Try to lock this device.

• virtual int unlockDevice (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

308 Aria Class Documentation

Unlock this device.

4.85.1 Detailed Description

A range device which can run in its own thread.

4.85.2 Member Function Documentation

4.85.2.1 virtual int ArRangeDeviceThreaded::lockDevice (void)
[inline, virtual]

Lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented from ArRangeDevice (p. 304).

4.85.2.2 void ArRangeDeviceThreaded::run (void) [inline]

Runs the device in this thread.

Runs the device in the calling thread.

See also:
ArThread::stopRunning (p. 472)

4.85.2.3 void ArRangeDeviceThreaded::runAsync (void) [inline]

Runs the device in its own thread.

Runs the device in its own thread.

See also:
ArThread::stopRunning (p. 472)

4.85.2.4 virtual void∗ ArRangeDeviceThreaded::runThread (void ∗
arg) [pure virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 473) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 308) should return.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArRangeDeviceThreaded Class Reference 309

Reimplemented from ArASyncTask (p. 106).

Reimplemented in ArSick (p. 421).

4.85.2.5 virtual int ArRangeDeviceThreaded::tryLockDevice (void)
[inline, virtual]

Try to lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented from ArRangeDevice (p. 305).

4.85.2.6 virtual int ArRangeDeviceThreaded::unlockDevice (void)
[inline, virtual]

Unlock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 105)

Reimplemented from ArRangeDevice (p. 305).

The documentation for this class was generated from the following files:

• ArRangeDeviceThreaded.h
• ArRangeDeviceThreaded.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

310 Aria Class Documentation

4.86 ArRecurrentTask Class Reference

Recurrent task (runs in its own thread).

#include <ArRecurrentTask.h>

Inheritance diagram for ArRecurrentTask::

ArRecurrentTask

ArASyncTask

ArThread

Public Methods

• ArRecurrentTask ()

Constructor.

• ∼ArRecurrentTask ()

Descructor.

• virtual void task ()=0

The main run loop.

• void go ()

Starts up on cycle of the recurrent task.

• int done ()

Check if the task is running or not.

• void reset ()

Cancel the task and reset for the next cycle.

• void ∗ runThread (void ∗ptr)

The main run loop.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.86 ArRecurrentTask Class Reference 311

4.86.1 Detailed Description

Recurrent task (runs in its own thread).

The ArRecurrentTask is a task that runs in its own thread. Recurrent tasks are
asynchronous tasks that complete in a finite amount of time, and need to be
reinvoked recurrently. A typical example is Saphira’s localization task: it runs
for a few hundred milliseconds, localizes the robot, and returns. Then the cycle
starts over. The user simply needs to derive their own class from ArRecurrent-
Task and define the task() (p. 311) function. This is the user code that will be
called to execute the task body. Then, create an object of the class, and call the
go() (p. 310) function to start the task. The status of the task can be checked
with the done() (p. 311) function, which returns 0 if running, 1 if completed,
and 2 if killed. go() (p. 310) can be called whenever the task is done to restart
it. To stop the task in midstream, call reset() (p. 310). kill() kills off the thread,
shouldn’t be used unless exiting the async task permanently

4.86.2 Member Function Documentation

4.86.2.1 int ArRecurrentTask::done ()

Check if the task is running or not.

0 = running, 1 = finished normally, 2 = canceled

4.86.2.2 void ∗ ArRecurrentTask::runThread (void ∗ ptr)
[virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 473) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 311) should return.

Reimplemented from ArASyncTask (p. 106).

4.86.2.3 virtual void ArRecurrentTask::task () [pure virtual]

The main run loop.

Override this function and put your task here.

The documentation for this class was generated from the following files:

• ArRecurrentTask.h
• ArRecurrentTask.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

312 Aria Class Documentation

4.87 ArResolver Class Reference

Resolves a list of actions and returns what to do.

#include <ArResolver.h>

Inheritance diagram for ArResolver::

ArResolver

ArPriorityResolver

Public Types

• typedef std::multimap< int, ArAction ∗> ActionMap

Constructor.

Public Methods

• virtual ∼ArResolver (void)
Desturctor.

• virtual ArActionDesired ∗ resolve (ActionMap ∗actions, ArRobot
∗robot)=0

Figure out a single ArActionDesired (p. 49) from a list of ArAction
(p. 37) s.

• virtual std::string getName (void)
Gets the name of the resolver.

• virtual std::string getDescription (void)
Gets the long description fo the resolver.

4.87.1 Detailed Description

Resolves a list of actions and returns what to do.

This class exists just for resolve, which will always have to be overriden. The
class is used to take a list of actions and find out what to do from that...

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.87 ArResolver Class Reference 313

The documentation for this class was generated from the following file:

• ArResolver.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

314 Aria Class Documentation

4.88 ArRetFunctor Class Template Reference

Base class for functors with a return value.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor::

ArRetFunctor

ArFunctor

ArGlobalRetFunctor ArRetFunctor1 ArRetFunctor2 ArRetFunctor3 ArRetFunctorC

ArGlobalRetFunctor1 ArRetFunctor1C ArGlobalRetFunctor2 ArRetFunctor2C ArGlobalRetFunctor3 ArRetFunctor3C

Public Methods

• virtual ∼ArRetFunctor (void)
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void operator() ()
Invokes the functor.

• virtual Ret invokeR (void)=0
Invokes the functor with return value.

4.88.1 Detailed Description

template<class Ret> class ArRetFunctor< Ret >

Base class for functors with a return value.

This is the base class for functors with a return value. Code that has a reference
to a functor that returns a value should use this class name. This allows the code
to know how to invoke the functor without knowing which class the member
function is in.

For an overall description of functors, see ArFunctor (p. 133).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.89 ArRetFunctor1 Class Template Reference 315

4.89 ArRetFunctor1 Class Template Reference

Base class for functors with a return value with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor1::

ArRetFunctor1

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor1 ArRetFunctor1C

Public Methods

• virtual ∼ArRetFunctor1 (void)

Destructor.

• virtual Ret invokeR (void)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0

Invokes the functor with return value.

4.89.1 Detailed Description

template<class Ret, class P1> class ArRetFunctor1< Ret, P1 >

Base class for functors with a return value with 1 parameter.

This is the base class for functors with a return value and take 1 parameter.
Code that has a reference to a functor that returns a value and takes 1 parameter
should use this class name. This allows the code to know how to invoke the
functor without knowing which class the member function is in.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

316 Aria Class Documentation

4.89.2 Member Function Documentation

4.89.2.1 template<class Ret, class P1> virtual Ret
ArRetFunctor1< Ret, P1 >::invokeR (P1 p1) [pure
virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented in ArGlobalRetFunctor1 (p. 184), and ArRetFunctor1C
(p. 319).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.90 ArRetFunctor1C Class Template Reference 317

4.90 ArRetFunctor1C Class Template Refer-
ence

Functor for a member function with return value and 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor1C::

ArRetFunctor1C

ArRetFunctor1< Ret, P1 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor1C (void)
Constructor.

• ArRetFunctor1C (T &obj, Ret(T::∗func)(P1))
Constructor - supply function pointer.

• ArRetFunctor1C (T &obj, Ret(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor1C (T ∗obj, Ret(T::∗func)(P1))
Constructor - supply function pointer.

• ArRetFunctor1C (T ∗obj, Ret(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArRetFunctor1C (void)
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

318 Aria Class Documentation

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

• virtual void setP1 (P1 p1)
Set the default parameter.

4.90.1 Detailed Description

template<class Ret, class T, class P1> class ArRetFunctor1C< Ret,
T, P1 >

Functor for a member function with return value and 1 parameter.

This is a class for member functions which take 1 parameter and return a value.
This class contains the knowledge on how to call a member function on a par-
ticular instance of a class. This class should be instantiated by code that wishes
to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

4.90.2 Constructor & Destructor Documentation

4.90.2.1 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T & obj, Ret(T::∗
func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.90.2.2 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T & obj, Ret(T::∗
func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.90 ArRetFunctor1C Class Template Reference 319

Parameters:
func member function pointer

p1 default first parameter

4.90.2.3 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T ∗ obj, Ret(T::∗
func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.90.2.4 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T ∗ obj, Ret(T::∗
func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.90.3 Member Function Documentation

4.90.3.1 template<class Ret, class T, class P1> virtual Ret
ArRetFunctor1C< Ret, T, P1 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor1 (p. 316).

4.90.3.2 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

320 Aria Class Documentation

Parameters:
p1 default first parameter

4.90.3.3 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setThis (T & obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.90.3.4 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setThis (T ∗ obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.91 ArRetFunctor2 Class Template Reference 321

4.91 ArRetFunctor2 Class Template Reference

Base class for functors with a return value with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor2::

ArRetFunctor2

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor2 ArRetFunctor2C

Public Methods

• virtual ∼ArRetFunctor2 (void)
Destructor.

• virtual Ret invokeR (void)=0
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)=0
Invokes the functor with return value.

4.91.1 Detailed Description

template<class Ret, class P1, class P2> class ArRetFunctor2< Ret,
P1, P2 >

Base class for functors with a return value with 2 parameters.

This is the base class for functors with a return value and take 2 parameters.
Code that has a reference to a functor that returns a value and takes 2 param-
eters should use this class name. This allows the code to know how to invoke
the functor without knowing which class the member function is in.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

322 Aria Class Documentation

For an overall description of functors, see ArFunctor (p. 133).

4.91.2 Member Function Documentation

4.91.2.1 template<class Ret, class P1, class P2> virtual Ret
ArRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1, P2 p2)
[pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented in ArGlobalRetFunctor2 (p. 188), and ArRetFunctor2C
(p. 326).

4.91.2.2 template<class Ret, class P1, class P2> virtual Ret
ArRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1) [pure
virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented in ArGlobalRetFunctor2 (p. 188), and ArRetFunctor2C
(p. 326).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.92 ArRetFunctor2C Class Template Reference 323

4.92 ArRetFunctor2C Class Template Refer-
ence

Functor for a member function with return value and 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor2C::

ArRetFunctor2C

ArRetFunctor2< Ret, P1, P2 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor2C (void)
Constructor.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

324 Aria Class Documentation

• virtual ∼ArRetFunctor2C (void)

Destructor.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

4.92.1 Detailed Description

template<class Ret, class T, class P1, class P2> class ArRet-
Functor2C< Ret, T, P1, P2 >

Functor for a member function with return value and 2 parameters.

This is a class for member functions which take 2 parameters and return a
value. This class contains the knowledge on how to call a member function on
a particular instance of a class. This class should be instantiated by code that
wishes to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.92 ArRetFunctor2C Class Template Reference 325

4.92.2 Constructor & Destructor Documentation

4.92.2.1 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.92.2.2 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.92.2.3 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.92.2.4 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

326 Aria Class Documentation

4.92.2.5 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.92.2.6 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.92.3 Member Function Documentation

4.92.3.1 template<class Ret, class T, class P1, class P2> virtual
Ret ArRetFunctor2C< Ret, T, P1, P2 >::invokeR (P1 p1,
P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor2 (p. 322).

4.92.3.2 template<class Ret, class T, class P1, class P2> virtual
Ret ArRetFunctor2C< Ret, T, P1, P2 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.92 ArRetFunctor2C Class Template Reference 327

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor2 (p. 322).

4.92.3.3 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.92.3.4 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.92.3.5 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setThis (T &
obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.92.3.6 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setThis (T ∗
obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

328 Aria Class Documentation

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.93 ArRetFunctor3 Class Template Reference 329

4.93 ArRetFunctor3 Class Template Reference

Base class for functors with a return value with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor3::

ArRetFunctor3

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor3 ArRetFunctor3C

Public Methods

• virtual ∼ArRetFunctor3 (void)

Destructor.

• virtual Ret invokeR (void)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)=0

Invokes the functor with return value.

4.93.1 Detailed Description

template<class Ret, class P1, class P2, class P3> class ArRet-
Functor3< Ret, P1, P2, P3 >

Base class for functors with a return value with 3 parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

330 Aria Class Documentation

This is the base class for functors with a return value and take 3 parameters.
Code that has a reference to a functor that returns a value and takes 3 param-
eters should use this class name. This allows the code to know how to invoke
the functor without knowing which class the member function is in.

For an overall description of functors, see ArFunctor (p. 133).

4.93.2 Member Function Documentation

4.93.2.1 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1 p1,
P2 p2, P3 p3) [pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter
p3 third parameter

Reimplemented in ArGlobalRetFunctor3 (p. 192), and ArRetFunctor3C
(p. 336).

4.93.2.2 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1 p1,
P2 p2) [pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented in ArGlobalRetFunctor3 (p. 193), and ArRetFunctor3C
(p. 336).

4.93.2.3 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1 p1)
[pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.93 ArRetFunctor3 Class Template Reference 331

Reimplemented in ArGlobalRetFunctor3 (p. 193), and ArRetFunctor3C
(p. 337).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

332 Aria Class Documentation

4.94 ArRetFunctor3C Class Template Refer-
ence

Functor for a member function with return value and 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor3C::

ArRetFunctor3C

ArRetFunctor3< Ret, P1, P2, P3 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor3C (void)
Constructor.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2,
P3 p3)

Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.94 ArRetFunctor3C Class Template Reference 333

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• virtual ∼ArRetFunctor3C (void)

Destructor.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

• virtual void setP3 (P3 p3)

Set the default third parameter.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

334 Aria Class Documentation

4.94.1 Detailed Description

template<class Ret, class T, class P1, class P2, class P3> class Ar-
RetFunctor3C< Ret, T, P1, P2, P3 >

Functor for a member function with return value and 3 parameters.

This is a class for member functions which take 3 parameters and return a
value. This class contains the knowledge on how to call a member function on
a particular instance of a class. This class should be instantiated by code that
wishes to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

4.94.2 Constructor & Destructor Documentation

4.94.2.1 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T & obj, Ret(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.94.2.2 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T & obj, Ret(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

4.94.2.3 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T & obj, Ret(T::∗ func)(P1, P2, P3), P1 p1, P2 p2)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.94 ArRetFunctor3C Class Template Reference 335

p1 default first parameter
p2 default second parameter

4.94.2.4 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T & obj, Ret(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3
p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter

4.94.2.5 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T ∗ obj, Ret(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.94.2.6 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T ∗ obj, Ret(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

4.94.2.7 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T ∗ obj, Ret(T::∗ func)(P1, P2, P3), P1 p1, P2 p2)
[inline]

Constructor - supply function pointer, default parameters.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

336 Aria Class Documentation

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter

4.94.2.8 template<class Ret, class T, class P1, class P2, class P3>
ArRetFunctor3C< Ret, T, P1, P2, P3 >::ArRetFunctor3C
(T ∗ obj, Ret(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter
p3 default third parameter

4.94.3 Member Function Documentation

4.94.3.1 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1, P2 p2, P3 p3) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArRetFunctor3 (p. 330).

4.94.3.2 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1, P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArRetFunctor3 (p. 330).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.94 ArRetFunctor3C Class Template Reference 337

4.94.3.3 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor3 (p. 330).

4.94.3.4 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.94.3.5 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP2 (P2 p2) [inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.94.3.6 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP3 (P3 p3) [inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

338 Aria Class Documentation

4.94.3.7 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setThis (T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.94.3.8 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setThis (T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.95 ArRetFunctorC Class Template Reference 339

4.95 ArRetFunctorC Class Template Reference

Functor for a member function with return value.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctorC::

ArRetFunctorC

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctorC (void)

Constructor.

• ArRetFunctorC (T &obj, Ret(T::∗func)(void))

Constructor - supply function pointer.

• ArRetFunctorC (T ∗obj, Ret(T::∗func)(void))

Constructor - supply function pointer.

• virtual ∼ArRetFunctorC (void)

Destructor - supply function pointer.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

340 Aria Class Documentation

4.95.1 Detailed Description

template<class Ret, class T> class ArRetFunctorC< Ret, T >

Functor for a member function with return value.

This is a class for member functions which return a value. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 133).

4.95.2 Constructor & Destructor Documentation

4.95.2.1 template<class Ret, class T> ArRetFunctorC< Ret,
T >::ArRetFunctorC (T & obj, Ret(T::∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.95.2.2 template<class Ret, class T> ArRetFunctorC< Ret,
T >::ArRetFunctorC (T ∗ obj, Ret(T::∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.95.3 Member Function Documentation

4.95.3.1 template<class Ret, class T> virtual void
ArRetFunctorC< Ret, T >::setThis (T & obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.95 ArRetFunctorC Class Template Reference 341

4.95.3.2 template<class Ret, class T> virtual void
ArRetFunctorC< Ret, T >::setThis (T ∗ obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

342 Aria Class Documentation

4.96 ArRobot Class Reference

THE important class.

#include <ArRobot.h>

Public Types

• enum WaitState { WAIT CONNECTED, WAIT FAILED -
CONN, WAIT RUN EXIT, WAIT TIMEDOUT, WAIT INTR,
WAIT FAIL }

Public Methods

• ArRobot (const char ∗name=NULL, bool doStateReflection=true, bool
doSigHandle=true, bool normalInit=true)

Constructor.

• ∼ArRobot (void)

Destructor.

• void run (bool stopRunIfNotConnected)

Starts the instance to do processing.

• void runAsync (bool stopRunIfNotConnected)

Starts the instance to do processing in its own new thread.

• bool isRunning (void)

Returns whether the robot is currently running or not.

• void stopRunning (bool doDisconnect=true)

Stops the robot from doing any more processing.

• void setDeviceConnection (ArDeviceConnection ∗connection)

Sets the connection this instance uses.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the connection this instance uses.

• bool isConnected (void)

Questions whether the robot is connected or not.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 343

• bool blockingConnect (void)
Connects to a robot, not returning until connection made or failed.

• bool asyncConnect (void)
Connects to a robot, from the robots own thread.

• bool disconnect (void)
Disconnects from a robot.

• void clearDirectMotion (void)
Clears what direct motion commands have been given, so actions work.

• bool isDirectMotion (void)
Returns true if direct motion commands are blocking actions.

• void enableMotors ()
Enables the motors on the robot.

• void disableMotors ()
Disables the motors on the robot.

• void stop (void)
Stops the robot
See also:

clearDirectMotion (p. 367).

• void setVel (double velocity)
Sets the velocity
See also:

clearDirectMotion (p. 367).

• void setVel2 (double leftVelocity, double rightVelocity)
Sets the velocity of the wheels independently
See also:

clearDirectMotion (p. 367).

• void move (double distance)
Move the given distance forward/backwards

See also:
clearDirectMotion (p. 367).

• bool isMoveDone (double delta=0.0)
Sees if the robot is done moving the previously given move.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

344 Aria Class Documentation

• void setMoveDoneDist (double dist)
Sets the difference required for being done with a move.

• double getMoveDoneDist (void)
Gets the difference required for being done with a move.

• void setHeading (double heading)
Sets the heading
See also:

clearDirectMotion (p. 367).

• void setRotVel (double velocity)
Sets the rotational velocity
See also:

clearDirectMotion (p. 367).

• void setDeltaHeading (double deltaHeading)
Sets the delta heading
See also:

clearDirectMotion (p. 367).

• bool isHeadingDone (double delta=0.0)
Sees if the robot is done changing to the previously given setHeading.

• void setHeadingDoneDiff (double degrees)
sets the difference required for being done with a heading change.

• double get (void)
Gets the difference required for being done with a heading change.

• void setDirectMotionPrecedenceTime (int mSec)
Sets the length of time a direct motion command will take precedence over
actions, in milliseconds.

• unsigned int getDirectMotionPrecedenceTime (void)
Gets the length of time a direct motion command will take precedence over
actions, in milliseconds.

• bool com (unsigned char command)
Sends a command to the robot with no arguments.

• bool comInt (unsigned char command, short int argument)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 345

Sends a command to the robot with an int for argument.

• bool com2Bytes (unsigned char command, char high, char low)

Sends a command to the robot with two bytes for argument.

• bool comStr (unsigned char command, const char ∗argument)

Sends a command to the robot with a string for argument.

• bool comStrN (unsigned char command, const char ∗str, int size)

Sends a command to the robot with a size bytes of str as argument.

• std::string getRobotName (void)

Returns the Robot’s name that is set in its onboard configuration.

• std::string getRobotType (void)

Returns the type of the robot connected to.

• std::string getRobotSubType (void)

Returns the subtype of the robot connected to.

• double getMaxTransVel (void)

Gets the robots maximum translational velocity.

• bool setMaxTransVel (double maxVel)

Sets the robots maximum translational velocity.

• double getMaxRotVel (void)

Gets the robots maximum rotational velocity.

• bool setMaxRotVel (double myMaxVel)

Sets the robots maximum rotational velocity.

• ArPose getPose (void)

Gets the global position of the robot.

• double getX (void)

Gets the global X location of the robot.

• double getY (void)

Gets the global Y location of the robot.

• double getTh (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

346 Aria Class Documentation

Gets the global Th location of the robot.

• double getVel (void)

Gets the translational velocity of the robot.

• double getRotVel (void)

Gets the rotational velocity of the robot.

• double getRobotRadius (void)

Gets the robot radius (in mm).

• double getRobotDiagonal (void)

Gets the robot diagonal (half-height to diagonal of octagon) (in mm).

• double getBatteryVoltage (void)

Gets the battery voltage of the robot.

• double getLeftVel (void)

Gets the velocity of the left wheel.

• double getRightVel (void)

Gets the velocity of the right wheel.

• int getStallValue (void)

Gets the 2 bytes of stall return from the robot.

• bool isLeftMotorStalled (void)

Returns true if the left motor is stalled.

• bool isRightMotorStalled (void)

Returns true if the left motor is stalled.

• double getControl (void)

Gets the control heading.

• int getFlags (void)

Gets the flags values.

• bool areMotorsEnabled (void)

returns true if the motors are enabled.

• bool areSonarsEnabled (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 347

returns true if the motors are enabled.

• double getCompass (void)

Gets the compass heading from the robot.

• int getAnalogPortSelected (void)

Gets which analog port is selected.

• unsigned char getAnalog (void)

Gets the analog value.

• unsigned char getDigIn (void)

Gets the byte representing digital input status.

• unsigned char getDigOut (void)

Gets the byte representing digital output status.

• int getIOAnalogSize (void)

Gets the number of bytes in the analog IO buffer.

• int getIODigInSize (void)

Gets the number of bytes in the digital input IO buffer.

• int getIODigOutSize (void)

Gets the number of bytes in the digital output IO buffer.

• int getIOAnalog (int num)

Gets the n’th byte from the analog input data from the IO packet.

• unsigned char getIODigIn (int num)

Gets the n’th byte from the digital input data from the IO packet.

• unsigned char getIODigOut (int num)

Gets the n’th byte from the digital output data from the IO packet.

• bool hasTableSensingIR (void)

Gets whether the robot has table sensing IR or not (see params in docs).

• bool isLeftTableSensingIRTriggered (void)

Returns true if the left table sensing IR is triggered.

• bool isRightTableSensingIRTriggered (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

348 Aria Class Documentation

Returns true if the right table sensing IR is triggered.

• bool isLeftBreakBeamTriggered (void)

Returns true if the left break beam IR is triggered.

• bool isRightBreakBeamTriggered (void)

Returns true if the right break beam IR is triggered.

• ArTime getIOPacketTime (void)

Returns the time received of the last IO packet.

• bool hasFrontBumpers (void)

Gets whether the robot has front bumpers (see params in docs).

• bool hasRearBumpers (void)

Gets whether the robot has rear bumpers (see params in docs).

• ArRobotParams getParams (void)

Gets the raw params for the robot.

• ArPose getEncoderPose (void)

Gets the position of the robot according to the encoders.

• int getMotorPacCount (void)

Gets the number of motor packets received in the last second.

• int getSonarPacCount (void)

Gets the number of sonar returns received in the last second.

• int getSonarRange (int num)

Gets the range of the last sonar reading for the given sonar.

• bool isSonarNew (int num)

Find out if the given sonar has a new reading.

• int getNumSonar (void)

Find the number of sonar there are.

• ArSensorReading ∗ getSonarReading (int num)

Returns the sonar reading for the given sonar.

• int getClosestSonarRange (double startAngle, double endAngle)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 349

Returns the closest of the current sonar reading in the given range.

• int getClosestSonarNumber (double startAngle, double endAngle)

Returns the number of the sonar that has the closest current reading in the
given range.

• std::string getName (void)

Gets the robots name in ARIAs list.

• void setName (const char ∗name)

Sets the robots name in ARIAs list.

• void moveTo (ArPose pose, bool doCumulative=true)

Moves the robot’s idea of its position to this position.

• void moveTo (ArPose to, ArPose from, bool doCumulative=true)

Moves the robot’s RW position to reflect pose From => pose To.

• void setEncoderTransform (ArPose deadReconPos, ArPose global-
Pos)

Changes the transform.

• void setEncoderTransform (ArPose transformPos)

Changes the transform directly.

• ArTransform getEncoderTransform (void)

Gets the encoder transform.

• ArTransform getToGlobalTransform (void)

This gets the transform from local coords to global coords.

• ArTransform getToLocalTransform (void)

This gets the transform for going from global coords to local coords.

• void applyTransform (ArTransform trans, bool do-
Cumulative=true)

This applies a transform to all the robot range devices and to the sonar.

• void setDeadReconPose (ArPose pose)

Sets the dead recon position of the robot.

• void addRangeDevice (ArRangeDevice ∗device)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

350 Aria Class Documentation

Adds a rangeDevice to the robot’s list of them, and set the device’s robot
pointer.

• void remRangeDevice (const char ∗name)
Remove a range device from the robot’s list, by name.

• void remRangeDevice (ArRangeDevice ∗device)
Remove a range device from the robot’s list, by instance.

• ArRangeDevice ∗ findRangeDevice (const char ∗name)
Finds a rangeDevice in the robot’s list.

• std::list< ArRangeDevice ∗> ∗ getRangeDeviceList (void)
Gets the range device list.

• bool hasRangeDevice (ArRangeDevice ∗device)
Finds whether a particular range device is attached to this robot or not.

• double checkRangeDevicesCurrentPolar (double startAngle, double
endAngle, double ∗angle=NULL)

Goes through all the range devices and checks them.

• double checkRangeDevicesCumulativePolar (double startAngle,
double endAngle, double ∗angle=NULL)

Goes through all the range devices and checks them.

• double checkRangeDevicesCurrentBox (double x1, double y1, double
x2, double y2, ArPose ∗readingPos=NULL)
• double checkRangeDevicesCumulativeBox (double x1, double y1,

double x2, double y2, ArPose ∗readingPos=NULL)
• void setStateReflectionRefreshTime (int msec)

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

• int getStateReflectionRefreshTime (void)
Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

• void addPacketHandler (ArRetFunctor1< bool, ArRobotPacket
∗> ∗functor, ArListPos::Pos position)

Adds a packet handler to the list of packet handlers.

• void remPacketHandler (ArRetFunctor1< bool, ArRobotPacket
∗> ∗functor)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 351

Removes a packet handler from the list of packet handlers.

• void addConnectCB (ArFunctor ∗functor, ArListPos::Pos posi-
tion)

Adds a connect callback.

• void remConnectCB (ArFunctor ∗functor)
Adds a disconnect callback.

• void addFailedConnectCB (ArFunctor ∗functor, ArListPos::Pos
position)

Adds a callback for when a connection to the robot is failed.

• void remFailedConnectCB (ArFunctor ∗functor)
Removes a callback for when a connection to the robot is failed.

• void addDisconnectNormallyCB (ArFunctor ∗functor, ArList-
Pos::Pos position)

Adds a callback for when disconnect is called while connected.

• void remDisconnectNormallyCB (ArFunctor ∗functor)
Removes a callback for when disconnect is called while connected.

• void addDisconnectOnErrorCB (ArFunctor ∗functor, ArList-
Pos::Pos position)

Adds a callback for when disconnection happens because of an error.

• void remDisconnectOnErrorCB (ArFunctor ∗functor)
Removes a callback for when disconnection happens because of an error.

• void addRunExitCB (ArFunctor ∗functor, ArListPos::Pos posi-
tion)

Adds a callback for when the run loop exits for what ever reason.

• void remRunExitCB (ArFunctor ∗functor)
Removes a callback for when the run loop exits for what ever reason.

• WaitState waitForConnect (unsigned int msecs=0)
Suspend calling thread until the ArRobot is connected.

• WaitState waitForConnectOrConnFail (unsigned int msecs=0)
Suspend calling thread until the ArRobot is connected or fails to connect.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

352 Aria Class Documentation

• WaitState waitForRunExit (unsigned int msecs=0)
Suspend calling thread until the ArRobot run loop has exited.

• void wakeAllWaitingThreads ()
Wake up all threads waiting on this robot.

• void wakeAllConnWaitingThreads ()
Wake up all threads waiting for connection.

• void wakeAllConnOrFailWaitingThreads ()
Wake up all threads waiting for connection or connection failure.

• void wakeAllRunExitWaitingThreads ()
Wake up all threads waiting for the run loop to exit.

• bool addUserTask (const char ∗name, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a user task to the list of synchronous taskes.

• void remUserTask (const char ∗name)
Removes a user task from the list of synchronous taskes by name.

• void remUserTask (ArFunctor ∗functor)
Removes a user task from the list of synchronous taskes by functor.

• ArSyncTask ∗ findUserTask (const char ∗name)
Finds a user task by name.

• ArSyncTask ∗ findUserTask (ArFunctor ∗functor)
Finds a user task by functor.

• void printUserTasks (void)
Logs the list of user tasks, strictly for your viewing pleasure.

• void printAllTasks (void)
Logs the list of all tasks, strictly for your viewing pleasure.

• bool addSensorInterpTask (const char ∗name, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a task under the sensor interp part of the syncronous tasks.

• void remSensorInterpTask (const char ∗name)
Removes a sensor interp tasks by name.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 353

• void remSensorInterpTask (ArFunctor ∗functor)
Removes a sensor interp tasks by functor.

• ArSyncTask ∗ findTask (const char ∗name)
Finds a task by name.

• ArSyncTask ∗ findTask (ArFunctor ∗functor)
Finds a task by functor.

• void addAction (ArAction ∗action, int priority)
Adds an action to the list with the given priority.

• bool remAction (ArAction ∗action)
Removes an action from the list, by pointer.

• bool remAction (const char ∗actionName)
Removes an action from the list, by name.

• ArAction ∗ findAction (const char ∗actionName)
Returns the first (highest priority) action with the given name (or NULL).

• ArResolver::ActionMap ∗ getActionMap (void)
Returns the map of actions... don’t do this unless you really know what
you’re doing.

• void printActions (void)
Prints out the actions and their priorities.

• ArResolver ∗ getResolver (void)
Gets the resolver the robot is using.

• void setResolver (ArResolver ∗resolver)
Sets the resolver the robot is using.

• void setEncoderCorrectionCallback (ArRetFunctor1< double, Ar-
PoseWithTime > ∗functor)

Sets the encoderCorrectionCallback.

• ArRetFunctor1< double, ArPoseWithTime > ∗ getEncoder-
CorrectionCallback (void)

Gets the encoderCorrectionCallback.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

354 Aria Class Documentation

• void setCycleTime (unsigned int ms)

Sets the number of ms between cycles.

• unsigned int getCycleTime (void)

Gets the number of ms between cycles.

• void setConnectionCycleMultiplier (unsigned int multiplier)

Sets the multiplier for how many cycles ArRobot waits when connecting.

• unsigned int getConnectionCycleMultiplier (void)

Gets the multiplier for how many cycles ArRobot waits when connecting.

• void setCycleChained (bool cycleChained)

Sets whether to chain the robot cycle to when we get in SIP packets.

• bool isCycleChained (void)

Gets whether we chain the robot cycle to when we get in SIP packets.

• void setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

• int getConnectionTimeoutTime (void)

Gets the time without a response until connection assumed lost.

• ArTime getLastPacketTime (void)

Gets the time the last packet was received.

• void setPoseInterpNumReadings (size t numReadings)

Sets the number of packets back in time the ArInterpolation (p. 209) goes.

• size t getPoseInterpNumReadings (void)

Sets the number of packets back in time the position interpol goes.

• int getPoseInterpPosition (ArTime timeStamp, ArPose ∗position)

Gets the position the robot was at at the given timestamp.

• unsigned int getCounter (void)

Gets the Counter for the time through the loop.

• ArRobotParams ∗ getRobotParams (void)

Gets the parameters the robot is using.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 355

• bool loadParamFile (const char ∗file)
Loads a parameter file (replacing all other params).

• void attachKeyHandler (ArKeyHandler ∗keyHandler, bool exitOn-
Escape=true)

Attachs a key handler.

• ArKeyHandler ∗ getKeyHandler (void)
Gets the key handler attached to this robot.

• int lock ()
Lock the robot instance.

• int tryLock ()
Try to lock the robot instance without blocking.

• int unlock ()
Unlock the robot instance.

• ArSyncTask ∗ getSyncTaskRoot (void)
This gets the root of the syncronous task tree, only serious developers should
use it.

• void loopOnce (void)
This function loops once... only serious developers should use it.

• void incCounter (void)
This is only for use by syncLoop.

• void packetHandler (void)
Packet Handler, internal.

• void actionHandler (void)
Action Handler, internal.

• void stateReflector (void)
State Reflector, internal.

• void robotLocker (void)
Robot locker, internal.

• void robotUnlocker (void)
Robot unlocker, internal.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

356 Aria Class Documentation

• void keyHandlerExit (void)
For the key handler, escape calls this to exit, internal.

• bool processMotorPacket (ArRobotPacket ∗packet)
Processes a motor packet, internal.

• void processNewSonar (char number, int range, ArTime time-
Received)

Processes a new sonar reading, internal.

• bool processEncoderPacket (ArRobotPacket ∗packet)
Processes a new encoder packet, internal.

• bool processIOPacket (ArRobotPacket ∗packet)
Processes a new IO packet, internal.

• void init (void)
Internal function, shouldn’t be used.

• void setUpSyncList (void)
Internal function, shouldn’t be used, sets up the default sync list.

• void setUpPacketHandlers (void)
Internal function, shouldn’t be used, sets up the default packet handlers.

• int asyncConnectHandler (bool tryHarderToConnect)
Internal function, shouldn’t be used, does a single run of connecting.

• void dropConnection (void)
Internal function, shouldn’t be used, drops the conn because of error.

• void failedConnect (void)
Internal function, shouldn’t be used, denotes the conn failed.

• void madeConnection (void)
Internal function, shouldn’t be used, does the after conn stuff.

• bool handlePacket (ArRobotPacket ∗packet)
Internal function, takes a packet and passes it to the packet handlers, returns
true if handled, false otherwise.

• std::list< ArFunctor ∗> ∗ getRunExitListCopy ()

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 357

Internal function, shouldn’t be used, does what its name says.

• void processParamFile (ArRobotParamFile ∗paramFile)
Internal function, processes a parameter file.

4.96.1 Detailed Description

THE important class.

This is the most important class, the only classes most people will ever have to
use are this one, and the ArSerialConnection (p. 411) and ArTCPConnection.
NOTE: In Windows you cannot make an ArRobot a global, it will crash because
the windows compiler initializes the constructors in the wrong order... you can
make a pointer to an ArRobot and then new one however.

See also:
ArSerialConnection (p. 411) , ArTcpConnection (p. 466)

4.96.2 Member Enumeration Documentation

4.96.2.1 enum ArRobot::WaitState

Enumeration values:
WAIT CONNECTED The robot has connected.

WAIT FAILED CONN The robot failed to connect.

WAIT RUN EXIT The run loop has exited.

WAIT TIMEDOUT The wait reached the timeout specified.

WAIT INTR The wait was interupted by a signal.

WAIT FAIL The wait failed due to an error.

4.96.3 Constructor & Destructor Documentation

4.96.3.1 ArRobot::ArRobot (const char ∗ name = NULL, bool
doStateReflection = true, bool doSigHandle = true, bool
normalInit = true)

Constructor.

Parameters:
doStateReflection whether the robot should use direct motion command

reflection or simply send commands when it gets them. If state-
Reflection is on then when one of the movement commands is given it

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

358 Aria Class Documentation

stores the value and then sends it at the appropriate spot in the cycle.
If stateReflection isn’t on, then a pulse will be sent every other cycle
to make sure the watchdog timer doesn’t kick off.

normalInit whether the robot should initializes its structures or the call-
ing program will take care of it. No one will probalby ever use this
value, since if they are doing that then overriding will probably be
more useful, but there it is.

doSigHandle do normal signal handling and have this robot instance
stopRunning() (p. 389) when the program is signaled

4.96.4 Member Function Documentation

4.96.4.1 void ArRobot::actionHandler (void)

Action Handler, internal.

Runs the resolver on the actions, if state reflection (direct motion reflection
really) is enabled in the ArRobot::ArRobot (p. 357) constructor then it just
saves these values for use by the stateReflector, otherwise it sends these values
straight down to the robot.

See also:
addAction (p. 358) , remAction (p. 379)

4.96.4.2 void ArRobot::addAction (ArAction ∗ action, int priority)

Adds an action to the list with the given priority.

Adds an action to the list of actions at the given priority, in the case of two (or
more) actions with the same priority, the default resolver (ArPriorityResolver
(p. 286)) averages the the multiple readings... the priority can be any integer,
but as a convention 0 to 100 is used, with 100 being the highest priority.

Parameters:
action the action to add

priority what importance to give the action

4.96.4.3 void ArRobot::addConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position)

Adds a connect callback.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 359

Adds a connect callback, which is an ArFunctor (p. 133), created as an Ar-
FunctorC (p. 162). The entire list of connect callbacks is called when a connec-
tion is made with the robot. If you have some sort of module that adds a call-
back, that module must remove the callback when the module is removed.

Parameters:
functorfunctor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remConnectCB (p. 380)

4.96.4.4 void ArRobot::addDisconnectNormallyCB (ArFunctor ∗
functor, ArListPos::Pos position)

Adds a callback for when disconnect is called while connected.

Adds a disconnect normally callback,which is an ArFunctor (p. 133), created
as an ArFunctorC (p. 162). This whole list of disconnect normally callbacks is
called when something calls disconnect if the instance isConnected. If there is
no connection and disconnect is called nothing is done. If you have some sort of
module that adds a callback, that module must remove the callback when the
module is removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 381)

4.96.4.5 void ArRobot::addDisconnectOnErrorCB (ArFunctor ∗
functor, ArListPos::Pos position)

Adds a callback for when disconnection happens because of an error.

Adds a disconnect on error callback, which is an ArFunctor (p. 133), created
as an ArFunctorC (p. 162). This whole list of disconnect on error callbacks
is called when ARIA loses connection to a robot because of an error. This
can occur if the physical connection (ie serial cable) between the robot and the
computer is severed/disconnected, if one of a pair of radio modems that connect

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

360 Aria Class Documentation

the robot and computer are disconnected, if someone presses the reset button
on the robot, or if the simulator is closed while ARIA is connected to it. Note
that if the link between the two is lost the ARIA assumes it is temporary until it
reaches a timeout value set with setConnectionTimeoutTime. If you have some
sort of module that adds a callback, that module must remove the callback when
the module removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 381)

4.96.4.6 void ArRobot::addFailedConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position)

Adds a callback for when a connection to the robot is failed.

Adds a failed connect callback,which is an ArFunctor (p. 133), created as an
ArFunctorC (p. 162). This whole list of failed connect callbacks is called when
an attempt is made to connect to the robot, but fails. The usual reason for this
failure is either that there is no robot/sim where the connection was tried to be
made, the robot wasn’t given a connection, or the radio modems that commu-
nicate with the robot aren’t on. If you have some sort of module that adds a
callback, that module must remove the callback when the module removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 381)

4.96.4.7 void ArRobot::addPacketHandler (ArRetFunctor1< bool,
ArRobotPacket ∗> ∗ functor, ArListPos::Pos position)

Adds a packet handler to the list of packet handlers.

Adds a packet handler. A packet handler is an ArRetFunctor1 (p. 315), cre-
ated as an instance of ArRetFunctor1C (p. 317). The return is a boolean,

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 361

while the functor takes an ArRobotPacket (p. 393) pointer as the argument.
This functor is placed in the list of functors to call when a packet arrives. This
list is gone through by order until one of the handlers returns true. @argu-
ment functor the functor to call when the packet comes in @argument position
whether to place the functor first or last

See also:
remPacketHandler (p. 381)

4.96.4.8 void ArRobot::addRunExitCB (ArFunctor ∗ functor,
ArListPos::Pos position)

Adds a callback for when the run loop exits for what ever reason.

Adds a callback that is called when the run loop exits. The functor is which
is an ArFunctor (p. 133), created as an ArFunctorC (p. 162). The whole list
of functors is called when the run loop exits. This is most usefull for threaded
programs that run the robot using ArRobot::runAsync (p. 383). This will
allow user threads to know when the robot loop has exited.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remRunExitCB (p. 382)

4.96.4.9 bool ArRobot::addSensorInterpTask (const char ∗ name,
int position, ArFunctor ∗ functor, ArTaskState::State ∗
state = NULL)

Adds a task under the sensor interp part of the syncronous tasks.

The synchronous tasks get called every robot cycle (every 100 ms by de-
fault).

Parameters:
name the name to give to the task, should be unique

position the place in the list of user tasks to place this task, this can be
any integer, though by convention 0 to 100 is used. The tasks are
called in order of highest number to lowest number.

functor functor created from ArFunctorC (p. 162) which refers to the
function to call.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

362 Aria Class Documentation

See also:
remSensorInterpTask (p. 382)

4.96.4.10 bool ArRobot::addUserTask (const char ∗ name, int
position, ArFunctor ∗ functor, ArTaskState::State ∗ state
= NULL)

Adds a user task to the list of synchronous taskes.

The synchronous tasks get called every robot cycle (every 100 ms by default).

Parameters:
name the name to give to the task, should be unique

position the place in the list of user tasks to place this task, this can be
any integer, though by convention 0 to 100 is used. The tasks are
called in order of highest number to lowest position number.

functor functor created from ArFunctorC (p. 162) which refers to the
function to call.

See also:
remUserTask (p. 382)

4.96.4.11 void ArRobot::applyTransform (ArTransform trans, bool
doCumulative = true)

This applies a transform to all the robot range devices and to the sonar.

Applies a transform to the range devices... this is mostly useful for translating
to/from local/global coords, but may have other uses

Parameters:
trans the transform to apply

doCumulative whether to transform the cumulative buffers or not

4.96.4.12 bool ArRobot::asyncConnect (void)

Connects to a robot, from the robots own thread.

Sets up the robot to connect, then returns, but the robot must be running (ie
from runAsync) before you do this. Also this will fail if the robot is already
connected. If you want to know what happened because of the connect then
look at the callbacks. NOTE, this will not lock robot before setting values, so
you MUST lock the robot before you call this function and unlock the robot

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 363

after you call this function. If you fail to lock the robot, you’ll may wind up with
wierd behavior. Other than the aspect of blocking or not the only difference
between async and blocking connects (other than the blocking) is that async is
run every robot cycle, whereas blocking runs as fast as it can... also blocking
will try to reconnect a radio modem if it looks like it didn’t get connected in the
first place, so blocking can wind up taking 10 or 12 seconds to decide it can’t
connect, whereas async doesn’t try hard at all to reconnect the radio modem
(beyond its first try) (under the assumption the async connect is user driven,
so they’ll just try again, and so that it won’t mess up the sync loop by blocking
for so long).

Returns:
true if the robot is running and the robot will try to connect, false if the
robot isn’t running so won’t try to connect or if the robot is already con-
nected

See also:
addConnectCB (p. 358)

See also:
addFailedConnectCB (p. 360)

See also:
runAsync (p. 383)

4.96.4.13 int ArRobot::asyncConnectHandler (bool
tryHarderToConnect)

Internal function, shouldn’t be used, does a single run of connecting.

This is an internal function that is used both for async connects and blocking
connects use to connect. It does about the same thing for both, and it should
only be used by asyncConnect and blockingConnect really. But here it is. The
only difference between when its being used by blocking/async connect is that
in blocking mode if it thinks there may be problems with the radio modem it
pauses for two seconds trying to deal with this... whereas in async mode it tries
to deal with this in a simpler way.

Parameters:
tryHarderToConnect if this is true, then if the radio modems look like

they aren’t working, it’ll take about 2 seconds to try and connect
them, whereas if its false, it’ll do a little try, but won’t try very hard

Returns:
0 if its still trying to connect, 1 if it connected, 2 if it failed

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

364 Aria Class Documentation

4.96.4.14 void ArRobot::attachKeyHandler (ArKeyHandler ∗
keyHandler, bool exitOnEscape = true)

Attachs a key handler.

This will attach a key handler to a robot, by putting it into the robots sensor
interp task list (a keyboards a sensor of users will, right?). By default exitOn-
Escape is true, which will cause this function to add an escape key handler to
the key handler, this will make the program exit when escape is pressed... if
you don’t like this you can pass exitOnEscape in as false.

Parameters:
keyHandler the key handler to attach

exitOnEscape whether to exit when escape is pressed or not

4.96.4.15 bool ArRobot::blockingConnect (void)

Connects to a robot, not returning until connection made or failed.

Connects to the robot, returning only when a connection has been made or it
has been established a connection can’t be made. This connection usually is
fast, but can take up to 30 seconds if the robot is in a wierd state (this is not
often). If the robot is connected via ArSerialConnection (p. 411) then the
connect will also connect the radio modems. Upon a successful connection all
of the Connection Callback Functors that have been registered will be called.
NOTE, this will lock the robot before setting values, so you MUST not have
the robot locked from where you call this function. If you do, you’ll wind up
in a deadlock. This behavior is there because otherwise you’d have to lock the
robot before calling this function, and normally blockingConnect will be called
from a seperate thread, and that thread won’t be doing anything else with the
robot at that time. Other than the aspect of blocking or not the only difference
between async and blocking connects (other than the blocking) is that async is
run every robot cycle, whereas blocking runs as fast as it can... also blocking
will try to reconnect a radio modem if it looks like it didn’t get connected in the
first place, so blocking can wind up taking 10 or 12 seconds to decide it can’t
connect, whereas async doesn’t try hard at all to reconnect the radio modem
(under the assumption the async connect is user driven, so they’ll just try again,
and so that it won’t mess up the sync loop by blocking for so long).

Returns:
true if a connection could be made, false otherwise

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 365

4.96.4.16 double ArRobot::checkRangeDevicesCumulativeBox
(double x1, double y1, double x2, double y2, ArPose ∗
readingPos = NULL)

This goes through all of the registered range devices and locks each, calls
cumulativeReadingBox on it, and then unlocks it.

Gets the closest reading in a region defined by the two points of a rectangle.

Parameters:
x1 the x coordinate of one of the rectangle points
y1 the y coordinate of one of the rectangle points
x2 the x coordinate of the other rectangle point
y2 the y coordinate of the other rectangle point
readingPos a pointer to a position in which to store the location of the

closest position

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.96.4.17 double ArRobot::checkRangeDevicesCumulativePolar
(double startAngle, double endAngle, double ∗ angle =
NULL)

Goes through all the range devices and checks them.

This goes through all of the registered range devices and locks each, calls
cumulativeReadingPolar on it, and then unlocks it.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice
endAngle where to end the slice, going clockwise from startAngle
angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

366 Aria Class Documentation

4.96.4.18 double ArRobot::checkRangeDevicesCurrentBox (double
x1, double y1, double x2, double y2, ArPose ∗ readingPos
= NULL)

This goes through all of the registered range devices and locks each, calls current-
ReadingBox on it, and then unlocks it.

Gets the closest reading in a region defined by the two points of a rectangle.

Parameters:
x1 the x coordinate of one of the rectangle points
y1 the y coordinate of one of the rectangle points
x2 the x coordinate of the other rectangle point
y2 the y coordinate of the other rectangle point
readingPos a pointer to a position in which to store the location of the

closest position

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.96.4.19 double ArRobot::checkRangeDevicesCurrentPolar
(double startAngle, double endAngle, double ∗ angle =
NULL)

Goes through all the range devices and checks them.

This goes through all of the registered range devices and locks each, calls current-
ReadingPolar on it, and then unlocks it.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice
endAngle where to end the slice, going clockwise from startAngle
angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 367

4.96.4.20 void ArRobot::clearDirectMotion (void)

Clears what direct motion commands have been given, so actions work.

This clears the direct motion commands so that actions will be allowed to control
the robot again.

See also:
setDirectMotionPrecedenceTime (p. 385) , getDirectMotion-
PrecedenceTime (p. 372)

4.96.4.21 bool ArRobot::com (unsigned char command)

Sends a command to the robot with no arguments.

Parameters:
command the command number to send

Returns:
whether the command could be sent or not

4.96.4.22 bool ArRobot::com2Bytes (unsigned char command, char
high, char low)

Sends a command to the robot with two bytes for argument.

Parameters:
command the command number to send

high the high byte to send with the command

low the low byte to send with the command

Returns:
whether the command could be sent or not

4.96.4.23 bool ArRobot::comInt (unsigned char command, short
int argument)

Sends a command to the robot with an int for argument.

Parameters:
command the command number to send

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

368 Aria Class Documentation

argument the integer argument to send with the command

Returns:
whether the command could be sent or not

4.96.4.24 bool ArRobot::comStr (unsigned char command, const
char ∗ argument)

Sends a command to the robot with a string for argument.

Parameters:
command the command number to send
str the string to send with the command

Returns:
whether the command could be sent or not

4.96.4.25 bool ArRobot::comStrN (unsigned char command, const
char ∗ str, int size)

Sends a command to the robot with a size bytes of str as argument.

Parameters:
command the command number to send
str the character array to send with the command
size length of the array to send

Returns:
whether the command could be sent or not

4.96.4.26 void ArRobot::disableMotors ()

Disables the motors on the robot.

This command disables the motors on the robot, if it is connected.

4.96.4.27 bool ArRobot::disconnect (void)

Disconnects from a robot.

Disconnects from a robot. This also calls of the DisconnectNormally Callback
Functors if the robot was actually connected to a robot when this member was
called.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 369

Returns:
true if not connected to a robot (so no disconnect can happen, but it didn’t
failed either), also true if the command could be sent to the robot (ie
connection hasn’t failed)

4.96.4.28 void ArRobot::enableMotors ()

Enables the motors on the robot.

This command enables the motors on the robot, if it is connected.

4.96.4.29 ArAction ∗ ArRobot::findAction (const char ∗
actionName)

Returns the first (highest priority) action with the given name (or NULL).

Finds the action with the given name... if more than one action has that name
it find the one with the highest priority

Parameters:
actionName the name of the action we want to find

Returns:
the action, if found. If not found, NULL

4.96.4.30 ArRangeDevice ∗ ArRobot::findRangeDevice (const char
∗ name)

Finds a rangeDevice in the robot’s list.

Parameters:
name remove the first device with this name

Returns:
if found, a range device with the given name, if not found NULL

4.96.4.31 ArSyncTask ∗ ArRobot::findTask (ArFunctor ∗ functor)

Finds a task by functor.

Finds a task by its functor, searching the entire space of tasks

Returns:
NULL if no task with that functor found, otherwise a pointer to the Ar-
SyncTask (p. 458) for the first task found with that functor

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

370 Aria Class Documentation

4.96.4.32 ArSyncTask ∗ ArRobot::findTask (const char ∗ name)

Finds a task by name.

Finds a task by its name, searching the entire space of tasks

Returns:
NULL if no task of that name found, otherwise a pointer to the ArSync-
Task (p. 458) for the first task found with that name

4.96.4.33 ArSyncTask ∗ ArRobot::findUserTask (ArFunctor ∗
functor)

Finds a user task by functor.

Finds a user task by its functor, searching the entire space of tasks

Returns:
NULL if no user task with that functor found, otherwise a pointer to the
ArSyncTask (p. 458) for the first task found with that functor

4.96.4.34 ArSyncTask ∗ ArRobot::findUserTask (const char ∗
name)

Finds a user task by name.

Finds a user task by its name, searching the entire space of tasks

Returns:
NULL if no user task of that name found, otherwise a pointer to the Ar-
SyncTask (p. 458) for the first task found with that name

4.96.4.35 ArResolver::ActionMap ∗ ArRobot::getActionMap (void)

Returns the map of actions... don’t do this unless you really know what you’re
doing.

This returns the actionMap the robot has... do not mess with this list except
by using ArRobot::addAction (p. 358) and ArRobot::remAction (p. 379)...
This is jsut for the things like ArActionGroup (p. 58) that want to deactivate
or activate all the actions (well, only deactivating everything makes sense).

Returns:
the actions the robot is using

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 371

4.96.4.36 unsigned int ArRobot::getConnectionCycleMultiplier
(void)

Gets the multiplier for how many cycles ArRobot waits when connecting.

Returns:
when the ArRobot is waiting for a connection packet back from a robot, it
waits for this multiplier times the cycle time for the packet to come back
before it gives up on it... This should be small for normal connections but if
doing something over a slow network then you may want to make it larger

4.96.4.37 int ArRobot::getConnectionTimeoutTime (void)

Gets the time without a response until connection assumed lost.

Gets the number of seconds to go without response from the robot until it is
assumed tha tthe connection with the robot has been broken and the disconnect
on error events will happen.

4.96.4.38 double ArRobot::getControl (void) [inline]

Gets the control heading.

Gets the control heading as an offset from the current heading.

See also:
getTh (p. 345)

4.96.4.39 unsigned int ArRobot::getCycleTime (void)

Gets the number of ms between cycles.

Finds the number of milliseconds between cycles, at each cycle is when all
packets are processed, all sensors are interpretted, all actions are called, and all
user tasks are serviced. Be warned, if you set this too small you could overflow
your serial connection.

Returns:
the number of milliseconds between cycles

4.96.4.40 ArDeviceConnection ∗ ArRobot::getDeviceConnection
(void)

Gets the connection this instance uses.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

372 Aria Class Documentation

Gets the connection this instance uses to the actual robot. This is where com-
mands will be sent and packets will be received from

Returns:
the deviceConnection used for this robot

See also:
ArDeviceConnection (p. 118) , ArSerialConnection (p. 411) , ArTcp-
Connection (p. 466)

4.96.4.41 unsigned int ArRobot::getDirectMotionPrecedenceTime
(void)

Gets the length of time a direct motion command will take precedence over
actions, in milliseconds.

The direct motion precedence time determines how long actions will be ignored
after a direct motion command is given. If the direct motion precedence time is
0, then direct motion will take precedence over actions until a clearDirectMotion
command is issued. This value defaults to 0.

Returns:
the number of milliseconds direct movement will trump actions

See also:
setDirectMotionPrecedenceTime (p. 385) , clearDirectMotion
(p. 367)

4.96.4.42 ArRetFunctor1< double, ArPoseWithTime > ∗
ArRobot::getEncoderCorrectionCallback (void)

Gets the encoderCorrectionCallback.

This gets the encoderCorrectionCB, see setEncoderCorrectionCallback for de-
tails.

Returns:
the callback, or NULL if there isn’t one

4.96.4.43 ArTransform ArRobot::getEncoderTransform (void)

Gets the encoder transform.

Returns:
the transform from encoder to global coords

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 373

4.96.4.44 ArTime ArRobot::getLastPacketTime (void)

Gets the time the last packet was received.

This gets the ArTime (p. 476) that the last packet was received at

Returns:
the time the last packet was received

4.96.4.45 int ArRobot::getPoseInterpPosition (ArTime timeStamp,
ArPose ∗ position) [inline]

Gets the position the robot was at at the given timestamp.

See also:
ArInterpolation::getPose (p. 210)

4.96.4.46 std::list< ArRangeDevice ∗> ∗ ArRobot::getRange-
DeviceList (void)

Gets the range device list.

This gets the list of range devices attached to this robot, do NOT manipulate
this list directly. If you want to manipulate use the appropriate addRange-
Device, or remRangeDevice

Returns:
the list of range dvices attached to this robot

4.96.4.47 ArRobotParams ∗ ArRobot::getRobotParams (void)

Gets the parameters the robot is using.

Returns:
the ArRobotParams (p. 402) instance the robot is using for its parameters

4.96.4.48 int ArRobot::getSonarRange (int num)

Gets the range of the last sonar reading for the given sonar.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

374 Aria Class Documentation

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
-1

Returns:
-1 if the sonar has never returned a reading, otherwise the sonar range,
which is the distance from the physical sonar disc to where the sonar
bounced back

See also:
getNumSonar (p. 348)

4.96.4.49 ArSensorReading ∗ ArRobot::getSonarReading (int num)

Returns the sonar reading for the given sonar.

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
false

Returns:
NULL if there is no sonar defined for the given number, otherwise it returns
a pointer to an instance of the ArSensorReading (p. 406), note that this
class retains ownership, so the instance pointed to should not be deleted
and no pointers to it should be stored. Note that often there will be sonar
defined but no readings for it (since the readings may be created by the
parameter reader), if there has never been a reading from the sonar then
the range of that sonar will be -1 and its counterTaken value will be 0

4.96.4.50 int ArRobot::getStateReflectionRefreshTime (void)

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

The state reflection refresh time is the number of milliseconds between when
the state reflector will refresh the robot, if the command hasn’t changed. The
default is 500 milliseconds. If this number is less than the cyle time, it’ll simply
happen every cycle.

Returns:
the state reflection refresh time

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 375

4.96.4.51 ArSyncTask ∗ ArRobot::getSyncTaskRoot (void)

This gets the root of the syncronous task tree, only serious developers should
use it.

This gets the root of the synchronous task tree, so that someone can add their
own new types of tasks, or find out more information about each task... only
serious developers should use this.

Returns:
the root of the sycnhronous task tree

See also:
ArSyncTask (p. 458)

4.96.4.52 ArTransform ArRobot::getToGlobalTransform (void)

This gets the transform from local coords to global coords.

Returns:
an ArTransform (p. 478) which can be used for transforming a position
in local coordinates to one in global coordinates

4.96.4.53 ArTransform ArRobot::getToLocalTransform (void)

This gets the transform for going from global coords to local coords.

Returns:
an ArTransform (p. 478) which can be used for transforming a position
in global coordinates to one in local coordinates

4.96.4.54 bool ArRobot::hasRangeDevice (ArRangeDevice ∗
device)

Finds whether a particular range device is attached to this robot or not.

Parameters:
device the device to check for

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

376 Aria Class Documentation

4.96.4.55 void ArRobot::init (void)

Internal function, shouldn’t be used.

Sets up the packet handlers, sets up the sync list and makes the default priority
resolver.

4.96.4.56 bool ArRobot::isConnected (void) [inline]

Questions whether the robot is connected or not.

Returns:
true if connected to a robot, false if not

4.96.4.57 bool ArRobot::isDirectMotion (void)

Returns true if direct motion commands are blocking actions.

Returns the state of direct motion commands: whether actions are allowed or
not

See also:
clearDirectMotion (p. 367)

4.96.4.58 bool ArRobot::isHeadingDone (double delta = 0.0)

Sees if the robot is done changing to the previously given setHeading.

Determines if a setHeading command is finished, to within a small distance. If
delta = 0 (default), the delta distance is what was set with setHeadingDoneDiff,
you can get the distnace with getHeadingDoneDiff

Parameters:
delta how close to the goal distance the robot must be

Returns:
true if the robot has achieved the heading given in a move command or if
the robot is no longer in heading mode mode (because its now running off
of actions, setDHeading, or setRotVel was called).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 377

4.96.4.59 bool ArRobot::isMoveDone (double delta = 0.0)

Sees if the robot is done moving the previously given move.

Determines if a move command is finished, to within a small distance. If delta
= 0 (default), the delta distance is what was set with setMoveDoneDist, you
can get the distnace with getMoveDoneDist

Parameters:
delta how close to the goal distance the robot must be

Returns:
true if the robot has finished the distance given in a move command or
if the robot is no longer in a move mode (because its now running off of
actions, setVel, or setVel2 was called).

4.96.4.60 bool ArRobot::isRunning (void)

Returns whether the robot is currently running or not.

Returns:
true if the robot is currently running in a run or runAsync, otherwise false

4.96.4.61 bool ArRobot::isSonarNew (int num)

Find out if the given sonar has a new reading.

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
false

Returns:
false if the sonar reading is old, or if there is no reading from that sonar

4.96.4.62 bool ArRobot::loadParamFile (const char ∗ file)

Loads a parameter file (replacing all other params).

Returns:
true if the file could be loaded, false otherwise

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

378 Aria Class Documentation

4.96.4.63 void ArRobot::loopOnce (void)

This function loops once... only serious developers should use it.

This function is only for serious developers, it basically runs the loop once. You
would use this function if you were wanting to use robot control in some other
monolithic program, so you could work within its framework, rather than trying
to get it to work in ARIA.

4.96.4.64 void ArRobot::move (double distance)

Move the given distance forward/backwards

See also:
clearDirectMotion (p. 367).

Tells the robot to move the specified distance forward/backwards, if the con-
structor was created with state reflecting enabled then it caches this value, and
sends it during the next cycle. If state reflecting is disabled it sends this value
instantly.

Parameters:
distance the distance for the robot to move

4.96.4.65 void ArRobot::moveTo (ArPose poseTo, ArPose
poseFrom, bool doCumulative = true)

Moves the robot’s RW position to reflect pose From => pose To.

Parameters:
poseTo the absolute real world position to move to

poseFrom the original absolute real world position

doCumulative whether to update the cumulative buffers or not

4.96.4.66 void ArRobot::moveTo (ArPose pose, bool doCumulative
= true)

Moves the robot’s idea of its position to this position.

Parameters:
pose the absolute real world position to place the robot

doCumulative whether to update the cumulative buffers or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 379

4.96.4.67 void ArRobot::packetHandler (void)

Packet Handler, internal.

Reads in all of the packets that are available to read in, then runs through the
list of packet handlers and tries to get each packet handled.

See also:
addPacketHandler (p. 360) , remPacketHandler (p. 381)

4.96.4.68 void ArRobot::printAllTasks (void)

Logs the list of all tasks, strictly for your viewing pleasure.

See also:
ArLog (p. 223)

4.96.4.69 void ArRobot::printUserTasks (void)

Logs the list of user tasks, strictly for your viewing pleasure.

See also:
ArLog (p. 223)

4.96.4.70 bool ArRobot::remAction (const char ∗ actionName)

Removes an action from the list, by name.

Finds the action with the given name and removes it from the actions... if more
than one action has that name it find the one with the lowest priority

Parameters:
actionName the name of the action we want to find

Returns:
whether remAction found anything with that action to remove or not

4.96.4.71 bool ArRobot::remAction (ArAction ∗ action)

Removes an action from the list, by pointer.

Finds the action with the given pointer and removes it from the actions... if
more than one action has that pointer it find the one with the lowest priority

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

380 Aria Class Documentation

Parameters:
action the action we want to remove

Returns:
whether remAction found anything with that action to remove or not

4.96.4.72 void ArRobot::remConnectCB (ArFunctor ∗ functor)

Adds a disconnect callback.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addConnectCB (p. 358)

4.96.4.73 void ArRobot::remDisconnectNormallyCB (ArFunctor ∗
functor)

Removes a callback for when disconnect is called while connected.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectNormallyCB (p. 359)

4.96.4.74 void ArRobot::remDisconnectOnErrorCB (ArFunctor ∗
functor)

Removes a callback for when disconnection happens because of an error.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectOnErrorCB (p. 359)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 381

4.96.4.75 void ArRobot::remFailedConnectCB (ArFunctor ∗
functor)

Removes a callback for when a connection to the robot is failed.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addFailedConnectCB (p. 360)

4.96.4.76 void ArRobot::remPacketHandler (ArRetFunctor1<
bool, ArRobotPacket ∗> ∗ functor)

Removes a packet handler from the list of packet handlers.

Parameters:
functor the functor to remove from the list of packet handlers

See also:
addPacketHandler (p. 360)

4.96.4.77 void ArRobot::remRangeDevice (ArRangeDevice ∗
device)

Remove a range device from the robot’s list, by instance.

Parameters:
device remove the first device with this pointer value

4.96.4.78 void ArRobot::remRangeDevice (const char ∗ name)

Remove a range device from the robot’s list, by name.

Parameters:
name remove the first device with this name

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

382 Aria Class Documentation

4.96.4.79 void ArRobot::remRunExitCB (ArFunctor ∗ functor)

Removes a callback for when the run loop exits for what ever reason.

Parameters:
functor the functor to remove from the list of run exit callbacks

See also:
addRunExitCB (p. 361)

4.96.4.80 void ArRobot::remSensorInterpTask (ArFunctor ∗
functor)

Removes a sensor interp tasks by functor.

See also:
addSensorInterpTask (p. 361) , remSensorInterpTask(std::string name)

4.96.4.81 void ArRobot::remSensorInterpTask (const char ∗ name)

Removes a sensor interp tasks by name.

See also:
addSensorInterpTask (p. 361) , remSensorInterpTask(ArFunctor
∗functor) (p. 382)

4.96.4.82 void ArRobot::remUserTask (ArFunctor ∗ functor)

Removes a user task from the list of synchronous taskes by functor.

See also:
addUserTask (p. 362) , remUserTask(std::string name)

4.96.4.83 void ArRobot::remUserTask (const char ∗ name)

Removes a user task from the list of synchronous taskes by name.

See also:
addUserTask (p. 362) , remUserTask(ArFunctor ∗functor) (p. 382)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 383

4.96.4.84 void ArRobot::robotLocker (void)

Robot locker, internal.

This just locks the robot, so that its locked for all the user tasks

4.96.4.85 void ArRobot::robotUnlocker (void)

Robot unlocker, internal.

This just unlocks the robot

4.96.4.86 void ArRobot::run (bool stopRunIfNotConnected)

Starts the instance to do processing.

This starts the list of tasks to be run through until stopped. This function
doesn’t return until something calls stop on this instance.

Parameters:
stopRunIfNotConnected if true, the run will return if there is no con-

nection to the robot at any given point, this is good for one-shot
programs... if it is false the run won’t return unless stop is called on
the instance

4.96.4.87 void ArRobot::runAsync (bool stopRunIfNotConnected)

Starts the instance to do processing in its own new thread.

This starts a new thread then has runs through the tasks until stopped. This
function doesn’t return until something calls stop on this instance. This function
returns immediately

Parameters:
stopRunIfNotConnected if true, the run will stop if there is no con-

nection to the robot at any given point, this is good for one-shot
programs... if it is false the run won’t stop unless stop is called on the
instance

4.96.4.88 void ArRobot::setConnectionCycleMultiplier (unsigned
int multiplier)

Sets the multiplier for how many cycles ArRobot waits when connecting.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

384 Aria Class Documentation

Parameters:
multiplier when the ArRobot is waiting for a connection packet back from

a robot, it waits for this multiplier times the cycle time for the packet
to come back before it gives up on it... This should be small for normal
connections but if doing something over a slow network then you may
want to make it larger

4.96.4.89 void ArRobot::setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

Sets the number of seconds to go without a response from the robot until it is
assumed that the connection with the robot has been broken and the disconnect
on error events will happen. Note that this will only happen with the default
packet handler.

Parameters:
seconds if seconds is 0 then the connection timeout feature will be dis-

abled, otherwise disconnect on error will be triggered after this number
of seconds...

4.96.4.90 void ArRobot::setCycleTime (unsigned int ms)

Sets the number of ms between cycles.

Sets the number of milliseconds between cycles, at each cycle is when all packets
are processed, all sensors are interpretted, all actions are called, and all user
tasks are serviced. Be warned, if you set this too small you could overflow your
serial connection.

Parameters:
ms the number of milliseconds between cycles

4.96.4.91 void ArRobot::setDeadReconPose (ArPose pose)

Sets the dead recon position of the robot.

Parameters:
pose the position to set the dead recon position to

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 385

4.96.4.92 void ArRobot::setDeltaHeading (double deltaHeading)

Sets the delta heading

See also:
clearDirectMotion (p. 367).

Sets a delta heading to the robot, if the constructor was created with state
reflecting enabled then it caches this value, and sends it during the next cycle.
If state reflecting is disabled it sends this value instantly.

Parameters:
deltaHeading the desired amount to change the heading of the robot by

4.96.4.93 void ArRobot::setDeviceConnection
(ArDeviceConnection ∗ connection)

Sets the connection this instance uses.

Sets the connection this instance uses to the actual robot. This is where com-
mands will be sent and packets will be received from

Parameters:
connection The deviceConnection to use for this robot

See also:
ArDeviceConnection (p. 118), ArSerialConnection (p. 411), ArTcp-
Connection (p. 466)

4.96.4.94 void ArRobot::setDirectMotionPrecedenceTime (int
mSec)

Sets the length of time a direct motion command will take precedence over
actions, in milliseconds.

The direct motion precedence time determines how long actions will be ignored
after a direct motion command is given. If the direct motion precedence time is
0, then direct motion will take precedence over actions until a clearDirectMotion
command is issued. This value defaults to 0.

Parameters:
the number of milliseconds direct movement should trump actions, if a

negative number is given, then the value will be 0

See also:
setDirectMotionPrecedenceTime (p. 385) , clearDirectMotion
(p. 367)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

386 Aria Class Documentation

4.96.4.95 void ArRobot::setEncoderCorrectionCallback
(ArRetFunctor1< double, ArPoseWithTime > ∗ functor)

Sets the encoderCorrectionCallback.

This sets the encoderCorrectionCB, this callback returns the robots change in
heading, it takes in the change in heading, x, and y, between the previous and
current readings.

Parameters:
functor an ArRetFunctor1 (p. 315) created as an ArRetFunctor1C

(p. 317), that will be the callback... call this function NULL to clear
the callback

See also:
getEncoderCorrectionCallback (p. 372)

4.96.4.96 void ArRobot::setEncoderTransform (ArPose
transformPos)

Changes the transform directly.

Parameters:
transformPos the position to transform to

4.96.4.97 void ArRobot::setEncoderTransform (ArPose
deadReconPos, ArPose globalPos)

Changes the transform.

Parameters:
deadReconPos the dead recon position to transform from

realWorldPos the real world global position to transform to

4.96.4.98 void ArRobot::setHeading (double heading)

Sets the heading

See also:
clearDirectMotion (p. 367).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 387

Sets the heading of the robot, if the constructor was created with state reflecting
enabled then it caches this value, and sends it during the next cycle. If state
reflecting is disabled it sends this value instantly.

Parameters:
heading the desired heading of the robot

4.96.4.99 bool ArRobot::setMaxRotVel (double maxVel)

Sets the robots maximum rotational velocity.

This sets the maximum velocity the robot will go... the maximum velocity can
also be set by the actions, but it will not be allowed to go higher than this
value.

Parameters:
maxVel the maximum velocity to be set, it must be a non-zero number

Returns:
true if the value is good, false othrewise

4.96.4.100 bool ArRobot::setMaxTransVel (double maxVel)

Sets the robots maximum translational velocity.

This sets the maximum velocity the robot will go... the maximum velocity can
also be set by the actions, but it will not be allowed to go higher than this
value.

Parameters:
maxVel the maximum velocity to be set, it must be a non-zero number

Returns:
true if the value is good, false othrewise

4.96.4.101 void ArRobot::setRotVel (double velocity)

Sets the rotational velocity

See also:
clearDirectMotion (p. 367).

Sets the rotational velocity of the robot, if the constructor was created with
state reflecting enabled then it caches this value, and sends it during the next
cycle. If state reflecting is disabled it sends this value instantly.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

388 Aria Class Documentation

Parameters:
velocity the desired rotational velocity of the robot

4.96.4.102 void ArRobot::setStateReflectionRefreshTime (int
mSec)

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

The state reflection refresh time is the number of milliseconds between when
the state reflector will refresh the robot, if the command hasn’t changed. The
default is 500 milliseconds. If this number is less than the cyle time, it’ll simply
happen every cycle.

Parameters:
mSec the refresh time, in milliseconds, non-negative, if negative is given,

then the value will be 0

4.96.4.103 void ArRobot::setVel (double velocity)

Sets the velocity

See also:
clearDirectMotion (p. 367).

Sets the velocity of the robot, if the constructor was created with state reflecting
enabled then it caches this value, and sends it during the next cycle. If state
reflecting is disabled it sends this value instantly.

Parameters:
velocity the desired translational velocity of the robot

4.96.4.104 void ArRobot::setVel2 (double leftVelocity, double
rightVelocity)

Sets the velocity of the wheels independently

See also:
clearDirectMotion (p. 367).

Sets the velocity of each of the wheels on the robot independently. if the con-
structor was created with state reflecting enabled then it caches this value, and
sends it during the next cycle. If state reflecting is disabled it sends this value
instantly. Note that this cancels both translational velocity AND rotational
velocity, and is canceled by any of the other direct motion commands.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 389

Parameters:
leftVelocity the desired velocity of the left wheel

rightVelocity the desired velocity of the right wheel

4.96.4.105 void ArRobot::stateReflector (void)

State Reflector, internal.

If state reflecting (really direct motion command reflecting) was enabled in the
constructor (ArRobot::ArRobot (p. 357)) then this will see if there are any
direct motion commands to send, and if not then send the command given by
the actions. If state reflection is disabled this will send a pulse to the robot
every state reflection refresh time (setStateReflectionRefreshTime), if you don’t
wish this to happen simply set this to a very large value.

4.96.4.106 void ArRobot::stop (void)

Stops the robot

See also:
clearDirectMotion (p. 367).

Stops the robot, by telling it to have a translational velocity and rotational
velocity of 0. Also note that if you are using actions, this will cause the actions
to be ignored until the direct motion precedence timeout has been exceeded or
clearDirectMotion is called.

See also:
setDirectMotionPrecedenceTime (p. 385) , getDirectMotion-
PrecedenceTime (p. 372) , clearDirectMotion (p. 367)

4.96.4.107 void ArRobot::stopRunning (bool doDisconnect = true)

Stops the robot from doing any more processing.

This stops this robot from running anymore. If it is stopping from a runAsync
it will cause the thread to return (exit), if it is running from a normal run, it
will just cause the run function to return.

Parameters:
doDisconnect Disconnect from the robot. Defaulted to true.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

390 Aria Class Documentation

4.96.4.108 ArRobot::WaitState ArRobot::waitForConnect
(unsigned int msecs = 0)

Suspend calling thread until the ArRobot is connected.

This will suspend the calling thread until the ArRobot’s run loop has managed
to connect with the robot. There is an optional paramater of milliseconds to
wait for the ArRobot to connect. If msecs is set to 0, it will wait until the
ArRobot connects. This function will never return if the robot can not be
connected with. If you want to be able to handle that case within the calling
thread, you must call waitForConnectOrConnFail() (p. 390).

Parameters:
msecs milliseconds in which to wait for the ArRobot to connect

Returns:
WAIT CONNECTED for success

See also:
waitForConnectOrConnFail (p. 390) , wakeAllWaitingThreads
(p. 392) , wakeAllConnWaitingThreads (p. 391) , wakeAllRunExit-
WaitingThreads (p. 391)

4.96.4.109 ArRobot::WaitState ArRobot::waitFor-
ConnectOrConnFail (unsigned int msecs =
0)

Suspend calling thread until the ArRobot is connected or fails to connect.

This will suspend the calling thread until the ArRobot’s run loop has managed
to connect with the robot or fails to connect with the robot. There is an optional
paramater of milliseconds to wait for the ArRobot to connect. If msecs is set to
0, it will wait until the ArRobot connects.

Parameters:
msecs milliseconds in which to wait for the ArRobot to connect

Returns:
WAIT CONNECTED for success

See also:
waitForConnect (p. 390)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRobot Class Reference 391

4.96.4.110 ArRobot::WaitState ArRobot::waitForRunExit
(unsigned int msecs = 0)

Suspend calling thread until the ArRobot run loop has exited.

This will suspend the calling thread until the ArRobot’s run loop has exited.
There is an optional paramater of milliseconds to wait for the ArRobot run loop
to exit . If msecs is set to 0, it will wait until the ArRrobot run loop exits.

Parameters:
msecs milliseconds in which to wait for the robot to connect

Returns:
WAIT RUN EXIT for success

4.96.4.111 void ArRobot::wakeAllConnOrFailWaitingThreads ()

Wake up all threads waiting for connection or connection failure.

This will wake all the threads waiting for the robot to be connected or waiting
for the robot to fail to connect.

See also:
wakeAllWaitingThreads (p. 392) , wakeAllRunExitWaiting-
Threads (p. 391)

4.96.4.112 void ArRobot::wakeAllConnWaitingThreads ()

Wake up all threads waiting for connection.

This will wake all the threads waiting for the robot to be connected.

See also:
wakeAllWaitingThreads (p. 392) , wakeAllRunExitWaiting-
Threads (p. 391)

4.96.4.113 void ArRobot::wakeAllRunExitWaitingThreads ()

Wake up all threads waiting for the run loop to exit.

This will wake all the threads waiting for the run loop to exit.

See also:
wakeAllWaitingThreads (p. 392) , wakeAllConnWaitingThreads
(p. 391)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

392 Aria Class Documentation

4.96.4.114 void ArRobot::wakeAllWaitingThreads ()

Wake up all threads waiting on this robot.

This will wake all the threads waiting for various major state changes in this par-
ticular ArRobot. This includes all threads waiting for the robot to be connected
and all threads waiting for the run loop to exit.

See also:
wakeAllConnWaitingThreads (p. 391) , wakeAllRunExitWaiting-
Threads (p. 391)

The documentation for this class was generated from the following files:

• ArRobot.h
• ArRobot.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.97 ArRobotPacket Class Reference 393

4.97 ArRobotPacket Class Reference

Represents the packets sent to the robot as well as those received from it.

#include <ArRobotPacket.h>

Inheritance diagram for ArRobotPacket::

ArRobotPacket

ArBasePacket

Public Methods

• ArRobotPacket (unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor.

• virtual ∼ArRobotPacket (void)
Destructor.

• bool verifyCheckSum (void)
returns true if the checksum matches what it should be.

• ArTypes::UByte getID (void)
returns the ID of the packet (first byte of data).

• ArTypes::Byte2 calcCheckSum (void)
returns the checksum, probably used only internally.

• virtual void finalize (void)
Finalizes the packet in preparation for sending, must be done.

• virtual void resetRead (void)
Restart the reading process.

• ArTime getTimeReceived (void)
Gets the time the packet was received at.

• void setTimeReceived (ArTime timeReceived)
Sets the time the packet was received at.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

394 Aria Class Documentation

4.97.1 Detailed Description

Represents the packets sent to the robot as well as those received from it.

This class reimplements some of the buf operations since the robot is opposeite
endian from intel. Also has the getID for convenience.

You can just look at the documentation for the ArBasePacket (p. 107) except
for the 4 new functions here, verifyCheckSum, getID, print, and calcCheckSum.

4.97.2 Constructor & Destructor Documentation

4.97.2.1 ArRobotPacket::ArRobotPacket (unsigned char sync1 =
0xfa, unsigned char sync2 = 0xfb)

Constructor.

Parameters:
sync1 first byte of the header of this packet, this should be left as the

default in nearly all cases, ie don’t mess with it

sync2 second byte of the header of this packet, this should be left as the
default in nearly all cases, ie don’t mess with it

4.97.3 Member Function Documentation

4.97.3.1 void ArRobotPacket::resetRead (void) [virtual]

Restart the reading process.

Sets the length read back to the header length so the packet can be reread using
the other methods

Reimplemented from ArBasePacket (p. 111).

The documentation for this class was generated from the following files:

• ArRobotPacket.h
• ArRobotPacket.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.98 ArRobotPacketReceiver Class Reference 395

4.98 ArRobotPacketReceiver Class Reference

Given a device connection it receives packets from the robot through it.

#include <ArRobotPacketReceiver.h>

Public Methods

• ArRobotPacketReceiver (bool allocatePackets=false, unsigned char
sync1=0xfa, unsigned char sync2=0xfb)

Constructor without an already assigned device connection.

• ArRobotPacketReceiver (ArDeviceConnection ∗deviceConnection,
bool allocatePackets=false, unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor with assignment of a device connection.

• virtual ∼ArRobotPacketReceiver (void)

Destructor.

• ArRobotPacket ∗ receivePacket (unsigned int msWait=0)

Receives a packet from the robot if there is one available.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance receives packets from.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance receives packets from.

• bool isAllocatingPackets (void)

Gets whether or not the receiver is allocating packets.

4.98.1 Detailed Description

Given a device connection it receives packets from the robot through it.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

396 Aria Class Documentation

4.98.2 Constructor & Destructor Documentation

4.98.2.1 ArRobotPacketReceiver::ArRobotPacketReceiver (bool
allocatePackets = false, unsigned char sync1 = 0xfa,
unsigned char sync2 = 0xfb)

Constructor without an already assigned device connection.

Parameters:
allocatePackets whether to allocate memory for the packets before re-

turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

sync1 first byte of the header this receiver will receive, this should be left
as the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this receiver will receive, this should be
left as the default in nearly all cases, ie don’t mess with it

4.98.2.2 ArRobotPacketReceiver::ArRobotPacketReceiver
(ArDeviceConnection ∗ deviceConnection, bool
allocatePackets = false, unsigned char sync1 = 0xfa,
unsigned char sync2 = 0xfb)

Constructor with assignment of a device connection.

Parameters:
deviceConnection the connection which the receiver will use

allocatePackets whether to allocate memory for the packets before re-
turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

sync1 first byte of the header this receiver will receive, this should be left
as the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this receiver will receive, this should be
left as the default in nearly all cases, ie don’t mess with it

4.98.3 Member Function Documentation

4.98.3.1 ArRobotPacket ∗ ArRobotPacketReceiver::receivePacket
(unsigned int msWait = 0)

Receives a packet from the robot if there is one available.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.98 ArRobotPacketReceiver Class Reference 397

Parameters:
msWait how long to block for the start of a packet, nonblocking if 0

Returns:
NULL if there are no packets in alloted time, otherwise a pointer to the
packet received, if allocatePackets is true than the place that called this
function owns the packet and should delete the packet when done... if
allocatePackets is false then nothing must store a pointer to this packet,
the packet must be used and done with by the time this method is called
again

The documentation for this class was generated from the following files:

• ArRobotPacketReceiver.h
• ArRobotPacketReceiver.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

398 Aria Class Documentation

4.99 ArRobotPacketSender Class Reference

Given a device connection this sends commands through it to the robot.

#include <ArRobotPacketSender.h>

Public Methods

• ArRobotPacketSender (unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor without an already assigned device connection.

• ArRobotPacketSender (ArDeviceConnection ∗deviceConnection,
unsigned char sync1=0xfa, unsigned char sync2=0xfb)

Constructor with assignment of a device connection.

• virtual ∼ArRobotPacketSender (void)

Destructor.

• bool com (unsigned char command)

Sends a command to the robot with no arguments.

• bool comInt (unsigned char command, short int argument)

Sends a command to the robot with an int for argument.

• bool com2Bytes (unsigned char command, char high, char low)

Sends a command to the robot with two bytes for argument.

• bool comStr (unsigned char command, const char ∗argument)

Sends a command to the robot with a string for argument.

• bool comStrN (unsigned char command, const char ∗str, int size)

Sends a command to the robot with a size bytes of str as argument.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance sends commands to.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance sends commands to.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.99 ArRobotPacketSender Class Reference 399

4.99.1 Detailed Description

Given a device connection this sends commands through it to the robot.

4.99.2 Constructor & Destructor Documentation

4.99.2.1 ArRobotPacketSender::ArRobotPacketSender (unsigned
char sync1 = 0xfa, unsigned char sync2 = 0xfb)

Constructor without an already assigned device connection.

Parameters:
sync1 first byte of the header this sender will send, this should be left as

the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this sender will send, this should be left
as the default in nearly all cases, ie don’t mess with it

4.99.2.2 ArRobotPacketSender::ArRobotPacketSender
(ArDeviceConnection ∗ deviceConnection, unsigned char
sync1 = 0xfa, unsigned char sync2 = 0xfb)

Constructor with assignment of a device connection.

Parameters:
sync1 first byte of the header this sender will send, this should be left as

the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this sender will send, this should be left
as the default in nearly all cases, ie don’t mess with it

4.99.3 Member Function Documentation

4.99.3.1 bool ArRobotPacketSender::com (unsigned char number)

Sends a command to the robot with no arguments.

Parameters:
command the command number to send

Returns:
whether the command could be sent or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

400 Aria Class Documentation

4.99.3.2 bool ArRobotPacketSender::com2Bytes (unsigned char
command, char high, char low)

Sends a command to the robot with two bytes for argument.

Parameters:
command the command number to send

high the high byte to send with the command

low the low byte to send with the command

Returns:
whether the command could be sent or not

4.99.3.3 bool ArRobotPacketSender::comInt (unsigned char
command, short int argument)

Sends a command to the robot with an int for argument.

Parameters:
command the command number to send

argument the integer argument to send with the command

Returns:
whether the command could be sent or not

4.99.3.4 bool ArRobotPacketSender::comStr (unsigned char
command, const char ∗ argument)

Sends a command to the robot with a string for argument.

Parameters:
command the command number to send

str the string to send with the command

Returns:
whether the command could be sent or not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.99 ArRobotPacketSender Class Reference 401

4.99.3.5 bool ArRobotPacketSender::comStrN (unsigned char
command, const char ∗ str, int size)

Sends a command to the robot with a size bytes of str as argument.

Parameters:
command the command number to send

str the character array to send with the command

size length of the array to send

Returns:
whether the command could be sent or not

The documentation for this class was generated from the following files:

• ArRobotPacketSender.h
• ArRobotPacketSender.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

402 Aria Class Documentation

4.100 ArRobotParams Class Reference

Contains the robot parameters, according to the parameter file.

#include <ArRobotParams.h>

Public Methods

• ArRobotParams (void)

Constructor.

• virtual ∼ArRobotParams (void)

Destructor.

• void init (ArRobotParamFile ∗param)

Given the robot parameters in preference form, fills in this instance.

• std::string getClass (void)

Returns the class from the parameter file.

• std::string getSubClass (void)

Returns the subclass from the parameter file.

• double getRobotRadius (void)

Returns the robot’s radius.

• double getRobotDiagonal (void)

Returns the robot diagonal (half-height to diagonal of octagon).

• bool isHolonomic (void)

Returns whether the robot is holonomic or not.

• bool hasMoveCommand (void)

Returns if the robot has a built in move command.

• int getMaxVelocity (void)

Returns the max velocity of the robot.

• int getMaxRotVelocity (void)

Returns the max rotational velocity of the robot.

• bool getRequestIOPackets (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.100 ArRobotParams Class Reference 403

Returns true if IO packets are automatically requested upon connection to
the robot.

• double getAngleConvFactor (void)
Returns the angle conversion factor.

• double getDistConvFactor (void)
Returns the distance conversion factor.

• double getVelConvFactor (void)
Returns the velocity conversion factor.

• double getRangeConvFactor (void)
Returns the sonar range conversion factor.

• double getDiffConvFactor (void)
Returns the wheel velocity difference to angular velocity conv factor.

• double getVel2Divisor (void)
Returns the multiplier for VEL2 commands.

• bool haveTableSensingIR (void)
Returns true if the robot has table sensing IR.

• bool haveNewTableSensingIR (void)
Returns true if the robot’s table sensing IR bits are sent in the 4th-byte of
the IO packet.

• bool haveFrontBumpers (void)
Returns true if the robot has front bumpers.

• int numFrontBumpers (void)
Returns the number of front bumpers.

• bool haveRearBumpers (void)
Returns true if the robot has rear bumpers.

• int numRearBumpers (void)
Returns the number of rear bumpers.

• int getNumSonar (void)
Returns the number of sonar.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

404 Aria Class Documentation

• bool haveSonar (int number)
Returns if the sonar of the given number is valid.

• int getSonarX (int number)
Returns the X location of the given numbered sonar disc.

• int getSonarY (int number)
Returns the Y location of the given numbered sonar disc.

• int getSonarTh (int number)
Returns the heading of the given numbered sonar disc.

• bool getLaserPossessed (void)
Returns if the robot has a laser (according to param file).

• std::string getLaserPort (void)
What port the laser is on.

• bool getLaserPowerControlled (void)
If the laser power is controlled by the serial port lines.

• bool getLaserFlipped (void)
If the laser is flipped on the robot.

• int getLaserX (void)
The X location of the laser.

• int getLaserY (void)
The Y location of the laser.

4.100.1 Detailed Description

Contains the robot parameters, according to the parameter file.

The documentation for this class was generated from the following files:

• ArRobotParams.h
• ArRobotParams.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.101 ArSectors Class Reference 405

4.101 ArSectors Class Reference

A class for keeping track of if a complete revolution has been attained.

#include <ariaUtil.h>

Public Methods

• ArSectors (int numSectors=8)
Constructor.

• virtual ∼ArSectors (void)
Destructor.

• void clear (void)
Clears all quadrants.

• void update (double angle)
Updates the appropriate quadrant for the given angle.

• bool didAll (void)
Returns true if the all of the quadrants have been gone through.

4.101.1 Detailed Description

A class for keeping track of if a complete revolution has been attained.

This class can be used to keep track of if a complete revolution has been done, it
is used by doing doing a clearQuadrants when you want to stat the revolution.
Then at each point doing an updateQuadrant with the current heading of the
robot. When didAllQuadrants returns true, then all the quadrants have been
done.

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

406 Aria Class Documentation

4.102 ArSensorReading Class Reference

A class to hold a sensor reading, should be one instance per sensor.

#include <ArSensorReading.h>

Public Methods

• ArSensorReading (double xPos=0.0, double yPos=0.0, double th-
Pos=0.0)

Constructor, the three args are the physical location of the sonar.

• int getRange (void)
Gets the range of the reading.

• bool isNew (unsigned int counter)
Given the counter from the robot, it returns whether the reading is new.

• double getX (void)
Gets the X location of the sonar reading.

• double getY (void)
Gets the Y location of the sonar reading.

• ArPose getPose (void)
Gets the position of the reading
Returns:

the position of the reading (ie where the sonar pinged back).

• ArPose getPoseTaken (void)
Gets the pose the reading was taken at.

• ArPose getEncoderPoseTaken (void)
Gets the encoder pose the reading was taken at.

• double getSensorX (void)
Gets the X location of the sonar on the robot.

• double getSensorY (void)
Gets the Y location of the sensor on the robot.

• double getSensorTh (void)
Gets the heading of the sensor on the robot.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.102 ArSensorReading Class Reference 407

• ArPose getSensorPosition (void)

Gets the sensors position on the robot.

• double getSensorDX (void)

Gets the cos component of the heading of the sensor reading.

• double getSensorDY (void)

Gets the sin component of the heading of the sensor reading.

• double getXTaken (void)

Gets the X locaiton of the robot when the reading was received.

• double getYTaken (void)

Gets the Y location of the robot when the reading was received.

• double getThTaken (void)

Gets the th (heading) of the robot when the reading was received.

• unsigned int getCounterTaken (void)

Gets the counter from when the reading arrived.

• void newData (int range, ArPose robotPose, ArPose encoderPose, Ar-
Transform trans, unsigned int counter, ArTime timeTaken)

Takes the data and makes the reading reflect it.

• void ArSensorReading::newData (int sx, int sy, ArPose robotPose,
ArPose encoderPose, ArTransform trans, unsigned int counter, Ar-
Time timeTaken)

Takes the data and makes the reading reflect it.

• void resetSensorPosition (double xPos, double yPos, double thPos, bool
forceComputation=false)

Resets the sensors idea of its physical location on the robot.

• void applyTransform (ArTransform trans)

Applies a transform to the reading position, and where it was taken.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

408 Aria Class Documentation

4.102.1 Detailed Description

A class to hold a sensor reading, should be one instance per sensor.

This class holds sensor data and a sensor reading... it can happen that it contains
the data for a sonar, but not the reading, in which case the range (from get-
Range) will be -1, and the counter it was taken (from getCounterTaken) will be
0, also it will never be new (from isNew)

4.102.2 Constructor & Destructor Documentation

4.102.2.1 ArSensorReading::ArSensorReading (double xPos = 0.0,
double yPos = 0.0, double thPos = 0.0)

Constructor, the three args are the physical location of the sonar.

Parameters:
xPos the x position of the sensor on the robot (mm)

yPos the y position of the sensor on the robot (mm)

thPos the heading of the sensor on the robot (deg)

4.102.3 Member Function Documentation

4.102.3.1 void ArSensorReading::applyTransform (ArTransform
trans)

Applies a transform to the reading position, and where it was taken.

Parameters:
trans the transform to apply to the reading and where the reading was

taken

4.102.3.2 unsigned int ArSensorReading::getCounterTaken (void)
[inline]

Gets the counter from when the reading arrived.

Returns:
the counter from the robot when the sonar reading was taken

See also:
isNew (p. 409)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.102 ArSensorReading Class Reference 409

4.102.3.3 int ArSensorReading::getRange (void) [inline]

Gets the range of the reading.

Returns:
the distance return from the sensor (how far from the robot)

4.102.3.4 ArPose ArSensorReading::getSensorPosition (void)
[inline]

Gets the sensors position on the robot.

Returns:
the position of the sensor on the robot

4.102.3.5 bool ArSensorReading::isNew (unsigned int counter)
[inline]

Given the counter from the robot, it returns whether the reading is new.

Parameters:
counter the counter from the robot at the current time

Returns:
true if the reading was taken on the current loop

See also:
getCounter

4.102.3.6 void ArSensorReading::newData (int range, ArPose
robotPose, ArPose encoderPose, ArTransform trans,
unsigned int counter, ArTime timeTaken)

Takes the data and makes the reading reflect it.

Parameters:
range the distance from the sensor to the sensor return (mm)
x the x location of the robot when the sensor reading was taken (mm)
y the y location of the robot when the sensor reading was taken (mm)
th the heading of the robot when the sensor reading was taken (deg)
trans the transform from local coords to global coords
counter the counter from the robot when the sensor reading was taken

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

410 Aria Class Documentation

4.102.3.7 void ArSensorReading::resetSensorPosition (double xPos,
double yPos, double thPos, bool forceComputation =
false)

Resets the sensors idea of its physical location on the robot.

Parameters:
xPos the x position of the sensor on the robot (mm)

yPos the y position of the sensor on the robot (mm)

thPos the heading of the sensor on the robot (deg)

The documentation for this class was generated from the following files:

• ArSensorReading.h
• ArSensorReading.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArSerialConnection Class Reference 411

4.103 ArSerialConnection Class Reference

For connecting to devices through a serial port.

#include <ArSerialConnection.h>

Inheritance diagram for ArSerialConnection::

ArSerialConnection

ArDeviceConnection

Public Types

• enum Open { OPEN COULD NOT OPEN PORT = 1, OPEN -
COULD NOT SET UP PORT, OPEN INVALID BAUD -
RATE, OPEN COULD NOT SET BAUD, OPEN ALREADY -
OPEN }

Public Methods

• ArSerialConnection (void)
Constructor.

• virtual ∼ArSerialConnection (void)
Destructor also closes the connection.

• int open (const char ∗port=NULL)
Opens the serial port.

• void setPort (const char ∗port=NULL)
Sets the port this will use.

• const char ∗ getPort (void)
Gets the port this is using.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

412 Aria Class Documentation

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

• virtual int write (const char ∗data, unsigned int size)
Writes data to connection.

• virtual std::string getOpenMessage (int messageNumber)
Gets the string of the message associated with opening the device.

• bool setBaud (int baud)
Sets the baud rate on the connection.

• int getBaud (void)
Gets what the current baud rate is set to.

• bool setHardwareControl (bool hardwareControl)
Sets whether to enable or disable the hardware control lines.

• bool getHardwareControl (void)
Gets whether the hardware control lines are enabled or disabled.

• virtual ArTime getTimeRead (int index)
Gets the time data was read in.

• virtual bool isTimeStamping (void)
sees if timestamping is really going on or not.

4.103.1 Detailed Description

For connecting to devices through a serial port.

4.103.2 Member Enumeration Documentation

4.103.2.1 enum ArSerialConnection::Open

Enumeration values:
OPEN COULD NOT OPEN PORT Could not open the port.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArSerialConnection Class Reference 413

OPEN COULD NOT SET UP PORT Could not set up the port.

OPEN INVALID BAUD RATE Baud rate is not valid.

OPEN COULD NOT SET BAUD Baud rate valid, but could not set
it.

OPEN ALREADY OPEN Connection was already open.

4.103.3 Member Function Documentation

4.103.3.1 bool ArSerialConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented from ArDeviceConnection (p. 120).

4.103.3.2 int ArSerialConnection::getBaud (void)

Gets what the current baud rate is set to.

Returns:
the current baud rate of the connection

4.103.3.3 bool ArSerialConnection::getHardwareControl (void)

Gets whether the hardware control lines are enabled or disabled.

Returns:
true if hardware control of lines is enabled, false otherwise

4.103.3.4 std::string ArSerialConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

414 Aria Class Documentation

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 120).

4.103.3.5 const char ∗ ArSerialConnection::getPort (void)

Gets the port this is using.

Returns:
The seiral port to connect to

4.103.3.6 int ArSerialConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 121)

Reimplemented from ArDeviceConnection (p. 120).

4.103.3.7 ArTime ArSerialConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 121).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArSerialConnection Class Reference 415

4.103.3.8 bool ArSerialConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 121).

4.103.3.9 int ArSerialConnection::open (const char ∗ port = NULL)

Opens the serial port.

Parameters:
port The serial port to connect to, or NULL which defaults to COM1 for

windows and /dev/ttyS0 for linux

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 413)

4.103.3.10 int ArSerialConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 416), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

416 Aria Class Documentation

4.103.3.11 bool ArSerialConnection::setBaud (int baud)

Sets the baud rate on the connection.

Parameters:
rate the baud rate to set the connection to

Returns:
whether the set succeeded

See also:
getBaud (p. 413)

4.103.3.12 bool ArSerialConnection::setHardwareControl (bool
hardwareControl)

Sets whether to enable or disable the hardware control lines.

Parameters:
hardwareControl true to enable hardware control of lines

Returns:
true if the set succeeded

4.103.3.13 void ArSerialConnection::setPort (const char ∗ port =
NULL)

Sets the port this will use.

Parameters:
port The serial port to connect to, or NULL which defaults to COM1 for

windows and /dev/ttyS0 for linux

See also:
getOpenMessage (p. 413)

4.103.3.14 int ArSerialConnection::write (const char ∗ data,
unsigned int size) [virtual]

Writes data to connection.

Writes data to connection

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArSerialConnection Class Reference 417

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 415), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

The documentation for this class was generated from the following files:

• ArSerialConnection.h
• ArSerialConnection LIN.cpp
• ArSerialConnection WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

418 Aria Class Documentation

4.104 ArSick Class Reference

The sick driver.

#include <ArSick.h>

Inheritance diagram for ArSick::

ArSick

ArRangeDeviceThreaded

ArRangeDevice ArASyncTask

ArThread

Public Types

• enum BaudRate { BAUD9600, BAUD19200, BAUD38400 }
• enum Degrees { DEGREES180, DEGREES100 }
• enum Increment { INCREMENT ONE, INCREMENT HALF }

Public Methods

• ArSick (size t currentBufferSize=361, size t cumulativeBufferSize=1448,
const char ∗name=”laser”)

Constructor.

• ∼ArSick (void)
Destructor.

• void configure (bool useSim=false, bool powerControl=true,
bool laserFlipped=false, BaudRate baud=BAUD38400, Degrees
deg=DEGREES180, Increment incr=INCREMENT ONE)

Configure the laser before connecting to it.

• void configureShort (bool useSim=false, BaudRate
baud=BAUD38400, Degrees deg=DEGREES180, Increment
incr=INCREMENT ONE)

Shorter configure for the laser.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 419

• void setSensorPosition (double x, double y, double th)

Sets the position of the laser on the robot.

• void setSensorPosition (ArPose pose)

Sets the position of the laser on the robot.

• ArPose getSensorPosition ()

Gets the position of the laser on the robot.

• double getSensorPositionX ()

Gets the X position of the laser on the robot.

• double getSensorPositionY ()

Gets the Y position of the laser on the robot.

• double getSensorPositionTh ()

Gets the heading of the laser on the robot.

• bool blockingConnect (void)

Connect to the laser while blocking.

• bool asyncConnect (void)

Connect to the laser asyncronously.

• bool disconnect (bool doNotLockRobotForSim=false)

Disconnect from the laser.

• void setDeviceConnection (ArDeviceConnection ∗conn)

Sets the device connection.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device connection.

• bool isConnected (void)

Sees if this is connected to the laser.

• bool tryingToConnect (void)

Sees if this is trying to connect to the laser at the moment.

• bool runOnRobot (void)

Runs the laser off of the robot, advised.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

420 Aria Class Documentation

• int getSickPacCount ()
Gets the number of laser packets received in the last second.

• void addConnectCB (ArFunctor ∗functor, ArListPos::Pos posi-
tion)

Adds a connect callback.

• void remConnectCB (ArFunctor ∗functor)
Adds a disconnect callback.

• void addFailedConnectCB (ArFunctor ∗functor, ArListPos::Pos
position)

Adds a callback for when a connection to the robot is failed.

• void remFailedConnectCB (ArFunctor ∗functor)
Removes a callback for when a connection to the robot is failed.

• void addDisconnectNormallyCB (ArFunctor ∗functor, ArList-
Pos::Pos position)

Adds a callback for when disconnect is called while connected.

• void remDisconnectNormallyCB (ArFunctor ∗functor)
Removes a callback for when disconnect is called while connected.

• void addDisconnectOnErrorCB (ArFunctor ∗functor, ArList-
Pos::Pos position)

Adds a callback for when disconnection happens because of an error.

• void remDisconnectOnErrorCB (ArFunctor ∗functor)
Removes a callback for when disconnection happens because of an error.

• void setConnectionTimeoutTime (int mSecs)
Sets the time without a response until connection assumed lost.

• int getConnectionTimeoutTime (void)
Gets the time without a response until connection assumed lost.

• ArTime getLastReadingTime (void)
Gets the time data was last receieved.

• void setFilterNearDist (double dist)
Sets the distance which two readings must be less than to be ignored.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 421

• double getFilterNearDist (void)
Gets the distance which two readings must be less than to be ignored.

• bool isUsingSim (void)
Gets whether the laser is simulated or not.

• bool isControllingPower (void)
Gets whether the computer is controling laser power or not.

• bool isLaserFlipped (void)
Gets whether the laser is flipped over or not.

• Degrees getDegrees (void)
Gets the degrees the laser is scanning.

• Increment getIncrement (void)
Gets the amount each scan increments.

• bool simPacketHandler (ArRobotPacket ∗packet)
The packet handler for when connected to the simulator.

• void sensorInterpCallback (void)
The function called if the laser isn’t running in its own thread and isn’t
simulated.

• bool internalConnectSim (void)
An internal function.

• int internalConnectHandler (void)
An internal function, single loop event to connect to laser.

• virtual void ∗ runThread (void ∗arg)
The internal function used by the ArRangeDeviceThreaded (p. 307).

• void processPacket (ArSickPacket ∗packet, ArPose pose, ArPose
encoderPose, unsigned int counter)

The internal function which processes the sickPackets.

• void runOnce (bool lockRobot)
The internal function that gets does the work.

• virtual void setRobot (ArRobot ∗robot)
Sets the robot this device is attached to.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

422 Aria Class Documentation

• void dropConnection (void)
Internal function, shouldn’t be used, drops the conn because of error.

• void failedConnect (void)
Internal function, shouldn’t be used, denotes the conn failed.

• void madeConnection (void)
Internal function, shouldn’t be used, does the after conn stuff.

• void robotConnectCallback (void)
Internal function, shouldn’t be used, gets params from the robot.

Protected Types

• enum State { STATE NONE, STATE INIT, STATE WAIT -
FOR POWER ON, STATE CHANGE BAUD, STATE -
CONFIGURE, STATE WAIT FOR CONFIGURE ACK,
STATE INSTALL MODE, STATE WAIT FOR INSTALL -
MODE ACK, STATE SET MODE, STATE WAIT FOR SET -
MODE ACK, STATE START READINGS, STATE WAIT -
FOR START ACK, STATE CONNECTED }

Protected Methods

• void filterReadings ()
Internal function for filtering the raw readings and updating buffers.

• void switchState (State state)
Internal function for switching states.

4.104.1 Detailed Description

The sick driver.

4.104.2 Member Enumeration Documentation

4.104.2.1 enum ArSick::BaudRate

Enumeration values:
BAUD9600 9600 Baud.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 423

BAUD19200 19200 Baud.

BAUD38400 38400 Baud.

4.104.2.2 enum ArSick::Degrees

Enumeration values:
DEGREES180 180 Degrees.

DEGREES100 100 Degrees.

4.104.2.3 enum ArSick::Increment

Enumeration values:
INCREMENT ONE One degree increments.

INCREMENT HALF Half a degree increments.

4.104.2.4 enum ArSick::State [protected]

Enumeration values:
STATE NONE Nothing, haven’t tried to connect or anything.

STATE INIT Initializing the laser.

STATE WAIT FOR POWER ON Waiting for power on.

STATE CHANGE BAUD Change the baud, no confirm here.

STATE CONFIGURE Send the width and increment to the laser.

STATE WAIT FOR CONFIGURE ACK Wait for the configura-
tion Ack.

STATE INSTALL MODE Switch to install mode.

STATE WAIT FOR INSTALL MODE ACK Wait until its
switched to install mode.

STATE SET MODE Set the mode (mm/cm) and extra field bits.

STATE WAIT FOR SET MODE ACK Waiting for set-mode ack.

STATE START READINGS Switch to monitoring mode.

STATE WAIT FOR START ACK Waiting for the switch-mode ack.

STATE CONNECTED We’re connected and getting readings.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

424 Aria Class Documentation

4.104.3 Member Function Documentation

4.104.3.1 void ArSick::addConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position)

Adds a connect callback.

Adds a connect callback, which is an ArFunctor (p. 133), created as an Ar-
FunctorC (p. 162). The entire list of connect callbacks is called when a connec-
tion is made with the laser. If you have some sort of module that adds a callback,
that module must remove the callback when the module is removed.

Parameters:
functorfunctor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remConnectCB (p. 428)

4.104.3.2 void ArSick::addDisconnectNormallyCB (ArFunctor ∗
functor, ArListPos::Pos position)

Adds a callback for when disconnect is called while connected.

Adds a disconnect normally callback,which is an ArFunctor (p. 133), created
as an ArFunctorC (p. 162). This whole list of disconnect normally callbacks is
called when something calls disconnect if the instance isConnected. If there is
no connection and disconnect is called nothing is done. If you have some sort of
module that adds a callback, that module must remove the callback when the
module is removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 429)

4.104.3.3 void ArSick::addDisconnectOnErrorCB (ArFunctor ∗
functor, ArListPos::Pos position)

Adds a callback for when disconnection happens because of an error.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 425

Adds a disconnect on error callback, which is an ArFunctor (p. 133), created
as an ArFunctorC (p. 162). This whole list of disconnect on error callbacks is
called when ARIA loses connection to a laser because of an error. This can occur
if the physical connection (ie serial cable) between the laser and the computer is
severed/disconnected, or if the laser is turned off. Note that if the link between
the two is lost the ARIA assumes it is temporary until it reaches a timeout
value set with setConnectionTimeoutTime. If you have some sort of module
that adds a callback, that module must remove the callback when the module
removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 429)

4.104.3.4 void ArSick::addFailedConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position)

Adds a callback for when a connection to the robot is failed.

Adds a failed connect callback,which is an ArFunctor (p. 133), created as an
ArFunctorC (p. 162). This whole list of failed connect callbacks is called when
an attempt is made to connect to the laser, but fails. The usual reason for this
failure is either that there is no laser/sim where the connection was tried to be
made. If you have some sort of module that adds a callback, that module must
remove the callback when the module removed.

Parameters:
functor functor created from ArFunctorC (p. 162) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 429)

4.104.3.5 bool ArSick::asyncConnect (void)

Connect to the laser asyncronously.

This does not lockDevice the laser, but you should lockDevice the laser before
you try to connect. Also note that if you are connecting to the sim the laser

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

426 Aria Class Documentation

MUST be unlocked so that this can lock the laser and send the commands to the
sim. To be connected successfully, either the useSim must be set from configure
(and the laser must be connected to a simulator, or this will return true but
connection will fail), the device must have been run or runasync, or the device
must have been runOnLaser.

Returns:
true if a connection will be able to be tried, false otherwise

See also:
configure (p. 426), ArRangeDeviceThreaded::run (p. 308), Ar-
RangeDeviceThreaded::runAsync (p. 308), runOnRobot (p. 429)

4.104.3.6 bool ArSick::blockingConnect (void)

Connect to the laser while blocking.

lockDevice s the laser, and then makes a connection. If it is connecting to the
simulator (set with the useSim flag in configure) then it will lock the laser and
send the commands to the sim. If where you are calling from has the laser
locked, make sure you unlock it before calling this function.

Returns:
true if a connection was made, false otherwise

4.104.3.7 void ArSick::configure (bool useSim = false, bool
powerControl = true, bool laserFlipped = false,
BaudRate baud = BAUD38400, Degrees deg =
DEGREES180, Increment incr = INCREMENT ONE)

Configure the laser before connecting to it.

You must lockDevice the laser or not have the laser being poked at by multiple
threads before you use htis function call

4.104.3.8 void ArSick::configureShort (bool useSim = false,
BaudRate baud = BAUD38400, Degrees deg =
DEGREES180, Increment incr = INCREMENT ONE)

Shorter configure for the laser.

You must lockDevice the laser or not have the laser being poked at by multiple
threads before you use htis function call

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 427

4.104.3.9 bool ArSick::disconnect (bool doNotLockRobotForSim =
false)

Disconnect from the laser.

Disconnects from the laser. You should lockDevice the laser before calling this
function. Also if you are using the simulator it will lock the robot so it can
send the command to the simulator, so you should make sure the robot is
unlocked.

Parameters:
doNotLockRobotForSim if this is true, this will not lock the robot if

its trying to send a command to the sim... ONLY do this if you are
calling this from within the robots sync loop (ie from a sync task,
sensor interp task, or user task)

Returns:
true if it could disconnect from the laser cleanly

4.104.3.10 void ArSick::filterReadings () [protected]

Internal function for filtering the raw readings and updating buffers.

filter readings here, from raw current buffer to filtered current buffer of the
range device object, and then to the cumulative buffer

current buffer filtering is to eliminate max (null) readings, and compress close
readings

cumulative buffer filtering is to replace readings within the scope of the current
sensor set

4.104.3.11 int ArSick::getConnectionTimeoutTime (void)

Gets the time without a response until connection assumed lost.

Gets the number of seconds to go without response from the laser until it is
assumed tha tthe connection with the laser has been broken and the disconnect
on error events will happen.

4.104.3.12 int ArSick::internalConnectHandler (void)

An internal function, single loop event to connect to laser.

Returns:
0 if its still trying to connect, 1 if it connected, 2 if it failed

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

428 Aria Class Documentation

4.104.3.13 bool ArSick::internalConnectSim (void)

An internal function.

Sends the commands to the sim to start up the connection

Returns:
true if the commands were sent, false otherwise

4.104.3.14 void ArSick::remConnectCB (ArFunctor ∗ functor)

Adds a disconnect callback.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addConnectCB (p. 424)

4.104.3.15 void ArSick::remDisconnectNormallyCB (ArFunctor ∗
functor)

Removes a callback for when disconnect is called while connected.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectNormallyCB (p. 424)

4.104.3.16 void ArSick::remDisconnectOnErrorCB (ArFunctor ∗
functor)

Removes a callback for when disconnection happens because of an error.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectOnErrorCB (p. 424)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArSick Class Reference 429

4.104.3.17 void ArSick::remFailedConnectCB (ArFunctor ∗
functor)

Removes a callback for when a connection to the robot is failed.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addFailedConnectCB (p. 425)

4.104.3.18 bool ArSick::runOnRobot (void)

Runs the laser off of the robot, advised.

This sets up a sensor interp task on the robot, which is where the robot will be
driven from. Note that the device must have been added to the robot already
so that the device has a pointer to the robot. You should lock the robot and
lockDevice the laser before doing this if other things are running already.

4.104.3.19 void ArSick::setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

Sets the number of seconds to go without a response from the laser until it is
assumed that the connection with the laser has been broken and the disconnect
on error events will happen.

Parameters:
seconds if seconds is 0 then the connection timeout feature will be dis-

abled, otherwise disconnect on error will be triggered after this number
of seconds...

The documentation for this class was generated from the following files:

• ArSick.h
• ArSick.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

430 Aria Class Documentation

4.105 ArSickLogger Class Reference

This class can be used to create log files for the laser mapper.

#include <ArSickLogger.h>

Public Methods

• ArSickLogger (ArRobot ∗robot, ArSick ∗sick, double distDiff, double
degDiff, const char ∗filename)

Constructor.

• virtual ∼ArSickLogger (void)

Destructor.

• void addTagToLog (const char ∗str,...)
Adds a string to the log file at the given moment.

• void setDistDiff (double distDiff)

Sets the distance at which the robot will take a new reading.

• double getDistDiff (void)

Gets the distance at which the robot will take a new reading.

• void setDegDiff (double degDiff)

Sets the degrees to turn at which the robot will take a new reading.

• double getDegDiff (void)

Gets the degrees to turn at which the robot will take a new reading.

• void robotTask (void)

The task which gets attached to the robot.

4.105.1 Detailed Description

This class can be used to create log files for the laser mapper.

This class has a pointer to a robot and a laser... every time the robot has
EITHER moved the distDiff, or turned the degDiff, it will take the current
readings from the laser and log them into the log file given as the filename to
the constructor.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.105 ArSickLogger Class Reference 431

4.105.2 Constructor & Destructor Documentation

4.105.2.1 ArSickLogger::ArSickLogger (ArRobot ∗ robot, ArSick
∗ sick, double distDiff, double degDiff, const char ∗
filename)

Constructor.

Make sure you have called ArSick::configure (p. 426) on your laser before you
make this class

Parameters:
robot The robot to attach to

sick the laser to log from

distDiff the distance traveled at which to take a new reading

degDiff the degrees turned at which to take a new reading

filename the file name in which to put the log

4.105.3 Member Function Documentation

4.105.3.1 void ArSickLogger::addTagToLog (const char ∗ str, ...)

Adds a string to the log file at the given moment.

The robot MUST be locked before you call this function, so that this function
is not adding to a list as the robotTask is using it.

This function takes the given tag

The documentation for this class was generated from the following files:

• ArSickLogger.h
• ArSickLogger.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

432 Aria Class Documentation

4.106 ArSickPacket Class Reference

Represents the packets sent to the sick as well as those received from it.

#include <ArSickPacket.h>

Inheritance diagram for ArSickPacket::

ArSickPacket

ArBasePacket

Public Methods

• ArSickPacket (unsigned char sendingAddress=0)
Constructor.

• virtual ∼ArSickPacket (void)
Destructor.

• void setSendingAddress (unsigned char address)
Sets the address to send this packet to (only use for sending).

• unsigned char getSendingAddress (void)
Sets the address to send this packet to (only use for sending).

• unsigned char getReceivedAddress (void)
Gets the address this packet was sent from (only use for receiving).

• bool verifyCRC (void)
returns true if the crc matches what it should be.

• ArTypes::UByte getID (void)
returns the ID of the packet (first byte of data).

• ArTypes::Byte2 calcCRC (void)
returns the crc, probably used only internally.

• virtual void finalize (void)
Finalizes the packet in preparation for sending, must be done.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.106 ArSickPacket Class Reference 433

• virtual void resetRead (void)
Restart the reading process.

• ArTime getTimeReceived (void)
Gets the time the packet was received at.

• void setTimeReceived (ArTime timeReceived)
Sets the time the packet was received at.

• virtual void duplicatePacket (ArSickPacket ∗packet)
Duplicates the packet.

4.106.1 Detailed Description

Represents the packets sent to the sick as well as those received from it.

This class reimplements some of the buf operations since the robot is little
endian.

You can just look at the documentation for the ArBasePacket (p. 107) except
for these functions here, setAddress, getAddress, verifyCheckSum, print, getID,
and calcCheckSum.

4.106.2 Member Function Documentation

4.106.2.1 void ArSickPacket::duplicatePacket (ArSickPacket ∗
packet) [virtual]

Duplicates the packet.

Copies the given packets buffer into the buffer of this packet, also sets this length
and readlength to what the given packet has

Parameters:
packet the packet to duplicate

4.106.2.2 unsigned char ArSickPacket::getReceivedAddress (void)

Gets the address this packet was sent from (only use for receiving).

This gets the address that this packet was received from. Note that this is only
valid if this packet was received from a laser, if you want to know where a packet
was addressed to use getSendingAdress instead.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

434 Aria Class Documentation

Returns:
the address a packet was received from

4.106.2.3 unsigned char ArSickPacket::getSendingAddress (void)

Sets the address to send this packet to (only use for sending).

This gets the address for use in sending packets, the address is what has been
saved, then when a packet is finalized for sending, the address is put into the
appropriate spot in the packet.

Returns:
the address of the laser to be addressed

4.106.2.4 void ArSickPacket::resetRead (void) [virtual]

Restart the reading process.

Sets the length read back to the header length so the packet can be reread using
the other methods

Reimplemented from ArBasePacket (p. 111).

4.106.2.5 void ArSickPacket::setSendingAddress (unsigned char
address)

Sets the address to send this packet to (only use for sending).

This sets the address for use in sending packets, the address is saved, then when
a packet is finalized for sending, the address is put into the appropriate spot in
the packet.

Parameters:
address the address of the laser to be addressed

The documentation for this class was generated from the following files:

• ArSickPacket.h
• ArSickPacket.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.107 ArSickPacketReceiver Class Reference 435

4.107 ArSickPacketReceiver Class Reference

Given a device connection it receives packets from the sick through it.

#include <ArSickPacketReceiver.h>

Public Methods

• ArSickPacketReceiver (unsigned char receivingAddress=0, bool
allocatePackets=false, bool useBase0Address=false)

Constructor without an already assigned device connection.

• ArSickPacketReceiver (ArDeviceConnection ∗deviceConnection,
unsigned char receivingAddress=0, bool allocatePackets=false, bool use-
Base0Address=false)

Constructor with assignment of a device connection.

• virtual ∼ArSickPacketReceiver (void)

Destructor.

• ArSickPacket ∗ receivePacket (unsigned int msWait=0)

Receives a packet from the robot if there is one available.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance receives packets from.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance receives packets from.

• bool isAllocatingPackets (void)

Gets whether or not the receiver is allocating packets.

4.107.1 Detailed Description

Given a device connection it receives packets from the sick through it.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

436 Aria Class Documentation

4.107.2 Constructor & Destructor Documentation

4.107.2.1 ArSickPacketReceiver::ArSickPacketReceiver (unsigned
char receivingAddress = 0, bool allocatePackets = false,
bool useBase0Address = false)

Constructor without an already assigned device connection.

Parameters:
allocatePackets whether to allocate memory for the packets before re-

turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

4.107.2.2 ArSickPacketReceiver::ArSickPacketReceiver
(ArDeviceConnection ∗ deviceConnection, unsigned char
receivingAddress = 0, bool allocatePackets = false, bool
useBase0Address = false)

Constructor with assignment of a device connection.

Parameters:
deviceConnection the connection which the receiver will use

allocatePackets whether to allocate memory for the packets before re-
turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

4.107.3 Member Function Documentation

4.107.3.1 ArSickPacket ∗ ArSickPacketReceiver::receivePacket
(unsigned int msWait = 0)

Receives a packet from the robot if there is one available.

Parameters:
msWait how long to block for the start of a packet, nonblocking if 0

Returns:
NULL if there are no packets in alloted time, otherwise a pointer to the
packet received, if allocatePackets is true than the place that called this
function owns the packet and should delete the packet when done... if
allocatePackets is false then nothing must store a pointer to this packet,

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.107 ArSickPacketReceiver Class Reference 437

the packet must be used and done with by the time this method is called
again

The documentation for this class was generated from the following files:

• ArSickPacketReceiver.h
• ArSickPacketReceiver.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

438 Aria Class Documentation

4.108 ArSignalHandler Class Reference

Signal handling class.

#include <ArSignalHandler.h>

Inheritance diagram for ArSignalHandler::

ArSignalHandler

ArASyncTask

ArThread

Public Methods

• virtual ∼ArSignalHandler ()

Destructor.

• virtual void ∗ runThread (void ∗arg)

The main run loop.

Static Public Methods

• void createHandlerNonThreaded ()

Setup the signal handling for a non-threaded program.

• void createHandlerThreaded ()

Setup the signal handling for a multi-threaded program.

• void blockCommon ()

Block all the common signals the kill a program.

• void unblockAll ()

Unblock all the signals.

• void block (Signal sig)

Block the given signal.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.108 ArSignalHandler Class Reference 439

• void unblock (Signal sig)

Unblock the given signal.

• void handle (Signal sig)

Handle the given signal.

• void unhandle (Signal sig)

Dont handle the given signal.

• void addHandlerCB (ArFunctor1< int > ∗func, ArListPos::Pos po-
sition)

Add a handler callback.

• void delHandlerCB (ArFunctor1< int > ∗func)

Remove a handler callback.

• ArSignalHandler ∗ getHandler ()

Get a pointer to the single ArSignalHandler instance.

• std::string nameSignal (int sig)

Get the name of the given signal.

• void blockCommonThisThread ()

Block all the common signals for the calling thread only.

4.108.1 Detailed Description

Signal handling class.

This is a signal handling class. It has both a threaded and non-threaded mode
of operation. The non-threaded mode will work in a threaded application but
it is best to use the threaded mode. The benefit of the threaded mode is that
if the signal incures some processing, but does not shutdown the program (ie.
SIGUSR1 or SIGUSR2), the threaded mode will handle the signal in its own
thread and hopefully that will not hurt the performance of the tight loop robot
control. Exaclty how much performance you get out of this depends on your
machines physical hardware and exactly what the processing the signal handler
does. For instance, a multi-processor machine has a much greater chance of the
signal handler not interfering with the robot control loop.

See the Aria (p. 204) main class for how to initialize a default setup of the signal
handling.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

440 Aria Class Documentation

There are functions to block, unblock, handle and unhandle signals. These
functions all must be called before creating the signalhandler. In either single
or multi-threaded mode. The functions to block and handle signals creates a
set of blocking and handling which is then used by the create functions to tell
the Linux kernel what to do.

In the threaded mode, there is a signal handler thread that is created. That
thread is created in a detached state, which means it can not be joined on.
When the program exits, the signal handler thread will be ignored and that
thread will never exit its run loop. This is perfectly fine behavior. There is no
state that can be messed up in this fashion. It is just easier to exit the program
than to try to wake up that thread and get it to exit itself.

This class is for Linux only. Windows has virtualy no support for signals and
the little support that it does have is not realy usefull. There is an empty
implementation of this class for Windows so that code can compile in both
Linux and Windows. Just do not expect the code that uses this signal handling
to do anything in Windows. This should not be a problem since signals are not
used in Windows.

4.108.2 Member Function Documentation

4.108.2.1 void ArSignalHandler::addHandlerCB (ArFunctor1< int
> ∗ func, ArListPos::Pos position) [static]

Add a handler callback.

Add a handler callback to the list of callbacks. When there is a signal sent to
the process, the list of callbacks are invoked and passed the signal number.

Parameters:
functor functor created from ArFunctorC1<int> which refers to the func-

tion to call.

position whether to place the functor first or last

4.108.2.2 void ArSignalHandler::block (Signal sig) [static]

Block the given signal.

Block the given signal. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

Parameters:
sig the number of the signal

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.108 ArSignalHandler Class Reference 441

4.108.2.3 void ArSignalHandler::blockCommon () [static]

Block all the common signals the kill a program.

Sets the signal handler to block all the common signals. The ’common’ signals
are SIGHUP, SIGINT, SIGQUIT, SIGTERM, SIGSEGV, and SIGPIPE. Call
this before calling createHandlerNonThreaded or createHandlerThreaded.

4.108.2.4 void ArSignalHandler::blockCommonThisThread ()
[static]

Block all the common signals for the calling thread only.

Block all the common signals for the calling thread. The calling thread will
never recieve the common signals which are SIGHUP, SIGINT, SIGQUIT, and
SIGTERM. This function can be called at any time.

4.108.2.5 void ArSignalHandler::createHandlerNonThreaded ()
[static]

Setup the signal handling for a non-threaded program.

Sets up the signal handling for a non-threaded program. When the program
This uses the system call signal(2). This should not be used if you have a
threaded program.

See also:
createHandlerThreaded (p. 441)

4.108.2.6 void ArSignalHandler::createHandlerThreaded ()
[static]

Setup the signal handling for a multi-threaded program.

Sets up the signal handling for a non-threaded program. This call is only usefull
for Linux. This will create a dedicated thread in which to handle signals. The
thread calls sigwait(3) and waits for a signal to be sent. By default all Ar-
Thread (p. 472) instances block all signals. Thus the signal is sent to the signal
handler thread. This will allow the other threads to continue uninterrupted and
not skew their timing loops.

See also:
createHandlerNonThreaded (p. 441)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

442 Aria Class Documentation

4.108.2.7 void ArSignalHandler::delHandlerCB (ArFunctor1< int
> ∗ func) [static]

Remove a handler callback.

Remove a handler callback from the list of callbacks.

Parameters:
functor functor created from ArFunctorC1<int> which refers to the func-

tion to call.

4.108.2.8 ArSignalHandler ∗ ArSignalHandler::getHandler ()
[static]

Get a pointer to the single ArSignalHandler instance.

Get a pointer to the single instance of the ArSignalHandler. The signal handler
uses the singleton model, which means there can only be one instance of Ar-
SignalHandler. If the single instance of ArSignalHandler has not been created,
getHandler will create it. This is how the handler should be created.

Returns:
returns a pointer to the instance of the signal handler

4.108.2.9 void ArSignalHandler::handle (Signal sig) [static]

Handle the given signal.

Handle the given signal. All the handler callbacks will be called with this sig-
nal when it is recieved. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

Parameters:
sig the number of the signal

4.108.2.10 void ∗ ArSignalHandler::runThread (void ∗ arg)
[virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 473) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 442) should return.

Reimplemented from ArASyncTask (p. 106).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.108 ArSignalHandler Class Reference 443

4.108.2.11 void ArSignalHandler::unblock (Signal sig) [static]

Unblock the given signal.

Unblock the given signal. Call this before calling createHandlerNonThreaded
or createHandlerThreaded.

Parameters:
sig the number of the signal

4.108.2.12 void ArSignalHandler::unblockAll () [static]

Unblock all the signals.

Unblock all the signals. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

4.108.2.13 void ArSignalHandler::unhandle (Signal sig) [static]

Dont handle the given signal.

Do not handle the given signal. Call this before calling createHandlerNon-
Threaded or createHandlerThreaded.

Parameters:
sig the number of the signal

The documentation for this class was generated from the following files:

• ArSignalHandler.h
• ArSignalHandler LIN.cpp
• ArSignalHandler WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

444 Aria Class Documentation

4.109 ArSocket Class Reference

socket communication wrapper.

#include <ArSocket.h>

Public Methods

• ArSocket ()
Constructor.

• ArSocket (const char ∗host, int port, Type type)
Constructor which connects to a server.

• ArSocket (int port, bool doClose, Type type)
Constructor which opens a server port.

• ∼ArSocket ()
Destructor.

• bool copy (int fd, bool doclose)
Copy socket structures.

• void copy (ArSocket ∗s)
Copy socket structures.

• void transfer (ArSocket ∗s)
Transfer ownership of a socket.

• bool connect (const char ∗host, int port, Type type)
Connect as a client to a server.

• bool open (int port, Type type)
Open a server port.

• bool create (Type type)
Simply create a port.

• bool findValidPort (int startPort)
Find a valid unused port and bind the socket to it.

• bool connectTo (const char ∗host, int port)
Connect the socket to the given address.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.109 ArSocket Class Reference 445

• bool connectTo (struct sockaddr in ∗sin)
Connect the socket to the given address.

• bool accept (ArSocket ∗sock)
Accept a new connection.

• bool close ()
Close the socket.

• int write (const void ∗buff, size t len)
Write to the socket.

• int read (void ∗buff, size t len, unsigned int msWait=0)
Read from the socket.

• int sendTo (const void ∗msg, int len)
Send a message on the socket.

• int sendTo (const void ∗msg, int len, struct sockaddr in ∗sin)
Send a message on the socket.

• int recvFrom (void ∗msg, int len, sockaddr in ∗sin)
Receive a message from the socket.

• bool getSockName ()
Get the socket name. Stored in ArSocket::mySin.

• sockaddr in ∗ sockAddrIn ()
Accessor for the sockaddr.

• in addr ∗ inAddr ()
Accessor for the in addr.

• unsigned short int inPort ()
Accessor for the port of the sockaddr.

• bool setLinger (int time)
Set the linger value.

• bool setBroadcast ()
Set broadcast value.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

446 Aria Class Documentation

• bool setReuseAddress ()
Set the reuse address value.

• bool setNonBlock ()
Set socket to nonblocking.

• void setDoClose (bool yesno)
Change the doClose value.

• int getFD () const
Get the file descriptor.

• Type getType () const
Get the protocol type.

• const std::string & getErrorStr () const
Get the last error string.

• Error getError () const
Get the last error.

• int writeString (const char ∗str,...)
Writes a string to the socket.

• bool readString (char ∗buf, size t len)
Reads a string from the socket.

Static Public Methods

• bool init ()
Initialize the network layer.

• void shutdown ()
Shutdown the network layer.

• bool hostAddr (const char ∗host, struct in addr &addr)
Convert a host string to an address structure.

• bool addrHost (struct in addr &addr, char ∗host)
Convert an address structure to a host string.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.109 ArSocket Class Reference 447

• std::string getHostName ()
Get the localhost address.

• void inToA (struct in addr ∗addr, char ∗buff)
Convert addr into string numerical address.

• const size t sockAddrLen ()
Size of the sockaddr.

• const size t maxHostNameLen ()
Max host name length.

• unsigned int hostToNetOrder (int i)
Host byte order to network byte order.

• unsigned int netToHostOrder (int i)
Network byte order to host byte order.

4.109.1 Detailed Description

socket communication wrapper.

ArSocket is a layer which allows people to use the sockets networking interface in
an operating system independent manner. All of the standard commonly used
socket functions are implemented. This class also contains the file descriptor
which identifies the socket to the operating system.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 448) and call Ar-
Socket::shutdown() (p. 449) when it exits. For programs that use Aria::init()
(p. 207) and Aria::uninit() (p. 208) calling the ArSocket::init() (p. 448) and
ArSocket::shutdown() (p. 449) is unnecessary. The Aria (p. 204) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.109.2 Constructor & Destructor Documentation

4.109.2.1 ArSocket::ArSocket (const char ∗ host, int port, Type
type)

Constructor which connects to a server.

Constructs the socket and connects it to the given host.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

448 Aria Class Documentation

Parameters:
host hostname of the server to connect to
port port number of the server to connect to
type protocol type to use

4.109.2.2 ArSocket::ArSocket (int port, bool doClose, Type type)

Constructor which opens a server port.

Constructs the socket and opens it as a server port.

Parameters:
port port number to bind the socket to
doClose automaticaly close the port if the socket is destructed
type protocol type to use

4.109.3 Member Function Documentation

4.109.3.1 bool ArSocket::copy (int fd, bool doclose)

Copy socket structures.

Copy socket structures. Copy from one Socket to another will still have the first
socket close the file descripter when it is destructed.

4.109.3.2 bool ArSocket::init (void) [static]

Initialize the network layer.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 448) and call Ar-
Socket::shutdown() (p. 449) when it exits. For programs that use Aria::init()
(p. 207) and Aria::uninit() (p. 208) calling the ArSocket::init() (p. 448) and
ArSocket::shutdown() (p. 449) is unnecessary. The Aria (p. 204) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.109.3.3 int ArSocket::read (void ∗ buff, size t len, unsigned int
msWait = 0) [inline]

Read from the socket.

Parameters:
buff buffer to read into

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.109 ArSocket Class Reference 449

len how many bytes to read

msWait if 0, don’t block, if > 0 wait this long for data

Returns:
number of bytes read

4.109.3.4 bool ArSocket::readString (char ∗ buf, size t len)
[inline]

Reads a string from the socket.

Parameters:
buf the buffer to read the string into, if there is no error but there is no

string to read then the first character of the buffer is set to the null
character

len the lenth of the buffer

Returns:
true if the socket could be read from, false if it couldn’t (which also means
the connection should be closed)

4.109.3.5 void ArSocket::shutdown () [static]

Shutdown the network layer.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 448) and call Ar-
Socket::shutdown() (p. 449) when it exits. For programs that use Aria::init()
(p. 207) and Aria::uninit() (p. 208) calling the ArSocket::init() (p. 448) and
ArSocket::shutdown() (p. 449) is unnecessary. The Aria (p. 204) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.109.3.6 void ArSocket::transfer (ArSocket ∗ s) [inline]

Transfer ownership of a socket.

transfer() (p. 449) will transfer ownership to this socket. The input socket will
no longer close the file descriptor when it is destructed.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

450 Aria Class Documentation

4.109.3.7 int ArSocket::write (const void ∗ buff, size t len)
[inline]

Write to the socket.

Parameters:
buff buffer to write from

len how many bytes to write

Returns:
number of bytes written

4.109.3.8 int ArSocket::writeString (const char ∗ str, ...) [inline]

Writes a string to the socket.

This cannot write more than 2048 number of bytes

Parameters:
str the string to write to the socket

Returns:
number of bytes written

The documentation for this class was generated from the following files:

• ArSocket.h
• ArSocket LIN.cpp
• ArSocket WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.110 ArSonarDevice Class Reference 451

4.110 ArSonarDevice Class Reference

A class for keeping track of sonar.

#include <ArSonarDevice.h>

Inheritance diagram for ArSonarDevice::

ArSonarDevice

ArRangeDevice

Public Methods

• ArSonarDevice (size t currentBufferSize=24, size t cumulativeBuffer-
Size=64, const char ∗name=”sonar”)

Constructor.

• ∼ArSonarDevice (void)
Destructor.

• void processReadings (void)
Grabs the new readigns from the robot and adds them to the buffers.

• virtual void setRobot (ArRobot ∗robot)
Sets the robot pointer, also attaches its process function to the sensorInterp
of the robot.

• virtual void addReading (double x, double y)
Adds sonar readings to the current and cumulative buffers Overrides the
ArRangeDevice (p. 299) default action.

• void setCumulativeMaxRange (double r)
Maximum range for a reading to be added to the cumulative buffer (mm).

4.110.1 Detailed Description

A class for keeping track of sonar.

This class is for keeping a sonar history, and using that for obstacle avoidance
and displays and what not

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

452 Aria Class Documentation

4.110.2 Member Function Documentation

4.110.2.1 void ArSonarDevice::addReading (double x, double y)
[virtual]

Adds sonar readings to the current and cumulative buffers Overrides the Ar-
RangeDevice (p. 299) default action.

Adds a sonar reading with the global coordinates x,y. Makes sure the reading is
within the proper distance to the robot, for both current and cumulative buffers.
Filters buffer points Note: please lock the device using lockDevice() (p. 304)
/ unlockDevice() (p. 305) if calling this from outside process().

Parameters:
x the global x coordinate of the reading

y the global y coordinate of the reading

Reimplemented from ArRangeDevice (p. 299).

The documentation for this class was generated from the following files:

• ArSonarDevice.h
• ArSonarDevice.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.111 ArSonyPacket Class Reference 453

4.111 ArSonyPacket Class Reference

A class for for making commands to send to the sony.

#include <ArSonyPTZ.h>

Inheritance diagram for ArSonyPacket::

ArSonyPacket

ArBasePacket

Public Methods

• ArSonyPacket (ArTypes::UByte2 bufferSize=15)
Constructor.

• virtual void uByteToBuf (ArTypes::UByte val)
Puts ArTypes::UByte (p. 481) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)
Puts ArTypes::Byte2 (p. 481) into packets buffer.

• void byte2ToBufAtPos (ArTypes::Byte2 val, ArTypes::UByte2
pose)

This is a new function, read the details before you try to use it.

4.111.1 Detailed Description

A class for for making commands to send to the sony.

There are only two functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
uByteToBuf and byte2ToBuf.

4.111.2 Member Function Documentation

4.111.2.1 void ArSonyPacket::byte2ToBufAtPos (ArTypes::Byte2
val, ArTypes::UByte2 pose)

This is a new function, read the details before you try to use it.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

454 Aria Class Documentation

This function is my concession to not rebuilding a packet from scratch for every
command, basicaly this is to not lose all speed over just using a character
array. This is used by the default sony commands, unless you have a deep
understanding of how the packets are working and what the packet structure
looks like you should not play with this function, it also isn’t worth it unless
you’ll be sending commands frequently.

Parameters:
val the Byte2 to put into the packet

pose the position in the packets array to put the value

The documentation for this class was generated from the following files:

• ArSonyPTZ.h
• ArSonyPTZ.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.112 ArSonyPTZ Class Reference 455

4.112 ArSonyPTZ Class Reference

A class to use the sony pan tilt zoom unit.

#include <ArSonyPTZ.h>

Inheritance diagram for ArSonyPTZ::

ArSonyPTZ

ArPTZ

Public Types

• enum { MAX PAN = 95, MAX TILT = 25, MIN ZOOM = 0,
MAX ZOOM = 1023 }

Public Methods

• virtual bool init (void)
Initializes the camera.

• virtual bool pan (int degrees)
Pans to the given degrees.

• virtual bool panRel (int degrees)
Pans relative to current position by given degrees.

• virtual bool tilt (int degrees)
Tilts to the given degrees.

• virtual bool tiltRel (int degrees)
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int degreesPan, int degreesTilt)
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int degreesPan, int degreesTilt)
Pans and tilts relatives to the current position by the given degrees.

• virtual bool canZoom (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

456 Aria Class Documentation

Returns true if camera can zoom (or rather, if it is controlled by this).

• virtual bool zoom (int zoomValue)

Zooms to the given value.

• virtual bool zoomRel (int zoomValue)

Zooms relative to the current value, by the given value.

• virtual int getPan (void)

The angle the camera was last told to pan to.

• virtual int getTilt (void)

The angle the camera was last told to tilt to.

• virtual int getZoom (void)

The value the camera was last told to zoom to.

• virtual int getMaxPosPan (void)

Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void)

Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void)

Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void)

Gets the lowest negative degree the camera can tilt to.

• virtual int getMaxZoom (void)

Gets the maximum value for the zoom on this camera.

• virtual int getMinZoom (void)

Gets the lowest value for the zoom on this camera.

4.112.1 Detailed Description

A class to use the sony pan tilt zoom unit.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.112 ArSonyPTZ Class Reference 457

4.112.2 Member Enumeration Documentation

4.112.2.1 anonymous enum

Enumeration values:
MAX PAN maximum degrees the unit can pan (either direction).

MAX TILT maximum degrees the unit can tilt (either direction).

MIN ZOOM minimum value for zoom.

MAX ZOOM maximum value for zoom.

The documentation for this class was generated from the following files:

• ArSonyPTZ.h
• ArSonyPTZ.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

458 Aria Class Documentation

4.113 ArSyncTask Class Reference

Class used internally to manage the functions that are called every cycle.

#include <ArSyncTask.h>

Public Methods

• ArSyncTask (const char ∗name, ArFunctor ∗functor=NULL, ArTask-
State::State ∗state=NULL, ArSyncTask ∗parent=NULL)

Constructor, shouldn’t ever do a new on anything besides the root node.

• virtual ∼ArSyncTask (void)
Destructor.

• void run (void)
Runs the node, which runs all children of this node as well.

• void print (int depth=0)
Prints the node, which prints all the children of this node as well.

• ArTaskState::State getState (void)
Gets the state of the task.

• void setState (ArTaskState::State state)
Sets the state of the task.

• ArSyncTask ∗ findNonRecursive (const char ∗name)
Finds the task in the instances list of children, by name.

• ArSyncTask ∗ findNonRecursive (ArFunctor ∗functor)
Finds the task in the instances list of children, by functor.

• ArSyncTask ∗ find (const char ∗name)
Finds the task recursively down the tree by name.

• ArSyncTask ∗ find (ArFunctor ∗functor)
Finds the task recursively down the tree by functor.

• void addNewBranch (const char ∗nameOfNew, int position, ArTask-
State::State ∗state=NULL)

Adds a new branch to this instance.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSyncTask Class Reference 459

• void addNewLeaf (const char ∗nameOfNew, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a new leaf to this instance.

• std::string getName (void)
Gets the name of this task.

• ArFunctor ∗ getFunctor (void)
Gets the functor this instance runs, if there is one.

4.113.1 Detailed Description

Class used internally to manage the functions that are called every cycle.

This is used internally, no user should ever have to create one, but serious
developers may want to use the members. Most users will be able to use the
user tasks defined in the ArRobot (p. 342) class. This class should only be
used by serious developers.

The way it works is that each instance is a node in a tree. The only node that
should ever be created with a new is the top one. The run and print functions
both call the run/print on themselves, then on all of their children, going from
lowest numbered position to highest numbered, lower going first. There are no
hard limits to the position, it can be any integer. ARIA uses the convention
of 0 to 100, when you add things of your own you should leave room to add in
between. Also you can add things with the same position, the only effect this
has is that the first addition will show up first in the run or print.

After the top one is created, every other task should be created with either add-
NewBranch or addNewLeaf. Each node can either be a branch node or a list
node. The list (multimap actually) of branches/nodes is ordered by the position
passed in to the add function. addNewBranch adds a new branch node to the
instance it is called on, with the given name and position. addNewLeaf adds a
new leaf node to the instance it is called on, with the given name and position,
and also with the ArFunctor (p. 133) given, this functor will be called when
the leaf is run. Either add creates the new instance and puts it in the list of
branches/nodes in the approriate spot.

The tree takes care of all of its own memory management and list management,
the add functions put into the list and creates the memory, conversely if you
delete an ArSyncTask (which is the correct way to get rid of one) it will remove
itself from its parents list.

If you want to add something to the tree the proper way to do it is to get
the pointer to the root of the tree (ie with ArRobot::getSyncProcRoot) and
then to use find on the root to find the branch you want to travel down, then

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

460 Aria Class Documentation

continue this until you find the node you want to add to. Once there just call
addNewBranch or addNewLeaf and you’re done.

There is now a pointer to an integer that is the state of the task, if this pointer
is given whenever something changes the state of the task it will modify the
value pointed to. If the pointer is NULL then the syncTask will use an integer
of its own to keep track of the state of the process.

4.113.2 Constructor & Destructor Documentation

4.113.2.1 ArSyncTask::ArSyncTask (const char ∗ name, ArFunctor
∗ functor = NULL, ArTaskState::State ∗ state = NULL,
ArSyncTask ∗ parent = NULL)

Constructor, shouldn’t ever do a new on anything besides the root node.

New should never be called to create an ArSyncTask except to create the root
node. Read the detailed documentation of the class for details.

4.113.2.2 ArSyncTask::∼ArSyncTask (void) [virtual]

Destructor.

If you delete the task it deletes everything in its list, so to delete the whole tree
just delete the top one... also note that if you delete a node, it will remove itself
from its parents list.

4.113.3 Member Function Documentation

4.113.3.1 void ArSyncTask::addNewBranch (const char ∗
nameOfNew, int position, ArTaskState::State ∗ state =
NULL)

Adds a new branch to this instance.

Creates a new task with the given name and puts the task into its own iternal
list at the given position.

Parameters:
nameOfNew Name to give to the new task.

position place in list to put the branch, things are run/printed in the order
of highest number to lowest number, no limit on numbers (other than
that it is an int). ARIA uses 0 to 100 just as a convention.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSyncTask Class Reference 461

4.113.3.2 void ArSyncTask::addNewLeaf (const char ∗ nameOfNew,
int position, ArFunctor ∗ functor, ArTaskState::State ∗
state = NULL)

Adds a new leaf to this instance.

Creates a new task with the given name and puts the task into its own iternal
list at the given position. Sets the nodes functor so that it will call the functor
when run is called.

Parameters:
nameOfNew Name to give to the new task.

position place in list to put the branch, things are run/printed in the order
of highest number to lowest number, no limit on numbers (other than
that it is an int). ARIA uses 0 to 100 just as a convention.

functor ArFunctor (p. 133) which contains the functor to invoke when
run is called.

4.113.3.3 ArSyncTask ∗ ArSyncTask::find (ArFunctor ∗ functor)

Finds the task recursively down the tree by functor.

Finds a node below (or at) this level in the tree with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.113.3.4 ArSyncTask ∗ ArSyncTask::find (const char ∗ name)

Finds the task recursively down the tree by name.

Finds a node below (or at) this level in the tree with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

462 Aria Class Documentation

4.113.3.5 ArSyncTask ∗ ArSyncTask::findNonRecursive (ArFunctor
∗ functor)

Finds the task in the instances list of children, by functor.

Finds a child of this node with the given functor

Parameters:
functor the functor we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.113.3.6 ArSyncTask ∗ ArSyncTask::findNonRecursive (const char
∗ name)

Finds the task in the instances list of children, by name.

Finds a child of this node with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.113.3.7 void ArSyncTask::print (int depth = 0)

Prints the node, which prints all the children of this node as well.

Prints the node... the defaulted depth parameter controls how far over to print
the data (how many tabs)... it recurses down all its children.

4.113.3.8 void ArSyncTask::run (void)

Runs the node, which runs all children of this node as well.

If this node is a leaf it calls the functor for the node, if it is a branch it goes
through all of the children in the order of highest position to lowest position
and calls run on them.

The documentation for this class was generated from the following files:

• ArSyncTask.h
• ArSyncTask.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.114 ArTaskPool Class Reference 463

4.114 ArTaskPool Class Reference

A thread pool for running functions or ArPeriodicTasks.

#include <ArTaskPool.h>

Public Methods

• ArTaskPool ()
Constructor.

• virtual ∼ArTaskPool ()
Destructor.

• virtual bool runTask (ArFunctor ∗task)
Run a function as a periodic task.

• virtual bool runTask (ArPeriodicTask ∗task)
Run a periodic task.

• virtual void init (int minLimit=1, int maxLimit=0)
Init the pool.

• virtual void uninit ()
Uninit the pool. Blocks till all tasks exit.

• virtual void forceUninit ()
Force all tasks to exit, then uninit the pool.

Static Public Methods

• ArTaskPool ∗ getPool ()
Get a pointer to the ’single’ instance of ArTaskPool.

• void setPool (ArTaskPool ∗pool)
Set the pointer to the ’single’ instance of ArTaskPool.

Static Public Attributes

• ArTaskPool ∗ ourPool = 0

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

464 Aria Class Documentation

4.114.1 Detailed Description

A thread pool for running functions or ArPeriodicTasks.

4.114.2 Member Data Documentation

4.114.2.1 ArTaskPool ∗ ArTaskPool::ourPool = 0 [static]

When tasks need to be run, threads will be created based upon the need. See
setTaskMaxLimit() about this. If minLimit is greater than 0 and there are more
threads than minLimit, the extra threads will be destroyed. If minLimit is 0,
then all threads will be immediately destroyed after the task is done.

Parameters:
minLimit minimum number of threads that exist at once

See also:
setTaskMaxLimit

The documentation for this class was generated from the following files:

• ArTaskPool.h
• ArTaskPool.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.115 ArTaskState Class Reference 465

4.115 ArTaskState Class Reference

Class with the different states a task can be in.

#include <ArTaskState.h>

Public Types

• enum State { INIT = 0, RESUME, ACTIVE, SUSPEND, SUC-
CESS, FAILURE, USER START = 20 }

4.115.1 Detailed Description

Class with the different states a task can be in.

These are the defined states, if the state is anything other than is defined here
that is annotated (not running) the process will be run. No one should have
any of their own states less than the USER START state. People’s own states
should start at USER START or at USER START plus a constant (so they can
have different sets of states).

4.115.2 Member Enumeration Documentation

4.115.2.1 enum ArTaskState::State

Enumeration values:
INIT Initialized (running).

RESUME Resumed after being suspended (running).

ACTIVE Active (running).

SUSPEND Suspended (not running).

SUCCESS Succeeded and done (not running).

FAILURE Failed and done (not running).

USER START This is where the user states should start (they will all
be run).

The documentation for this class was generated from the following file:

• ArTaskState.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

466 Aria Class Documentation

4.116 ArTcpConnection Class Reference

For connectiong to a device through a socket.

#include <ArTcpConnection.h>

Inheritance diagram for ArTcpConnection::

ArTcpConnection

ArDeviceConnection

Public Types

• enum Open { OPEN NET FAIL = 1, OPEN BAD HOST,
OPEN NO ROUTE, OPEN CON REFUSED }

Public Methods

• ArTcpConnection (void)
Constructor.

• virtual ∼ArTcpConnection (void)
Destructor also closes connection.

• int open (const char ∗host=NULL, int port=8101)
Opens a connection to the given host and port.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.116 ArTcpConnection Class Reference 467

• virtual int write (const char ∗data, unsigned int size)
Writes data to connection.

• virtual std::string getOpenMessage (int messageNumber)
Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)
Gets the time data was read in.

• virtual bool isTimeStamping (void)
sees if timestamping is really going on or not.

• std::string getHost (void)
Gets the name of the host connected to.

• int getPort (void)
Gets the number of the port connected to.

• int internalOpen (void)
Internal function used by open and openSimple.

• void setSocket (ArSocket ∗socket)
Sets the tcp connection to use this socket instead of its own.

• ArSocket ∗ getSocket (void)
Gets the socket this tcp connection is using.

• void setStatus (int status)
Sets the status of the device, ONLY use this if you’re playing with setSocket
and know what you’re doing.

4.116.1 Detailed Description

For connectiong to a device through a socket.

4.116.2 Member Enumeration Documentation

4.116.2.1 enum ArTcpConnection::Open

Enumeration values:
OPEN NET FAIL Some critical part of the network isn’t working.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

468 Aria Class Documentation

OPEN BAD HOST Could not find the host.

OPEN NO ROUTE Know where the host is, but can’t get to it.

OPEN CON REFUSED Got to the host but it didn’t allow a connec-
tion.

4.116.3 Member Function Documentation

4.116.3.1 bool ArTcpConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented from ArDeviceConnection (p. 120).

4.116.3.2 std::string ArTcpConnection::getHost (void)

Gets the name of the host connected to.

Returns:
the name of the host connected to

See also:
getPort (p. 469)

4.116.3.3 std::string ArTcpConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 120).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.116 ArTcpConnection Class Reference 469

4.116.3.4 int ArTcpConnection::getPort (void)

Gets the number of the port connected to.

Returns:
the number of the port connected to

See also:
getHost (p. 468)

4.116.3.5 int ArTcpConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 121)

Reimplemented from ArDeviceConnection (p. 120).

4.116.3.6 ArTime ArTcpConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 121).

4.116.3.7 bool ArTcpConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 121).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

470 Aria Class Documentation

4.116.3.8 int ArTcpConnection::open (const char ∗ host = NULL,
int port = 8101)

Opens a connection to the given host and port.

Parameters:
host the host to connect to, if NULL (default) then localhost

port the port to connect to

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 468)

4.116.3.9 int ArTcpConnection::read (const char ∗ data, unsigned
int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 471), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

4.116.3.10 void ArTcpConnection::setSocket (ArSocket ∗ socket)

Sets the tcp connection to use this socket instead of its own.

This will make the connection use this socket, its useful for doing funkier things
with sockets but still being able to use a device connection.

Parameters:
sock the socket to use

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.116 ArTcpConnection Class Reference 471

4.116.3.11 int ArTcpConnection::write (const char ∗ data, unsigned
int size) [virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 470), writePacket (p. 123)

Reimplemented from ArDeviceConnection (p. 122).

The documentation for this class was generated from the following files:

• ArTcpConnection.h
• ArTcpConnection.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

472 Aria Class Documentation

4.117 ArThread Class Reference

POSIX/WIN32 thread wrapper class.

#include <ArThread.h>

Inheritance diagram for ArThread::

ArThread

ArASyncTask ArTaskPoolTask

ArRangeDeviceThreaded ArRecurrentTask ArSignalHandler ArSyncLoop ArTimer

ArSick

Public Types

• enum Status { STATUS FAILED = 1, STATUS NORESOURCE,
STATUS NO SUCH THREAD, STATUS INVALID, STATUS -
JOIN SELF, STATUS ALREADY DETATCHED }

Public Methods

• ArThread (bool blockAllSignals=true)

Constructor.

• ArThread (ThreadType thread, bool joinable, bool blockAll-
Signals=true)

Constructor - starts the thread.

• ArThread (ArFunctor ∗func, bool joinable=true, bool blockAll-
Signals=true)

Constructor - starts the thread.

• virtual ∼ArThread (void)

Destructor.

• virtual int create (ArFunctor ∗func, bool joinable=true, bool lower-
Priority=true)

Create and start the thread.

• virtual void stopRunning (void)

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.117 ArThread Class Reference 473

Stop the thread.

• virtual int join (void ∗∗ret=NULL)
Join on the thread.

• virtual int detach (void)
Detatch the thread so it cant be joined.

• virtual void cancel (void)
Cancel the thread.

• virtual bool getRunning (void)
Get the running status of the thread.

• virtual bool getRunningWithLock (void)
Get the running status of the thread, locking around the variable.

• virtual bool getJoinable (void)
Get the joinable status of the thread.

• virtual ThreadType ∗ getThread (void)
Get the underlying thread type.

• virtual ArFunctor ∗ getFunc (void)
Get the functor that the thread runs.

• virtual void setRunning (bool yesno)
Set the running value on the thread.

• int lock (void)
Lock the thread instance.

• int tryLock (void)
Try to lock the thread instance without blocking.

• int unlock (void)
Unlock the thread instance.

• std::string getError (int err)
Translate error into string.

• bool getBlockAllSignals (void)
Do we block all process signals at startup?

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

474 Aria Class Documentation

Static Public Methods

• void init (void)

Initialize the internal book keeping structures.

• ArThread ∗ self (void)

Returns the instance of your own thread.

• void stopAll ()

Stop all threads.

• void cancelAll (void)

Cancel all threads.

• void joinAll (void)

Join on all threads.

• void yield (void)

Yield the processor to another thread.

Protected Attributes

• bool myRunning

State variable to denote when the thread should continue or exit.

4.117.1 Detailed Description

POSIX/WIN32 thread wrapper class.

create() (p. 472) will create the thread. That thread will run the given Functor.

A thread can either be in a detached state or a joinable state. If the thread is
in a detached state, that thread can not be join() (p. 473)’ed upon. The thread
will simply run until the program exits, or its function exits. A joinable thread
means that another thread and call join() (p. 473) upon it. If this function is
called, the caller will block until the thread exits its function. This gives a way
to synchronize upon the lifespan of threads.

Calling cancel() (p. 473) will cancel the thread.

The static function self() (p. 475) will return a thread

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.117 ArThread Class Reference 475

4.117.2 Member Enumeration Documentation

4.117.2.1 enum ArThread::Status

Enumeration values:
STATUS FAILED Failed to create the thread.

STATUS NORESOURCE Not enough system resources to create the
thread.

STATUS NO SUCH THREAD The thread can no longer be found.

STATUS INVALID Thread is detached or another thread is joining on
it.

STATUS JOIN SELF Thread is your own thread. Can’t join on self.

STATUS ALREADY DETATCHED Thread is already detatched.

4.117.3 Member Function Documentation

4.117.3.1 void ArThread::init (void) [static]

Initialize the internal book keeping structures.

Initializes the internal structures which keep track of what thread is what. This
is called by Aria::init() (p. 207), so the user will not normaly need to call this
function themselves. This funtion ∗must∗ be called from the main thread of the
application. In otherwords, it should be called by main().

4.117.3.2 ArThread ∗ ArThread::self (void) [static]

Returns the instance of your own thread.

If a newly created thread calls self() (p. 475) on itself too soon, this will return
NULL. This is due to the fact that the thread is first created and started. Then
the operating system returns the thread ID and thread that called create()
(p. 472) then updates the list of threads with the new thread ID. There is just
not much that can be done about that. The use should be aware of this caveat.

The documentation for this class was generated from the following files:

• ArThread.h
• ArThread.cpp
• ArThread LIN.cpp
• ArThread WIN.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

476 Aria Class Documentation

4.118 ArTime Class Reference

A class for time readings.

#include <ariaUtil.h>

Public Methods

• ArTime (void)
Constructor.

• ∼ArTime (void)
Destructor.

• long mSecSince (ArTime since)
Gets the number of milliseconds since the given timestamp to this one.

• long secSince (ArTime since)
Gets the number of seconds since the given timestamp to this one.

• long mSecTo (void)
Finds the number of millisecs from when this timestamp is set to to now.

• long secTo (void)
Finds the number of seconds from when this timestamp is set to to now.

• long mSecSince (void)
Finds the number of milliseconds from this timestamp to now.

• long secSince (void)
Finds the number of seconds from when this timestamp was set to now.

• bool isBefore (ArTime testTime)
returns whether the given time is before this one or not.

• bool isAt (ArTime testTime)
returns whether the given time is equal to this time or not.

• bool isAfter (ArTime testTime)
returns whether the given time is after this one or not.

• void setToNow (void)
Sets the time to now.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.118 ArTime Class Reference 477

• void addMSec (long ms)
Add some milliseconds (can be negative) to this time.

• void setSec (time t sec)
Sets the seconds since 1970.

• void setMSec (time t msec)
Sets the milliseconds.

• time t getSec (void)
Gets the seconds since 1970.

• time t getMSec (void)
Gets the milliseconds.

• void print (void)
Logs the time.

4.118.1 Detailed Description

A class for time readings.

This class is for getting the time of certain events. This class is not for generic
time stuff, just for timeStamping, hence the only commands are very simple and
the accessors for getting the data directly shouldn’t really be used. DON’T use
this for keeping track of what time it is, its just for relative timing (ie this loop
needs to sleep another 100 ms);

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

478 Aria Class Documentation

4.119 ArTransform Class Reference

A class to handle transforms between different coordinates.

#include <ArTransform.h>

Public Methods

• ArTransform (void)

Constructor.

• ArTransform (ArPose pose)

Constructor, Sets the transform so points in this coord system transform to
abs world coords.

• ArTransform (ArPose pose1, ArPose pose2)

Constructor, sets the transform so that pose1 will be transformed to pose2.

• virtual ∼ArTransform (void)

Destructor.

• ArPose doTransform (ArPose source)

Take the source pose and run the transform on it to put it into abs coordi-
nates.

• ArPose doInvTransform (ArPose source)

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

• void doTransform (std::list< ArPose ∗> ∗poseList)

Take a std::list of sensor readings and do the transform on it.

• void setTransform (ArPose pose)

Sets the transform so points in this coord system transform to abs world
coords.

• void setTransform (ArPose pose1, ArPose pose2)

Sets the transform so that pose1 will be transformed to pose2.

• double getTh ()

Gets the transform angle value (degrees).

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.119 ArTransform Class Reference 479

4.119.1 Detailed Description

A class to handle transforms between different coordinates.

4.119.2 Member Function Documentation

4.119.2.1 ArPose ArTransform::doInvTransform (ArPose source)
[inline]

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

The source and result can be the same

Parameters:
source the parameter to transform

Returns:
the source transformed from absolute into local coords

4.119.2.2 ArPose ArTransform::doTransform (ArPose source)
[inline]

Take the source pose and run the transform on it to put it into abs coordinates.

Parameters:
source the parameter to transform

Returns:
the source transformed into absolute coordinates

4.119.2.3 void ArTransform::setTransform (ArPose pose1, ArPose
pose2)

Sets the transform so that pose1 will be transformed to pose2.

Parameters:
pose1 transform this into pose2

pose2 transform pose1 into this

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

480 Aria Class Documentation

4.119.2.4 void ArTransform::setTransform (ArPose pose)

Sets the transform so points in this coord system transform to abs world coords.

Parameters:
pose the coord system from which we transform to abs world coords

The documentation for this class was generated from the following files:

• ArTransform.h
• ArTransform.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.120 ArTypes Class Reference 481

4.120 ArTypes Class Reference

Contains platform independent sized variable types.

#include <ariaTypedefs.h>

Public Types

• typedef char Byte

A single signed byte.

• typedef short Byte2

Two signed bytes.

• typedef int Byte4

Four signed bytes.

• typedef unsigned char UByte

A single unsigned byte.

• typedef unsigned short UByte2

Two unsigned bytes.

• typedef unsigned int UByte4

Four unsigned bytes.

4.120.1 Detailed Description

Contains platform independent sized variable types.

The documentation for this class was generated from the following file:

• ariaTypedefs.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

482 Aria Class Documentation

4.121 ArUtil Class Reference

This class has utility functions.

#include <ariaUtil.h>

Public Types

• enum BITS { BIT0 = 0x1, BIT1 = 0x2, BIT2 = 0x4, BIT3 = 0x8,
BIT4 = 0x10, BIT5 = 0x20, BIT6 = 0x40, BIT7 = 0x80, BIT8 =
0x100, BIT9 = 0x200, BIT10 = 0x400, BIT11 = 0x800, BIT12 =
0x1000, BIT13 = 0x2000, BIT14 = 0x4000, BIT15 = 0x8000 }

Values for the bits from 0 to 16.

• enum REGKEY { REGKEY CLASSES ROOT, REGKEY -
CURRENT CONFIG, REGKEY CURRENT USER,
REGKEY LOCAL MACHINE, REGKEY USERS }

Static Public Methods

• void sleep (unsigned int ms)
Sleep for the given number of milliseconds.

• unsigned int getTime (void)
Get the time in milliseconds.

• template<class T> void deleteSet (T begin, T end)
Delete all members of a set. Does NOT empty the set.

• template<class T> void deleteSetPairs (T begin, T end)
Delete all members of a set. Does NOT empty the set.

• void splitString (std::string inString, std::list< std::string > &outList)
Split a string into a set of words.

• long sizeFile (std::string fileName)
OS-independent way of finding the size of a file.

• bool findFile (const char ∗fileName)
OS-independent way of checking to see if a file exists and is readable.

• bool stripDir (std::string fileIn, std::string &fileOut)
OS-independent way of stripping the directory from the filename.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.121 ArUtil Class Reference 483

• bool stripFile (std::string fileIn, std::string &fileOut)
OS-independent way of stripping the filename from the directory.

• void appendSlash (std::string &path)
Appends a slash to a path if there is not one there already.

• void fixSlashes (std::string &path)
Fix the slash orientation in file path string for windows or linux.

• void fixSlashesForward (std::string &path)
Fix the slash orientation in file path string to be all forward.

• void fixSlashesBackward (std::string &path)
Fix the slash orientation in file path string to be all backward.

• int strcmp (std::string str, std::string str2)
Finds out if two strings are equal.

• int strcmp (std::string str, const char ∗str2)
Finds out if two strings are equal.

• int strcmp (const char ∗str, std::string str2)
Finds out if two strings are equal.

• int strcmp (const char ∗str, const char ∗str2)
Finds out if two strings are equal.

• void escapeSpaces (char ∗dest, const char ∗src)
Puts a \ before spaces in src, puts it into dest.

• std::string getStringFromFile (const char ∗fileName)
Returns a string contained in an arbitrary file.

• bool getStringFromRegistry (REGKEY root, const char ∗key, const
char ∗value, char ∗str, int len)

Returns a string from the Windows registry.

4.121.1 Detailed Description

This class has utility functions.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

484 Aria Class Documentation

4.121.2 Member Enumeration Documentation

4.121.2.1 enum ArUtil::BITS

Values for the bits from 0 to 16.

Enumeration values:
BIT0 value of BIT0.

BIT1 value of BIT1.

BIT2 value of BIT2.

BIT3 value of BIT3.

BIT4 value of BIT4.

BIT5 value of BIT5.

BIT6 value of BIT6.

BIT7 value of BIT7.

BIT8 value of BIT8.

BIT9 value of BIT9.

BIT10 value of BIT10.

BIT11 value of BIT11.

BIT12 value of BIT12.

BIT13 value of BIT13.

BIT14 value of BIT14.

BIT15 value of BIT15.

4.121.2.2 enum ArUtil::REGKEY

These are for passing into getStringFromRegistry

Enumeration values:
REGKEY CLASSES ROOT use HKEY CLASSES ROOT.

REGKEY CURRENT CONFIG use HKEY CURRENT CONFIG.

REGKEY CURRENT USER use HKEY CURRENT USER.

REGKEY LOCAL MACHINE use HKEY LOCAL MACHIE.

REGKEY USERS use HKEY USERS.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.121 ArUtil Class Reference 485

4.121.3 Member Function Documentation

4.121.3.1 void ArUtil::appendSlash (std::string & path) [static]

Appends a slash to a path if there is not one there already.

Parameters:
path the path to append a slash to

4.121.3.2 template<class T> void ArUtil::deleteSet (T begin, T
end) [inline, static]

Delete all members of a set. Does NOT empty the set.

Assumes that T is an iterator that supports the operator ∗, operator!= and
operator++. The return is assumed to be a pointer to a class that needs to be
deleted.

4.121.3.3 template<class T> void ArUtil::deleteSetPairs (T begin,
T end) [inline, static]

Delete all members of a set. Does NOT empty the set.

Assumes that T is an iterator that supports the operator ∗∗, operator!= and
operator++. The return is assumed to be a pair. The second value of the pair
is assumed to be a pointer to a class that needs to be deleted.

4.121.3.4 void ArUtil::escapeSpaces (char ∗ dest, const char ∗ src)
[static]

Puts a \ before spaces in src, puts it into dest.

This copies src into dest but puts a \ before any spaces in src, escaping them...
its mostly for use with ArArgumentBuilder (p. 102)... make sure you have
enough space in the arrays that you’re passing as dest... this allocates no mem-
ory

4.121.3.5 bool ArUtil::findFile (const char ∗ fileName) [static]

OS-independent way of checking to see if a file exists and is readable.

Returns:
true if file is found

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

486 Aria Class Documentation

Parameters:
fileName name of the file to size

4.121.3.6 void ArUtil::fixSlashes (std::string & path) [static]

Fix the slash orientation in file path string for windows or linux.

Parameters:
path the path in which to fix the orientation of the slashes

4.121.3.7 void ArUtil::fixSlashesBackward (std::string & path)
[static]

Fix the slash orientation in file path string to be all backward.

Parameters:
path the path in which to fix the orientation of the slashes

4.121.3.8 void ArUtil::fixSlashesForward (std::string & path)
[static]

Fix the slash orientation in file path string to be all forward.

Parameters:
path the path in which to fix the orientation of the slashes

4.121.3.9 std::string ArUtil::getStringFromFile (const char ∗
fileName) [static]

Returns a string contained in an arbitrary file.

This function looks in the given filename and extracts a string from the file.
The string can contain spaces or tabs, but a ’\r’ or ’

’ will be treated as the end of the string, and the string cannot have more than
1024 characters. This is mostly for use with Linux to pick up the Aria (p. 204)
directory from a file in /etc, but will work with Linux or Windows.

Parameters:
filename the filename to look in

Returns:
the string that was in the file, or a string with length 0 if the file was not
found or if the file was empty

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.121 ArUtil Class Reference 487

4.121.3.10 bool ArUtil::getStringFromRegistry (REGKEY root,
const char ∗ key, const char ∗ value, char ∗ str, int len)
[static]

Returns a string from the Windows registry.

This takes a root key, and looks up the given <key> within that root, then
finds the string given to <value> and returns it.

Parameters:
root the root key to use, one of the REGKEY enums

key the name of the key to find

value the value to find the string contained in

str where to put the string sought, or if it could not be found for some
reason an empty (length() == 0) string

len the length of the allocated memory in str

Returns:
true if the string was found, false if it was not found or if there was a
problem such as the string not being long enough

4.121.3.11 unsigned int ArUtil::getTime (void) [static]

Get the time in milliseconds.

Get the time in milliseconds, counting from some arbitrary point. This time is
only valid within this run of the program.

Returns:
millisecond time

4.121.3.12 long ArUtil::sizeFile (std::string fileName) [static]

OS-independent way of finding the size of a file.

Returns:
size in bytes. -1 on error.

Parameters:
fileName name of the file to size

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

488 Aria Class Documentation

4.121.3.13 void ArUtil::sleep (unsigned int ms) [static]

Sleep for the given number of milliseconds.

This sleeps for the given number of milliseconds... Note in linux it tries to sleep
for 10 ms less than the amount given, which should wind up close to correct...
Linux is broken in this regard and sleeps for too long... it sleeps for the ceiling
of the current 10 ms range, then for an additional 10 ms... so: 11 to 20 ms
sleeps for 30 ms... 21 to 30 ms sleeps for 40 ms... 31 to 40 ms sleeps for 50 ms...
this continues on up to the values we care about of.. 81 to 90 ms sleeps for 100
ms... 91 to 100 ms sleeps for 110 ms... so we’ll sleep for 10 ms less than we want
to, which should put us about right... guh

Parameters:
ms the number of milliseconds to sleep for

4.121.3.14 void ArUtil::splitString (std::string inString, std::list<
std::string > & outList) [static]

Split a string into a set of words.

Takes a string and splits it into a list of words. It appends the words to the
outList. If there is nothing found, it will not touch the outList.

Parameters:
inString the input string to split

ourList the list in which to store the words that are found

4.121.3.15 int ArUtil::strcmp (const char ∗ str, const char ∗ str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.121 ArUtil Class Reference 489

4.121.3.16 int ArUtil::strcmp (const char ∗ str, std::string str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.121.3.17 int ArUtil::strcmp (std::string str, const char ∗ str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.121.3.18 int ArUtil::strcmp (std::string str, std::string str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

490 Aria Class Documentation

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.121.3.19 bool ArUtil::stripDir (std::string fileIn, std::string &
fileOut) [static]

OS-independent way of stripping the directory from the filename.

Works for \ and /. Returns true if something was actualy done. Sets fileOut to
be what ever the answer is.

Returns:
true if the path contains a file

Parameters:
fileIn input path/filename

fileOut output filename

4.121.3.20 bool ArUtil::stripFile (std::string fileIn, std::string &
fileOut) [static]

OS-independent way of stripping the filename from the directory.

Works for \ and /. Returns true if something was actualy done. Sets fileOut to
be what ever the answer is.

Returns:
true if the file contains a path

Parameters:
fileIn input path/filename

fileOut output path

The documentation for this class was generated from the following files:

• ariaUtil.h
• ariaUtil.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.122 ArVCC4 Class Reference 491

4.122 ArVCC4 Class Reference

Driver for the VCC4.

#include <ArVCC4.h>

Inheritance diagram for ArVCC4::

ArVCC4

ArPTZ

Public Methods

• ArVCC4 (ArRobot ∗robot, bool myInverted=false)
• bool power (int status)

Turn on/off the camera.

• bool init (void)
Initializes the camera.

• void connectHandler (void)
Internal, attached to robot, inits the camera when robot connects.

• bool pan (int deg)
Pans to the given degrees.

• bool panRel (int deg)
Pans relative to current position by given degrees.

• bool tilt (int deg)
Tilts to the given degrees.

• bool tiltRel (int deg)
Tilts relative to the current position by given degrees.

• bool panTiltRel (int pdeg, int tdeg)
Pans and tilts relatives to the current position by the given degrees.

• int getMaxPosPan (void)
Gets the highest positive degree the camera can pan to.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

492 Aria Class Documentation

• int getMaxNegPan (void)
Gets the lowest negative degree the camera can pan to.

• int getMaxPosTilt (void)
Gets the highest positive degree the camera can tilt to.

• int getMaxNegTilt (void)
Gets the lowest negative degree the camera can tilt to.

• bool canZoom (void)
Returns true if camera can zoom (or rather, if it is controlled by this).

• bool panTilt (int pdeg, int tdeg)
Pans and tilts to the given degrees.

• bool zoom (int deg)
Zooms to the given value.

• bool haltPanTilt (void)
Halts all pan-tilt movement.

• bool haltZoom (void)
Halts zoom movement.

• bool panSlew (int deg)
Sets the rate that the unit pans at.

• bool tiltSlew (int deg)
Sets the rate the unit tilts at.

• void preparePacket (ArVCC4Packet ∗packet)
Sends this packet to the unit.

• int getPan (void)
The angle the camera was last told to pan to.

• int getTilt (void)
The angle the camera was last told to tilt to.

• int getZoom (void)
The value the camera was last told to zoom to.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.122 ArVCC4 Class Reference 493

• int getPanSlew (void)
Gets the current pan slew.

• int getMaxPanSlew (void)
Gets the maximum pan slew.

• int getMinPanSlew (void)
Gets the minimum pan slew.

• int getTiltSlew (void)
Gets the current tilt slew.

• int getMaxTiltSlew (void)
Gets the maximum tilt slew.

• int getMinTiltSlew (void)
Gets the minimum tilt slew.

• int getMaxZoom (void)
Gets the maximum value for the zoom on this camera.

• int getMinZoom (void)
Gets the lowest value for the zoom on this camera.

4.122.1 Detailed Description

Driver for the VCC4.

4.122.2 Constructor & Destructor Documentation

4.122.2.1 ArVCC4::ArVCC4 (ArRobot ∗ robot, bool inverted =
false)

Parameters:
robot the robot this camera is attached to

inverted if this camera is inverted or not, the only time a camera will
normally be inverted is on a robot where it’s mounted on the underside
of something, ie like in a peoplebot

The documentation for this class was generated from the following files:

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

494 Aria Class Documentation

• ArVCC4.h
• ArVCC4.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.123 ArVCC4Commands Class Reference 495

4.123 ArVCC4Commands Class Reference

A class with the commands for the VCC4.

#include <ArVCC4.h>

Public Types

• enum { DELIM = 0x00, DEVICEID = 0x30, PANSLEW = 0x50,
TILTSLEW = 0x51, STOP = 0x53, INIT = 0x58, PANTILT =
0x62, SETRANGE = 0x64, CONTROL = 0x90, POWER = 0x-
A0, ZOOMSTOP = 0xA2, ZOOM = 0xA3, FOOTER = 0xEF,
HEADER = 0xFF }

4.123.1 Detailed Description

A class with the commands for the VCC4.

This class is for controlling the Canon VC-C4 camera.

Note that currently the pan/tilt commands send a stop to the camera, halting
the previous command. The stop command waits for 200ms for processing. The
same is true for the zoom commands.

Also note that the camera takes about 4 seconds to complete the power-on cycle,
and 2 seconds for an init. Commands sent during these periods will be ignored,
and may confuse the camera.

The camera’s pan and tilt commands work on a number of units equal to (de-
grees / 0.1125). The panTilt function always rounds the conversion closer to
zero, so that a magnitude greater than the allowable range of movement is not
sent to the camera.

4.123.2 Member Enumeration Documentation

4.123.2.1 anonymous enum

Enumeration values:
DELIM Delimeter character.

DEVICEID Default device ID.

PANSLEW Sets the pan slew.

TILTSLEW Sets the tilt slew.

STOP Stops current pan/tilt motion.

INIT Initializes the camera.

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

496 Aria Class Documentation

PANTILT Pan/tilt command.

SETRANGE Pan/tilt min/max range assignment.

CONTROL Puts camera in Control mode.

POWER Turns on/off power.

ZOOMSTOP Stops zoom motion.

ZOOM Zooms camera lens.

FOOTER Packet Footer.

HEADER Packet Header.

The documentation for this class was generated from the following file:

• ArVCC4.h

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.124 ArVCC4Packet Class Reference 497

4.124 ArVCC4Packet Class Reference

A class for for making commands to send to the VCC4.

#include <ArVCC4.h>

Inheritance diagram for ArVCC4Packet::

ArVCC4Packet

ArBasePacket

Public Methods

• ArVCC4Packet (ArTypes::UByte2 bufferSize=30)
Constructor.

• virtual ∼ArVCC4Packet (void)
Destructor.

• virtual void finalize (void)
Finalizes the packet in preparation for sending, must be done.

4.124.1 Detailed Description

A class for for making commands to send to the VCC4.

There are only a few functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

The documentation for this class was generated from the following files:

• ArVCC4.h
• ArVCC4.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

498 Aria Class Documentation

4.125 P2ArmJoint Class Reference

P2 Arm joint info.

#include <ArP2Arm.h>

4.125.1 Detailed Description

P2 Arm joint info.

The documentation for this class was generated from the following files:

• ArP2Arm.h
• ArP2Arm.cpp

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Index

∼ArACTSBlob
ArACTSBlob, 90

∼ArACTS 1 2
ArACTS 1 2, 85

∼ArAMPTU
ArAMPTU, 92

∼ArAMPTUPacket
ArAMPTUPacket, 97

∼ArASyncTask
ArASyncTask, 105

∼ArAction
ArAction, 38

∼ArActionAvoidFront
ArActionAvoidFront, 41

∼ArActionAvoidSide
ArActionAvoidSide, 43

∼ArActionBumpers
ArActionBumpers, 45

∼ArActionConstantVelocity
ArActionConstantVelocity, 47

∼ArActionDesired
ArActionDesired, 49

∼ArActionGroup
ArActionGroup, 58

∼ArActionInput
ArActionInput, 65

∼ArActionJoydrive
ArActionJoydrive, 67

∼ArActionKeydrive
ArActionKeydrive, 70

∼ArActionLimiterBackwards
ArActionLimiterBackwards,

73
∼ArActionLimiterForwards

ArActionLimiterForwards, 75
∼ArActionLimiterTableSensor

ArActionLimiterTableSensor,
77

∼ArActionStallRecover
ArActionStallRecover, 79

∼ArActionStop
ArActionStop, 81

∼ArActionTurn
ArActionTurn, 83

∼ArArg
ArArg, 99

∼ArArgumentBuilder
ArArgumentBuilder, 102

∼ArArgumentParser
ArArgumentParser, 103

∼ArBasePacket
ArBasePacket, 107

∼ArCondition
ArCondition, 116

∼ArDPPTU
ArDPPTU, 124

∼ArDPPTUPacket
ArDPPTUPacket, 132

∼ArDeviceConnection
ArDeviceConnection, 118

∼ArFunctor
ArFunctor, 133

∼ArFunctor1
ArFunctor1, 135

∼ArFunctor1C
ArFunctor1C, 137

∼ArFunctor2
ArFunctor2, 141

∼ArFunctor2C
ArFunctor2C, 144

∼ArFunctor3
ArFunctor3, 150

500 INDEX

∼ArFunctor3C
ArFunctor3C, 155

∼ArFunctorC
ArFunctorC, 162

∼ArGlobalFunctor
ArGlobalFunctor, 165

∼ArGlobalFunctor1
ArGlobalFunctor1, 167

∼ArGlobalFunctor2
ArGlobalFunctor2, 170

∼ArGlobalFunctor3
ArGlobalFunctor3, 175

∼ArGlobalRetFunctor
ArGlobalRetFunctor, 181

∼ArGlobalRetFunctor1
ArGlobalRetFunctor1, 183

∼ArGlobalRetFunctor2
ArGlobalRetFunctor2, 186

∼ArGlobalRetFunctor3
ArGlobalRetFunctor3, 190

∼ArGripper
ArGripper, 195

∼ArInterpolation
ArInterpolation, 209

∼ArIrrfDevice
ArIrrfDevice, 211

∼ArJoyHandler
ArJoyHandler, 213

∼ArKeyHandler
ArKeyHandler, 218

∼ArLogFileConnection
ArLogFileConnection, 225

∼ArMode
ArMode, 235

∼ArModeCamera
ArModeCamera, 239

∼ArModeGripper
ArModeGripper, 241

∼ArModeSonar
ArModeSonar, 243

∼ArModeTeleop
ArModeTeleop, 245

∼ArModeWander
ArModeWander, 247

∼ArModule
ArModule, 249

∼ArMutex
ArMutex, 255

∼ArNetServer
ArNetServer, 257

∼ArP2Arm
ArP2Arm, 260

∼ArPTZ
ArPTZ, 287

∼ArPeriodicTask
ArPeriodicTask, 272

∼ArPose
ArPose, 274

∼ArPref
ArPref, 279

∼ArPriorityResolver
ArPriorityResolver, 286

∼ArRangeBuffer
ArRangeBuffer, 293

∼ArRangeDevice
ArRangeDevice, 299

∼ArRangeDeviceThreaded
ArRangeDeviceThreaded, 307

∼ArRecurrentTask
ArRecurrentTask, 310

∼ArResolver
ArResolver, 312

∼ArRetFunctor
ArRetFunctor, 314

∼ArRetFunctor1
ArRetFunctor1, 315

∼ArRetFunctor1C
ArRetFunctor1C, 317

∼ArRetFunctor2
ArRetFunctor2, 321

∼ArRetFunctor2C
ArRetFunctor2C, 324

∼ArRetFunctor3
ArRetFunctor3, 329

∼ArRetFunctor3C
ArRetFunctor3C, 333

∼ArRetFunctorC
ArRetFunctorC, 339

∼ArRobot
ArRobot, 342

∼ArRobotPacket
ArRobotPacket, 393

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 501

∼ArRobotPacketReceiver
ArRobotPacketReceiver, 395

∼ArRobotPacketSender
ArRobotPacketSender, 398

∼ArRobotParams
ArRobotParams, 402

∼ArSectors
ArSectors, 405

∼ArSerialConnection
ArSerialConnection, 411

∼ArSick
ArSick, 418

∼ArSickLogger
ArSickLogger, 430

∼ArSickPacket
ArSickPacket, 432

∼ArSickPacketReceiver
ArSickPacketReceiver, 435

∼ArSignalHandler
ArSignalHandler, 438

∼ArSocket
ArSocket, 444

∼ArSonarDevice
ArSonarDevice, 451

∼ArSyncTask
ArSyncTask, 460

∼ArTaskPool
ArTaskPool, 463

∼ArTcpConnection
ArTcpConnection, 466

∼ArThread
ArThread, 472

∼ArTime
ArTime, 476

∼ArTransform
ArTransform, 478

∼ArVCC4Packet
ArVCC4Packet, 497

ABSPAN
ArAMPTUCommands, 95

ABSTILT
ArAMPTUCommands, 95

ACCEL
ArDPPTUCommands, 130

accept

ArSocket, 445
accountForRobotHeading

ArActionDesired, 52
actionHandler

ArRobot, 358
ActionMap

ArResolver, 312
activate

ArAction, 38
ArActionGroup, 58
ArActionInput, 65
ArActionKeydrive, 70
ArMode, 236
ArModeCamera, 239
ArModeGripper, 241
ArModeSonar, 243
ArModeTeleop, 245
ArModeWander, 247

activateExclusive
ArActionGroup, 58

ACTIVE
ArTaskState, 465

ActsConstants
ArACTS 1 2, 86

actsHandler
ArACTS 1 2, 86

add
ArArgumentBuilder, 102

addAction
ArActionGroup, 59
ArRobot, 358

addAngle
ArMath, 231

addAverage
ArActionDesired, 52

addCommand
ArNetServer, 258

addConnectCB
ArRobot, 358
ArSick, 424

addDisconnectNormallyCB
ArRobot, 359
ArSick, 424

addDisconnectOnErrorCB
ArRobot, 359
ArSick, 424

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

502 INDEX

addFailedConnectCB
ArRobot, 360
ArSick, 425

addHandlerCB
ArSignalHandler, 440

addInitCallBack
Aria, 205

addKeyHandler
ArKeyHandler, 220

addMSec
ArTime, 477

addNewBranch
ArSyncTask, 460

addNewLeaf
ArSyncTask, 460

addPacketHandler
ArRobot, 360

addRangeDevice
ArRobot, 349

addReading
ArInterpolation, 209
ArRangeBuffer, 294
ArRangeDevice, 299
ArSonarDevice, 452

addrHost
ArSocket, 446

addRobot
Aria, 204

addRunExitCB
ArRobot, 361

addSensorInterpTask
ArRobot, 361

addTagToLog
ArSickLogger, 431

addUninitCallBack
Aria, 205

addUserTask
ArRobot, 362

ADSEL
ArCommands, 114

ALREADY CONNECTED
ArP2Arm, 265

ALREADY INITED
ArP2Arm, 264

angleBetween
ArMath, 230

appendSlash
ArUtil, 485

applyTransform
ArRangeBuffer, 295
ArRangeDevice, 302
ArRobot, 362
ArSensorReading, 408

ArAction
∼ArAction, 38
activate, 38
ArAction, 38
deactivate, 39
getArg, 39
getDescription, 39
getDesired, 39
getName, 39
getNumArgs, 39
isActive, 38
print, 39
setNextArgument, 39
setRobot, 39

ArAction, 37
fire, 40

ArActionAvoidFront
∼ArActionAvoidFront, 41
ArActionAvoidFront, 42
getDesired, 41

ArActionAvoidFront, 41
ArActionAvoidFront, 42
fire, 42

ArActionAvoidSide
∼ArActionAvoidSide, 43
ArActionAvoidSide, 43
getDesired, 43

ArActionAvoidSide, 43
ArActionAvoidSide, 43
fire, 44

ArActionBumpers
∼ArActionBumpers, 45
ArActionBumpers, 46
getDesired, 45

ArActionBumpers, 45
ArActionBumpers, 46
fire, 46

ArActionConstantVelocity

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 503

∼ArActionConstantVelocity,
47

ArActionConstantVelocity, 47
getDesired, 47

ArActionConstantVelocity, 47
ArActionConstantVelocity, 47
fire, 48

ArActionDesired
∼ArActionDesired, 49
ArActionDesired, 49
getDeltaHeading, 50
getDeltaHeadingDesired-

Channel, 51
getDeltaHeadingStrength, 50
getHeading, 50
getHeadingStrength, 50
getMaxNegVel, 50
getMaxNegVelDesired-

Channel, 51
getMaxNegVelStrength, 50
getMaxRotVel, 50
getMaxRotVelDesiredChannel,

51
getMaxRotVelStrength, 50
getMaxVel, 50
getMaxVelDesiredChannel, 51
getMaxVelStrength, 50
getVel, 49
getVelDesiredChannel, 51
getVelStrength, 50
reset, 49

ArActionDesired, 49
accountForRobotHeading, 52
addAverage, 52
endAverage, 52
merge, 52
setDeltaHeading, 52
setHeading, 53
setMaxNegVel, 53
setMaxRotVel, 53
setMaxVel, 53
setVel, 54
startAverage, 54

ArActionDesiredChannel, 55
MAX STRENGTH, 55
MIN STRENGTH, 55

NO STRENGTH, 55
ArActionGoto

cancelGoal, 56
getCloseDist, 56
getDesired, 57
getGoal, 56
getSpeed, 56
haveAchievedGoal, 56
setCloseDist, 56
setGoal, 56
setSpeed, 56

ArActionGoto, 56
fire, 57

ArActionGroup
∼ArActionGroup, 58
activate, 58
activateExclusive, 58
ArActionGroup, 59
deactivate, 58
getActionList, 58
removeActions, 58

ArActionGroup, 58
addAction, 59
ArActionGroup, 59
remAction, 59

ArActionGroupInput, 61
ArActionGroupStop, 62
ArActionGroupTeleop, 63
ArActionGroupWander, 64
ArActionInput

∼ArActionInput, 65
activate, 65
ArActionInput, 66
deltaHeading, 65
deltaVel, 65
getDesired, 65
setVel, 65

ArActionInput, 65
ArActionInput, 66
fire, 66

ArActionJoydrive
∼ArActionJoydrive, 67
ArActionJoydrive, 68
getDesired, 68
getStopIfNoButtonPressed, 67
joystickInited, 67

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

504 INDEX

setSpeeds, 67
setStopIfNoButtonPressed, 67

ArActionJoydrive, 67
ArActionJoydrive, 68
fire, 69
getUseOSCal, 69
setUseOSCal, 69

ArActionKeydrive
∼ArActionKeydrive, 70
activate, 70
ArActionKeydrive, 70
deactivate, 70
down, 71
getDesired, 70
giveUpKeys, 71
left, 71
right, 71
setIncrements, 70
setRobot, 70
setSpeeds, 70
space, 71
takeKeys, 71
up, 71

ArActionKeydrive, 70
fire, 71

ArActionLimiterBackwards
∼ArActionLimiterBackwards,

73
ArActionLimiterBackwards,

74
getDesired, 73

ArActionLimiterBackwards, 73
ArActionLimiterBackwards,

74
fire, 74

ArActionLimiterForwards
∼ArActionLimiterForwards,

75
ArActionLimiterForwards, 76
getDesired, 75

ArActionLimiterForwards, 75
ArActionLimiterForwards, 76
fire, 76

ArActionLimiterTableSensor
∼ArActionLimiterTable-

Sensor, 77

ArActionLimiterTableSensor,
77

getDesired, 77
ArActionLimiterTableSensor, 77

fire, 78
ArActionStallRecover

∼ArActionStallRecover, 79
ArActionStallRecover, 80
getDesired, 79

ArActionStallRecover, 79
ArActionStallRecover, 80
fire, 80

ArActionStop
∼ArActionStop, 81
ArActionStop, 81
getDesired, 81

ArActionStop, 81
ArActionStop, 81
fire, 82

ArActionTurn
∼ArActionTurn, 83
ArActionTurn, 83
getDesired, 83

ArActionTurn, 83
fire, 84

ArACTS 1 2
∼ArACTS 1 2, 85
actsHandler, 86
ArACTS 1 2, 85
BLOB DATA SIZE, 86
DATA HEADER, 86
getData, 86
getRobot, 85
isConnected, 85
MAX BLOBS, 86
MAX DATA, 86
NUM CHANNELS, 86
setRobot, 85

ArACTS 1 2, 85
ActsConstants, 86
closePort, 87
getBlob, 87
getNumBlobs, 87
invert, 87
openPort, 87
receiveBlobInfo, 88

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 505

requestPacket, 88
requestQuit, 88

ArACTSBlob
∼ArACTSBlob, 90
ArACTSBlob, 90
getArea, 90
getBottom, 90
getLeft, 90
getRight, 90
getTop, 90
getXCG, 90
getYCG, 90
print, 91
setArea, 90
setBottom, 91
setLeft, 91
setRight, 91
setTop, 91
setXCG, 90
setYCG, 90

ArACTSBlob, 90
ArAMPTU

∼ArAMPTU, 92
ArAMPTU, 94
canZoom, 93
getMaxNegPan, 93
getMaxNegTilt, 93
getMaxPosPan, 93
getMaxPosTilt, 93
getPan, 93
getTilt, 93
init, 92
pan, 92
panRel, 92
panSlew, 93
panTilt, 92
panTiltRel, 92
pause, 93
purge, 93
requestStatus, 93
resume, 93
tilt, 92
tiltRel, 92
tiltSlew, 93

ArAMPTU, 92
ArAMPTU, 94

ArAMPTUCommands
ABSPAN, 95
ABSTILT, 95
CONT, 95
INIT, 96
PANSLEW, 96
PANTILT, 95
PANTILTDCCW, 95
PANTILTDCW, 95
PANTILTUCCW, 95
PANTILTUCW, 95
PAUSE, 95
PURGE, 95
RELPANCCW, 95
RELPANCW, 95
RELTILTD, 95
RELTILTU, 95
RESP, 96
STATUS, 95
TILTSLEW, 96
ZOOM, 95

ArAMPTUCommands, 95
ArAMPTUPacket

∼ArAMPTUPacket, 97
ArAMPTUPacket, 97
byte2ToBuf, 97
byteToBuf, 97
finalize, 97

ArAMPTUPacket, 97
getUnitNumber, 98
setUnitNumber, 98

ArArg
∼ArArg, 99
ArArg, 99
BOOL, 101
clearPointers, 100
DOUBLE, 101
getBool, 100
getDescription, 100
getDouble, 100
getInt, 100
getName, 99
getPose, 100
getString, 100
INT, 101
INVALID, 101

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

506 INDEX

POSE, 101
print, 100
setBool, 100
setDouble, 100
setInt, 100
setPose, 100
setString, 100
STRING, 101

ArArg, 99
getType, 101
Type, 101

ArArgumentBuilder
∼ArArgumentBuilder, 102
add, 102
ArArgumentBuilder, 102
getArgc, 102
getArgv, 102
print, 102

ArArgumentBuilder, 102
ArArgumentParser

∼ArArgumentParser, 103
ArArgumentParser, 103

ArArgumentParser, 103
ArArgumentParser, 103
checkArgument, 104
checkParameterArgument, 104

ArASyncTask
∼ArASyncTask, 105
ArASyncTask, 105
create, 105

ArASyncTask, 105
runInThisThread, 106
runThread, 106

ArBasePacket
∼ArBasePacket, 107
ArBasePacket, 110
bufToByte, 108
bufToByte2, 108
bufToByte4, 108
bufToUByte, 108
bufToUByte2, 108
bufToUByte4, 108
byte2ToBuf, 107
byte4ToBuf, 107
byteToBuf, 107
finalize, 107

getBuf, 109
getHeaderLength, 109
getLength, 109
getMaxLength, 109
getReadLength, 109
print, 107
printHex, 107
setBuf, 109
setHeaderLength, 109
setLength, 109
uByte2ToBuf, 108
uByte4ToBuf, 108
uByteToBuf, 108

ArBasePacket, 107
ArBasePacket, 110
bufToData, 110
bufToStr, 110
dataToBuf, 111
duplicatePacket, 111
empty, 111
resetRead, 111
strNToBuf, 111
strToBuf, 112
strToBufPadded, 112

ArCommands
ADSEL, 114
BUMPSTALL, 114
CALCOMP, 115
CLOSE, 113
CONFIG, 114
DCHEAD, 114
DHEAD, 114
DIGOUT, 114
ENABLE, 113
ENCODER, 114
ENDSIM, 114
ESTOP, 114
GETAUX, 114
GRIPPER, 114
GRIPPERPACREQUEST,

114
GRIPPERVAL, 114
HEAD, 114
IOREQUEST, 114
JOYDRIVE, 114
LOADPARAM, 114

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 507

LOADWORLD, 114
MOVE, 113
OPEN, 113
PLAYLIST, 115
POLLING, 113
PTUPOS, 114
PULSE, 113
RESETSIMTOORIGIN, 115
ROTATE, 114
RVEL, 114
SAY, 114
SETA, 113
SETO, 113
SETRA, 114
SETRV, 114
SETSIMORIGINTH, 115
SETSIMORIGINX, 115
SETSIMORIGINY, 115
SETV, 113
SONAR, 114
SOUND, 115
SOUNDTOG, 115
STEP, 114
STOP, 114
TCM2, 114
TTY2, 114
VEL, 114
VEL2, 114

ArCommands, 113
Commands, 113

ArCondition
∼ArCondition, 116
ArCondition, 116
broadcast, 116
getError, 116
signal, 116
STATUS FAILED, 117
STATUS FAILED -

DESTROY, 117
STATUS FAILED INIT, 117
STATUS MUTEX FAILED,

117
STATUS MUTEX FAILED -

INIT, 117
STATUS WAIT INTR, 117

STATUS WAIT TIMEDOUT,
117

timedWait, 116
wait, 116

ArCondition, 116
typedef, 117

ArDeviceConnection
∼ArDeviceConnection, 118
ArDeviceConnection, 118
openSimple, 119
STATUS CLOSED ERROR,

119
STATUS CLOSED -

NORMALLY, 119
STATUS NEVER OPENED,

119
STATUS OPEN, 119
STATUS OPEN FAILED, 119

ArDeviceConnection, 118
close, 120
getOpenMessage, 120
getStatus, 120
getStatusMessage, 120
getTimeRead, 121
isTimeStamping, 121
read, 121
Status, 119
write, 122
writePacket, 122

ArDPPTU
∼ArDPPTU, 124
ArDPPTU, 124
awaitExec, 126
basePanSlew, 127
baseTiltSlew, 127
blank, 124
canZoom, 124
disableReset, 124
disMon, 126
enMon, 126
factorySet, 125
getBasePanSlew, 128
getBaseTiltSlew, 128
getMaxNegPan, 126
getMaxNegTilt, 126
getMaxPosPan, 126

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

508 INDEX

getMaxPosTilt, 126
getPan, 128
getPanAccel, 128
getPanSlew, 128
getTilt, 128
getTiltAccel, 128
getTiltSlew, 128
haltAll, 126
haltPan, 126
haltTilt, 126
highMotPower, 127
immedExec, 125
indepMove, 127
init, 124
initMon, 126
limitEnforce, 125
lowerPanSlew, 127
lowerTiltSlew, 127
lowMotPower, 127
lowStatPower, 127
MAX PAN ACCEL, 129
MAX PAN SLEW, 129
MAX TILT, 129
MAX TILT ACCEL, 129
MAX TILT SLEW, 129
MIN PAN, 129
MIN PAN ACCEL, 129
MIN PAN SLEW, 129
MIN TILT, 129
MIN TILT ACCEL, 129
MIN TILT SLEW, 129
offStatPower, 126
pan, 125
panAccel, 127
panRel, 125
panSlew, 128
panSlewRel, 128
panTilt, 125
panTiltRel, 125
regMotPower, 127
regStatPower, 126
resetAll, 125
resetCalib, 124
resetPan, 125
resetTilt, 125
restoreSet, 125

saveSet, 125
slaveExec, 126
tilt, 125
tiltAccel, 127
tiltRel, 125
tiltSlew, 128
tiltSlewRel, 128
upperPanSlew, 127
upperTiltSlew, 127
velMove, 127

ArDPPTU, 124
ArDPPTUCommands

ACCEL, 130
BASE, 130
CONTROL, 130
DELIM, 130
DISABLE, 130
ENABLE, 130
FACTORY, 130
HALT, 130
IMMED, 131
INIT, 130
LIMIT, 131
MONITOR, 131
OFFSET, 131
PAN, 131
RESET, 131
SPEED, 131
TILT, 131
UPPER, 131
VELOCITY, 131

ArDPPTUCommands, 130
ArDPPTUPacket

∼ArDPPTUPacket, 132
ArDPPTUPacket, 132
finalize, 132

ArDPPTUPacket, 132
areMotorsEnabled

ArRobot, 346
areSonarsEnabled

ArRobot, 346
ArFunctor

∼ArFunctor, 133
invoke, 133
operator(), 133

ArFunctor, 133

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 509

ArFunctor1
∼ArFunctor1, 135
invoke, 135
operator(), 135

ArFunctor1, 135
invoke, 136
operator(), 136

ArFunctor1C
∼ArFunctor1C, 137
ArFunctor1C, 137–139
invoke, 137
operator(), 137

ArFunctor1C, 137
ArFunctor1C, 138, 139
invoke, 139
operator(), 139
setP1, 139
setThis, 140

ArFunctor2
∼ArFunctor2, 141
invoke, 141
operator(), 141

ArFunctor2, 141
invoke, 142
operator(), 142

ArFunctor2C
∼ArFunctor2C, 144
ArFunctor2C, 144, 146, 147
invoke, 144
operator(), 145

ArFunctor2C, 144
ArFunctor2C, 146, 147
invoke, 147
operator(), 148
setP1, 148
setP2, 148
setThis, 149

ArFunctor3
∼ArFunctor3, 150
invoke, 150
operator(), 150

ArFunctor3, 150
invoke, 151
operator(), 152

ArFunctor3C
∼ArFunctor3C, 155

ArFunctor3C, 154, 156–158
invoke, 155
operator(), 155

ArFunctor3C, 154
ArFunctor3C, 156–158
invoke, 158, 159
operator(), 159, 160
setP1, 160
setP2, 160
setP3, 160
setThis, 160, 161

ArFunctorC
∼ArFunctorC, 162
ArFunctorC, 162, 163
invoke, 162
operator(), 162

ArFunctorC, 162
ArFunctorC, 163
setThis, 163

ArGlobalFunctor
∼ArGlobalFunctor, 165
ArGlobalFunctor, 165, 166
invoke, 165
operator(), 165

ArGlobalFunctor, 165
ArGlobalFunctor, 166

ArGlobalFunctor1
∼ArGlobalFunctor1, 167
ArGlobalFunctor1, 167, 168
invoke, 167
operator(), 167

ArGlobalFunctor1, 167
ArGlobalFunctor1, 168
invoke, 168
operator(), 169
setP1, 169

ArGlobalFunctor2
∼ArGlobalFunctor2, 170
ArGlobalFunctor2, 170–172
invoke, 170
operator(), 171

ArGlobalFunctor2, 170
ArGlobalFunctor2, 171, 172
invoke, 172
operator(), 173
setP1, 173

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

510 INDEX

setP2, 173
ArGlobalFunctor3

∼ArGlobalFunctor3, 175
ArGlobalFunctor3, 175, 177
invoke, 175
operator(), 176

ArGlobalFunctor3, 175
ArGlobalFunctor3, 177
invoke, 178
operator(), 178, 179
setP1, 179
setP2, 179
setP3, 180

ArGlobalRetFunctor
∼ArGlobalRetFunctor, 181
ArGlobalRetFunctor, 181, 182
invokeR, 181

ArGlobalRetFunctor, 181
ArGlobalRetFunctor, 182

ArGlobalRetFunctor1
∼ArGlobalRetFunctor1, 183
ArGlobalRetFunctor1, 183,

184
invokeR, 183

ArGlobalRetFunctor1, 183
ArGlobalRetFunctor1, 184
invokeR, 184
setP1, 185

ArGlobalRetFunctor2
∼ArGlobalRetFunctor2, 186
ArGlobalRetFunctor2, 186,

187
invokeR, 186

ArGlobalRetFunctor2, 186
ArGlobalRetFunctor2, 187
invokeR, 188
setP1, 188
setP2, 188

ArGlobalRetFunctor3
∼ArGlobalRetFunctor3, 190
ArGlobalRetFunctor3, 190–

192
invokeR, 190

ArGlobalRetFunctor3, 190
ArGlobalRetFunctor3, 191,

192

invokeR, 192, 193
setP1, 193
setP2, 193
setP3, 194

ArGripper
∼ArGripper, 195
ArGripper, 197
connectHandler, 197
GENIO, 197
GRIPPAC, 197
NOGRIPPER, 197
packetHandler, 197
printState, 197
QUERYTYPE, 197
USERIO, 197

ArGripper, 195
ArGripper, 197
getBreakBeamState, 198
getGraspTime, 198
getGripState, 198
getMSecSinceLastPacket, 198
getPaddleState, 198
getType, 199
gripClose, 199
gripOpen, 199
gripperDeploy, 199
gripperHalt, 199
gripperStore, 199
gripPressure, 200
gripStop, 200
isGripMoving, 200
isLiftMaxed, 200
isLiftMoving, 200
liftCarry, 200
liftDown, 201
liftStop, 201
liftUp, 201
setType, 201
Type, 197

ArGripperCommands
GRIP CLOSE, 202
GRIP OPEN, 202
GRIP PRESSURE, 202
GRIP STOP, 202
GRIPPER DEPLOY, 202
GRIPPER HALT, 202

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 511

GRIPPER STORE, 202
LIFT CARRY, 203
LIFT DOWN, 202
LIFT STOP, 202
LIFT UP, 202

ArGripperCommands, 202
Commands, 202

Aria, 204
addInitCallBack, 205
addRobot, 204
addUninitCallBack, 205
delRobot, 204
exit, 206
findRobot, 206
getDirectory, 206
getKeyHandler, 205
getRobotList, 205
init, 206
setDirectory, 207
setKeyHandler, 205
shutdown, 207
SIGHANDLE NONE, 205
SIGHANDLE SINGLE, 205
SIGHANDLE THREAD, 205
SigHandleMethod, 205
signalHandlerCB, 205
uninit, 208

ArInterpolation
∼ArInterpolation, 209
addReading, 209
ArInterpolation, 209
getNumberOfReadings, 209
reset, 209
setNumberOfReadings, 209

ArInterpolation, 209
getPose, 210

ArIrrfDevice
∼ArIrrfDevice, 211
ArIrrfDevice, 211
setCumulativeMaxRange, 211
setRobot, 211

ArIrrfDevice, 211
packetHandler, 212

ArJoyHandler
∼ArJoyHandler, 213
ArJoyHandler, 214

getSpeeds, 214
getStats, 214
haveJoystick, 213
init, 213
setSpeeds, 213
setStats, 214

ArJoyHandler, 213
ArJoyHandler, 214
endCal, 215
getAdjusted, 215
getButton, 215
getDoubles, 215
getUnfiltered, 216
getUseOSCal, 216
setUseOSCal, 216
startCal, 217

ArKeyHandler
∼ArKeyHandler, 218
ArKeyHandler, 219
BACKSPACE, 219
checkKeys, 218
DOWN, 219
ENTER, 219
ESCAPE, 219
F1, 219
F2, 219
F3, 219
F4, 219
getKey, 218
LEFT, 219
restore, 218
RIGHT, 219
SPACE, 219
TAB, 219
UP, 219

ArKeyHandler, 218
addKeyHandler, 220
ArKeyHandler, 219
KEY, 219
remKeyHandler, 220

ArListPos
FIRST, 222
LAST, 222

ArListPos, 222
Pos, 222

ArLog

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

512 INDEX

close, 223
Colbert, 224
File, 224
None, 224
Normal, 223
StdErr, 224
StdOut, 224
Terse, 223
Verbose, 223

ArLog, 223
init, 224
log, 224
LogLevel, 223
LogType, 223

ArLogFileConnection
∼ArLogFileConnection, 225
ArLogFileConnection, 225
getLogPose, 226
internalOpen, 226
OPEN FILE NOT FOUND,

226
OPEN NOT A LOG FILE,

226
openSimple, 225

ArLogFileConnection, 225
close, 226
getLogFile, 227
getOpenMessage, 227
getStatus, 227
getTimeRead, 227
isTimeStamping, 228
Open, 226
open, 228
read, 228
write, 229

ArMath
angleBetween, 230
pointRotate, 230
random, 231

ArMath, 230
addAngle, 231
atan2, 231
cos, 231
degToRad, 232
distanceBetween, 232
fabs, 232

fixAngle, 233
radToDeg, 233
roundInt, 233
sin, 233
subAngle, 234

ArmGood
ArP2Arm, 263

ArmHoming
ArP2Arm, 263

ArmInited
ArP2Arm, 263

ArmJoint1
ArP2Arm, 263

ArmJoint2
ArP2Arm, 263

ArmJoint3
ArP2Arm, 263

ArmJoint4
ArP2Arm, 263

ArmJoint5
ArP2Arm, 263

ArmJoint6
ArP2Arm, 263

ArMode
∼ArMode, 235
activate, 236
ArMode, 237
baseHelp, 236
deactivate, 236
getKey, 236
getKey2, 236
getName, 235
userTask, 236

ArMode, 235
ArMode, 237
baseActivate, 237
baseDeactivate, 237
help, 237

ArModeCamera
∼ArModeCamera, 239
activate, 239
ArModeCamera, 239
deactivate, 239
userTask, 239

ArModeCamera, 239
help, 240

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 513

ArModeGripper
∼ArModeGripper, 241
activate, 241
ArModeGripper, 241
deactivate, 241
userTask, 241

ArModeGripper, 241
help, 242

ArModeSonar
∼ArModeSonar, 243
activate, 243
ArModeSonar, 243
deactivate, 243
userTask, 243

ArModeSonar, 243
help, 244

ArModeTeleop
∼ArModeTeleop, 245
activate, 245
ArModeTeleop, 245
deactivate, 245

ArModeTeleop, 245
help, 245

ArModeWander
∼ArModeWander, 247
activate, 247
ArModeWander, 247
deactivate, 247

ArModeWander, 247
help, 247

ArModule
∼ArModule, 249
ArModule, 249
exit, 249
getRobot, 249
myRobot, 249
setRobot, 249

ArModule, 249
init, 250

ArModuleLoader
closeAll, 252
STATUS ALREADY -

LOADED, 253
STATUS EXIT FAILED, 253
STATUS FAILED OPEN, 253
STATUS INIT FAILED, 253

STATUS INVALID, 253
STATUS NOT FOUND, 253
STATUS SUCCESS, 253

ArModuleLoader, 252
close, 253
load, 253
reload, 254
Status, 253

ArmPower
ArP2Arm, 263

ArMutex
∼ArMutex, 255
ArMutex, 255
getError, 255
getMutex, 255
STATUS ALREADY -

LOCKED, 256
STATUS FAILED, 256
STATUS FAILED INIT, 256
unlock, 255

ArMutex, 255
lock, 256
Status, 256
tryLock, 256

ArNetServer
∼ArNetServer, 257
ArNetServer, 257
close, 257
internalGreeting, 257
internalHelp, 257, 258
internalQuit, 258
internalShutdown, 258
isOpen, 257
runOnce, 257

ArNetServer, 257
addCommand, 258
open, 258
remCommand, 259
sendToAllClients, 259

ArP2Arm
∼ArP2Arm, 260
ALREADY CONNECTED,

265
ALREADY INITED, 264
ArmGood, 263
ArmHoming, 263

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

514 INDEX

ArmInited, 263
ArmJoint1, 263
ArmJoint2, 263
ArmJoint3, 263
ArmJoint4, 263
ArmJoint5, 263
ArmJoint6, 263
ArmPower, 263
ArP2Arm, 260
COMM FAILED, 264
convertDegToTicks, 262
convertTicksToDeg, 263
COULD NOT OPEN PORT,

264
COULD NOT SET UP -

PORT, 265
getArmVersion, 262
getJoint, 262
getJointPos, 262
getJointPosTicks, 262
getLastStatusTime, 262
getMoving, 262
getRobot, 262
getStatus, 262
InfoPacket, 264
INVALID JOINT, 265
INVALID POSITION, 265
isGood, 262
isPowered, 262
NO ARM FOUND, 264
NOT CONNECTED, 265
NOT INITED, 264
NumJoints, 263
park, 261
ROBOT NOT SETUP, 264
setPacketCB, 262
setRobot, 260
setStoppedCB, 262
StatusContinuous, 265
StatusOff, 265
StatusPacket, 264
StatusSingle, 265
SUCCESS, 264

ArP2Arm, 260
checkArm, 265
home, 266

init, 266
moveStep, 266
moveStepTicks, 266
moveTo, 267
moveToTicks, 267
moveVel, 268
PacketType, 264
powerOff, 268
powerOn, 269
requestInfo, 269
requestInit, 269
requestStatus, 270
setAutoParkTimer, 270
setGripperParkTimer, 270
State, 264
StatusType, 265
stop, 270
uninit, 271

ArPeriodicTask
∼ArPeriodicTask, 272
ArPeriodicTask, 272
invoke, 272
isRunning, 272
runTask, 272
setRunning, 272

ArPeriodicTask, 272
ArPose

∼ArPose, 274
ArPose, 274, 275
getTh, 275
getThRad, 275
getX, 275
getY, 275
print, 275
setTh, 274
setThRad, 274
setX, 274
setY, 274

ArPose, 274
ArPose, 275
findAngleTo, 276
findDistanceTo, 276
getPose, 276
setPose, 276, 277

ArPoseWithTime, 278
ArPref

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 515

∼ArPref, 279
ArPref, 279
Boolean, 281
Double, 281
Integer, 281
String, 281

ArPref, 279
getBool, 281
getBoolSet, 281
getDouble, 281
getDoubleSet, 282
getInt, 282
getIntSet, 282
getSetCount, 282
getString, 283
getStringSet, 283
setBool, 283
setBoolSet, 283
setDouble, 284
setDoubleSet, 284
setInt, 284
setIntSet, 285
setString, 285
ValType, 281

ArPriorityResolver
∼ArPriorityResolver, 286
ArPriorityResolver, 286

ArPriorityResolver, 286
ArPTZ

∼ArPTZ, 287
ArPTZ, 290
canGetRealPanTilt, 288
canGetRealZoom, 288
canZoom, 287
connectHandler, 289
getDeviceConnection, 289
getMaxNegPan, 288
getMaxNegTilt, 288
getMaxPosPan, 288
getMaxPosTilt, 288
getMaxZoom, 289
getMinZoom, 289
getPan, 288
getRealPan, 288
getRealTilt, 288
getRealZoom, 288

getTilt, 288
getZoom, 288
init, 287
pan, 287
panRel, 287
panTilt, 287
panTiltRel, 287
sensorInterpHandler, 289
tilt, 287
tiltRel, 287
zoom, 288
zoomRel, 288

ArPTZ, 287
ArPTZ, 290
packetHandler, 290
readPacket, 291
robotPacketHandler, 291
sendPacket, 291
setDeviceConnection, 292

ArRangeBuffer
∼ArRangeBuffer, 293
ArRangeBuffer, 294
getPoseTaken, 293
getSize, 293
reset, 294
setPoseTaken, 293

ArRangeBuffer, 293
addReading, 294
applyTransform, 295
ArRangeBuffer, 294
beginInvalidationSweep, 295
beginRedoBuffer, 295
endInvalidationSweep, 295
endRedoBuffer, 296
getBuffer, 296
getClosestBox, 296
getClosestPolar, 297
invalidateReading, 297
redoReading, 298
setSize, 298

ArRangeDevice
∼ArRangeDevice, 299
addReading, 299
ArRangeDevice, 301
getCumulativeBuffer, 300

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

516 INDEX

getCumulativeRangeBuffer,
300

getCurrentBuffer, 300
getCurrentRangeBuffer, 300
getMaxRange, 300
getName, 299
getRobot, 299
setMaxRange, 300
setRobot, 299

ArRangeDevice, 299
applyTransform, 302
ArRangeDevice, 301
cumulativeReadingBox, 302
cumulativeReadingPolar, 302
currentReadingBox, 303
currentReadingPolar, 303
getRawReadings, 304
lockDevice, 304
setCumulativeBufferSize, 304
setCurrentBufferSize, 305
tryLockDevice, 305
unlockDevice, 305

ArRangeDeviceThreaded
∼ArRangeDeviceThreaded,

307
ArRangeDeviceThreaded, 307

ArRangeDeviceThreaded, 307
lockDevice, 308
run, 308
runAsync, 308
runThread, 308
tryLockDevice, 309
unlockDevice, 309

ArRecurrentTask
∼ArRecurrentTask, 310
ArRecurrentTask, 310
go, 310
reset, 310

ArRecurrentTask, 310
done, 311
runThread, 311
task, 311

ArResolver
∼ArResolver, 312
ActionMap, 312
getDescription, 312

getName, 312
resolve, 312

ArResolver, 312
ArRetFunctor

∼ArRetFunctor, 314
invoke, 314
invokeR, 314
operator(), 314

ArRetFunctor, 314
ArRetFunctor1

∼ArRetFunctor1, 315
invokeR, 315

ArRetFunctor1, 315
invokeR, 316

ArRetFunctor1C
∼ArRetFunctor1C, 317
ArRetFunctor1C, 317–319
invokeR, 317

ArRetFunctor1C, 317
ArRetFunctor1C, 318, 319
invokeR, 319
setP1, 319
setThis, 320

ArRetFunctor2
∼ArRetFunctor2, 321
invokeR, 321

ArRetFunctor2, 321
invokeR, 322

ArRetFunctor2C
∼ArRetFunctor2C, 324
ArRetFunctor2C, 323, 325, 326
invokeR, 324

ArRetFunctor2C, 323
ArRetFunctor2C, 325, 326
invokeR, 326
setP1, 327
setP2, 327
setThis, 327

ArRetFunctor3
∼ArRetFunctor3, 329
invokeR, 329

ArRetFunctor3, 329
invokeR, 330

ArRetFunctor3C
∼ArRetFunctor3C, 333
ArRetFunctor3C, 332, 334–336

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 517

invokeR, 333
ArRetFunctor3C, 332

ArRetFunctor3C, 334–336
invokeR, 336
setP1, 337
setP2, 337
setP3, 337
setThis, 337, 338

ArRetFunctorC
∼ArRetFunctorC, 339
ArRetFunctorC, 339, 340
invokeR, 339

ArRetFunctorC, 339
ArRetFunctorC, 340
setThis, 340

ArRobot
∼ArRobot, 342
addRangeDevice, 349
areMotorsEnabled, 346
areSonarsEnabled, 346
ArRobot, 357
dropConnection, 356
failedConnect, 356
get, 344
getAnalog, 347
getAnalogPortSelected, 347
getBatteryVoltage, 346
getClosestSonarNumber, 349
getClosestSonarRange, 348
getCompass, 347
getCounter, 354
getDigIn, 347
getDigOut, 347
getEncoderPose, 348
getFlags, 346
getIOAnalog, 347
getIOAnalogSize, 347
getIODigIn, 347
getIODigInSize, 347
getIODigOut, 347
getIODigOutSize, 347
getIOPacketTime, 348
getKeyHandler, 355
getLeftVel, 346
getMaxRotVel, 345
getMaxTransVel, 345

getMotorPacCount, 348
getMoveDoneDist, 344
getName, 349
getNumSonar, 348
getParams, 348
getPose, 345
getPoseInterpNumReadings,

354
getResolver, 353
getRightVel, 346
getRobotDiagonal, 346
getRobotName, 345
getRobotRadius, 346
getRobotSubType, 345
getRobotType, 345
getRotVel, 346
getRunExitListCopy, 356
getSonarPacCount, 348
getStallValue, 346
getTh, 345
getVel, 346
getX, 345
getY, 345
handlePacket, 356
hasFrontBumpers, 348
hasRearBumpers, 348
hasTableSensingIR, 347
incCounter, 355
isCycleChained, 354
isLeftBreakBeamTriggered,

348
isLeftMotorStalled, 346
isLeftTableSensing-

IRTriggered, 347
isRightBreakBeamTriggered,

348
isRightMotorStalled, 346
isRightTableSensing-

IRTriggered, 347
keyHandlerExit, 356
lock, 355
madeConnection, 356
printActions, 353
processEncoderPacket, 356
processIOPacket, 356
processMotorPacket, 356

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

518 INDEX

processNewSonar, 356
processParamFile, 357
setCycleChained, 354
setHeadingDoneDiff, 344
setMoveDoneDist, 344
setName, 349
setPoseInterpNumReadings,

354
setResolver, 353
setUpPacketHandlers, 356
setUpSyncList, 356
tryLock, 355
unlock, 355
WAIT CONNECTED, 357
WAIT FAIL, 357
WAIT FAILED CONN, 357
WAIT INTR, 357
WAIT RUN EXIT, 357
WAIT TIMEDOUT, 357

ArRobot, 342
actionHandler, 358
addAction, 358
addConnectCB, 358
addDisconnectNormallyCB,

359
addDisconnectOnErrorCB,

359
addFailedConnectCB, 360
addPacketHandler, 360
addRunExitCB, 361
addSensorInterpTask, 361
addUserTask, 362
applyTransform, 362
ArRobot, 357
asyncConnect, 362
asyncConnectHandler, 363
attachKeyHandler, 363
blockingConnect, 364
checkRangeDevicesCumula-

tiveBox, 364
checkRangeDevicesCumula-

tivePolar, 365
checkRangeDevicesCurrent-

Box, 365
checkRangeDevicesCurrentPo-

lar, 366

clearDirectMotion, 366
com, 367
com2Bytes, 367
comInt, 367
comStr, 368
comStrN, 368
disableMotors, 368
disconnect, 368
enableMotors, 369
findAction, 369
findRangeDevice, 369
findTask, 369
findUserTask, 370
getActionMap, 370
getConnectionCycleMultiplier,

370
getConnectionTimeoutTime,

371
getControl, 371
getCycleTime, 371
getDeviceConnection, 371
getDirectMotionPrecedence-

Time, 372
getEncoderCorrectionCall-

back, 372
getEncoderTransform, 372
getLastPacketTime, 372
getPoseInterpPosition, 373
getRangeDeviceList, 373
getRobotParams, 373
getSonarRange, 373
getSonarReading, 374
getStateReflectionRefresh-

Time, 374
getSyncTaskRoot, 374
getToGlobalTransform, 375
getToLocalTransform, 375
hasRangeDevice, 375
init, 375
isConnected, 376
isDirectMotion, 376
isHeadingDone, 376
isMoveDone, 376
isRunning, 377
isSonarNew, 377
loadParamFile, 377

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 519

loopOnce, 377
move, 378
moveTo, 378
packetHandler, 378
printAllTasks, 379
printUserTasks, 379
remAction, 379
remConnectCB, 380
remDisconnectNormallyCB,

380
remDisconnectOnErrorCB,

380
remFailedConnectCB, 380
remPacketHandler, 381
remRangeDevice, 381
remRunExitCB, 381
remSensorInterpTask, 382
remUserTask, 382
robotLocker, 382
robotUnlocker, 383
run, 383
runAsync, 383
setConnectionCycleMultiplier,

383
setConnectionTimeoutTime,

384
setCycleTime, 384
setDeadReconPose, 384
setDeltaHeading, 384
setDeviceConnection, 385
setDirectMotionPrecedence-

Time, 385
setEncoderCorrectionCall-

back, 385
setEncoderTransform, 386
setHeading, 386
setMaxRotVel, 387
setMaxTransVel, 387
setRotVel, 387
setStateReflectionRefresh-

Time, 388
setVel, 388
setVel2, 388
stateReflector, 389
stop, 389
stopRunning, 389

waitForConnect, 389
waitForConnectOrConnFail,

390
waitForRunExit, 390
WaitState, 357
wakeAllConnOrFailWait-

ingThreads, 391
wakeAllConnWaitingThreads,

391
wakeAllRunExitWaitingTh-

reads, 391
wakeAllWaitingThreads, 391

ArRobotPacket
∼ArRobotPacket, 393
ArRobotPacket, 394
calcCheckSum, 393
finalize, 393
getID, 393
getTimeReceived, 393
setTimeReceived, 393
verifyCheckSum, 393

ArRobotPacket, 393
ArRobotPacket, 394
resetRead, 394

ArRobotPacketReceiver
∼ArRobotPacketReceiver, 395
ArRobotPacketReceiver, 396
getDeviceConnection, 395
isAllocatingPackets, 395
setDeviceConnection, 395

ArRobotPacketReceiver, 395
ArRobotPacketReceiver, 396
receivePacket, 396

ArRobotPacketSender
∼ArRobotPacketSender, 398
ArRobotPacketSender, 399
getDeviceConnection, 398
setDeviceConnection, 398

ArRobotPacketSender, 398
ArRobotPacketSender, 399
com, 399
com2Bytes, 399
comInt, 400
comStr, 400
comStrN, 400

ArRobotParams

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

520 INDEX

∼ArRobotParams, 402
ArRobotParams, 402
getAngleConvFactor, 403
getClass, 402
getDiffConvFactor, 403
getDistConvFactor, 403
getLaserFlipped, 404
getLaserPort, 404
getLaserPossessed, 404
getLaserPowerControlled, 404
getLaserX, 404
getLaserY, 404
getMaxRotVelocity, 402
getMaxVelocity, 402
getNumSonar, 403
getRangeConvFactor, 403
getRequestIOPackets, 402
getRobotDiagonal, 402
getRobotRadius, 402
getSonarTh, 404
getSonarX, 404
getSonarY, 404
getSubClass, 402
getVel2Divisor, 403
getVelConvFactor, 403
hasMoveCommand, 402
haveFrontBumpers, 403
haveNewTableSensingIR, 403
haveRearBumpers, 403
haveSonar, 404
haveTableSensingIR, 403
init, 402
isHolonomic, 402
numFrontBumpers, 403
numRearBumpers, 403

ArRobotParams, 402
ArSectors

∼ArSectors, 405
ArSectors, 405
clear, 405
didAll, 405
update, 405

ArSectors, 405
ArSensorReading

ArSensorReading, 408

ArSensorReading::newData,
407

getEncoderPoseTaken, 406
getPose, 406
getPoseTaken, 406
getSensorDX, 407
getSensorDY, 407
getSensorTh, 406
getSensorX, 406
getSensorY, 406
getThTaken, 407
getX, 406
getXTaken, 407
getY, 406
getYTaken, 407

ArSensorReading, 406
applyTransform, 408
ArSensorReading, 408
getCounterTaken, 408
getRange, 408
getSensorPosition, 409
isNew, 409
newData, 409
resetSensorPosition, 409

ArSensorReading::newData
ArSensorReading, 407

ArSerialConnection
∼ArSerialConnection, 411
ArSerialConnection, 411
OPEN ALREADY OPEN,

413
OPEN COULD NOT OPEN -

PORT, 412
OPEN COULD NOT SET -

BAUD, 413
OPEN COULD NOT SET -

UP PORT, 412
OPEN INVALID BAUD -

RATE, 413
openSimple, 411

ArSerialConnection, 411
close, 413
getBaud, 413
getHardwareControl, 413
getOpenMessage, 413
getPort, 414

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 521

getStatus, 414
getTimeRead, 414
isTimeStamping, 414
Open, 412
open, 415
read, 415
setBaud, 415
setHardwareControl, 416
setPort, 416
write, 416

ArSick
∼ArSick, 418
ArSick, 418
BAUD19200, 422
BAUD38400, 423
BAUD9600, 422
DEGREES100, 423
DEGREES180, 423
dropConnection, 422
failedConnect, 422
getDegrees, 421
getDeviceConnection, 419
getFilterNearDist, 421
getIncrement, 421
getLastReadingTime, 420
getSensorPosition, 419
getSensorPositionTh, 419
getSensorPositionX, 419
getSensorPositionY, 419
getSickPacCount, 420
INCREMENT HALF, 423
INCREMENT ONE, 423
isConnected, 419
isControllingPower, 421
isLaserFlipped, 421
isUsingSim, 421
madeConnection, 422
processPacket, 421
robotConnectCallback, 422
runOnce, 421
runThread, 421
sensorInterpCallback, 421
setDeviceConnection, 419
setFilterNearDist, 420
setRobot, 421
setSensorPosition, 419

simPacketHandler, 421
STATE CHANGE BAUD, 423
STATE CONFIGURE, 423
STATE CONNECTED, 423
STATE INIT, 423
STATE INSTALL MODE, 423
STATE NONE, 423
STATE SET MODE, 423
STATE START READINGS,

423
STATE WAIT FOR -

CONFIGURE ACK,
423

STATE WAIT FOR -
INSTALL MODE ACK,
423

STATE WAIT FOR -
POWER ON, 423

STATE WAIT FOR SET -
MODE ACK, 423

STATE WAIT FOR START -
ACK, 423

switchState, 422
tryingToConnect, 419

ArSick, 418
addConnectCB, 424
addDisconnectNormallyCB,

424
addDisconnectOnErrorCB,

424
addFailedConnectCB, 425
asyncConnect, 425
BaudRate, 422
blockingConnect, 426
configure, 426
configureShort, 426
Degrees, 423
disconnect, 426
filterReadings, 427
getConnectionTimeoutTime,

427
Increment, 423
internalConnectHandler, 427
internalConnectSim, 427
remConnectCB, 428

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

522 INDEX

remDisconnectNormallyCB,
428

remDisconnectOnErrorCB,
428

remFailedConnectCB, 428
runOnRobot, 429
setConnectionTimeoutTime,

429
State, 423

ArSickLogger
∼ArSickLogger, 430
ArSickLogger, 431
getDegDiff, 430
getDistDiff, 430
robotTask, 430
setDegDiff, 430
setDistDiff, 430

ArSickLogger, 430
addTagToLog, 431
ArSickLogger, 431

ArSickPacket
∼ArSickPacket, 432
ArSickPacket, 432
calcCRC, 432
finalize, 432
getID, 432
getTimeReceived, 433
setTimeReceived, 433
verifyCRC, 432

ArSickPacket, 432
duplicatePacket, 433
getReceivedAddress, 433
getSendingAddress, 434
resetRead, 434
setSendingAddress, 434

ArSickPacketReceiver
∼ArSickPacketReceiver, 435
ArSickPacketReceiver, 436
getDeviceConnection, 435
isAllocatingPackets, 435
setDeviceConnection, 435

ArSickPacketReceiver, 435
ArSickPacketReceiver, 436
receivePacket, 436

ArSignalHandler
∼ArSignalHandler, 438

nameSignal, 439
ArSignalHandler, 438

addHandlerCB, 440
block, 440
blockCommon, 440
blockCommonThisThread, 441
createHandlerNonThreaded,

441
createHandlerThreaded, 441
delHandlerCB, 441
getHandler, 442
handle, 442
runThread, 442
unblock, 442
unblockAll, 443
unhandle, 443

ArSocket
∼ArSocket, 444
accept, 445
addrHost, 446
ArSocket, 444, 447, 448
close, 445
connect, 444
connectTo, 444, 445
copy, 444
create, 444
findValidPort, 444
getError, 446
getErrorStr, 446
getFD, 446
getHostName, 447
getSockName, 445
getType, 446
hostAddr, 446
hostToNetOrder, 447
inAddr, 445
inPort, 445
inToA, 447
maxHostNameLen, 447
netToHostOrder, 447
open, 444
recvFrom, 445
sendTo, 445
setBroadcast, 445
setDoClose, 446
setLinger, 445

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 523

setNonBlock, 446
setReuseAddress, 446
sockAddrIn, 445
sockAddrLen, 447

ArSocket, 444
ArSocket, 447, 448
copy, 448
init, 448
read, 448
readString, 449
shutdown, 449
transfer, 449
write, 449
writeString, 450

ArSonarDevice
∼ArSonarDevice, 451
ArSonarDevice, 451
processReadings, 451
setCumulativeMaxRange, 451
setRobot, 451

ArSonarDevice, 451
addReading, 452

ArSonyPacket
ArSonyPacket, 453
byte2ToBuf, 453
uByteToBuf, 453

ArSonyPacket, 453
byte2ToBufAtPos, 453

ArSonyPTZ
canZoom, 455
getMaxNegPan, 456
getMaxNegTilt, 456
getMaxPosPan, 456
getMaxPosTilt, 456
getMaxZoom, 456
getMinZoom, 456
getPan, 456
getTilt, 456
getZoom, 456
init, 455
MAX PAN, 457
MAX TILT, 457
MAX ZOOM, 457
MIN ZOOM, 457
pan, 455
panRel, 455

panTilt, 455
panTiltRel, 455
tilt, 455
tiltRel, 455
zoom, 456
zoomRel, 456

ArSonyPTZ, 455
ArSyncTask

ArSyncTask, 460
getFunctor, 459
getName, 459
getState, 458
setState, 458

ArSyncTask, 458
∼ArSyncTask, 460
addNewBranch, 460
addNewLeaf, 460
ArSyncTask, 460
find, 461
findNonRecursive, 461, 462
print, 462
run, 462

ArTaskPool
∼ArTaskPool, 463
ArTaskPool, 463
forceUninit, 463
getPool, 463
init, 463
runTask, 463
setPool, 463
uninit, 463

ArTaskPool, 463
ourPool, 464

ArTaskState
ACTIVE, 465
FAILURE, 465
INIT, 465
RESUME, 465
SUCCESS, 465
SUSPEND, 465
USER START, 465

ArTaskState, 465
State, 465

ArTcpConnection
∼ArTcpConnection, 466
ArTcpConnection, 466

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

524 INDEX

getSocket, 467
internalOpen, 467
OPEN BAD HOST, 467
OPEN CON REFUSED, 468
OPEN NET FAIL, 467
OPEN NO ROUTE, 468
openSimple, 466
setStatus, 467

ArTcpConnection, 466
close, 468
getHost, 468
getOpenMessage, 468
getPort, 468
getStatus, 469
getTimeRead, 469
isTimeStamping, 469
Open, 467
open, 469
read, 470
setSocket, 470
write, 470

ArThread
∼ArThread, 472
ArThread, 472
cancel, 473
cancelAll, 474
create, 472
detach, 473
getBlockAllSignals, 473
getError, 473
getFunc, 473
getJoinable, 473
getRunning, 473
getRunningWithLock, 473
getThread, 473
join, 473
joinAll, 474
lock, 473
myRunning, 474
setRunning, 473
STATUS ALREADY -

DETATCHED, 475
STATUS FAILED, 475
STATUS INVALID, 475
STATUS JOIN SELF, 475

STATUS NO SUCH -
THREAD, 475

STATUS NORESOURCE, 475
stopAll, 474
stopRunning, 472
tryLock, 473
unlock, 473
yield, 474

ArThread, 472
init, 475
self, 475
Status, 475

ArTime
∼ArTime, 476
addMSec, 477
ArTime, 476
getMSec, 477
getSec, 477
isAfter, 476
isAt, 476
isBefore, 476
mSecSince, 476
mSecTo, 476
print, 477
secSince, 476
secTo, 476
setMSec, 477
setSec, 477
setToNow, 476

ArTime, 476
ArTransform

∼ArTransform, 478
ArTransform, 478
doTransform, 478
getTh, 478

ArTransform, 478
doInvTransform, 479
doTransform, 479
setTransform, 479

ArTypes
Byte, 481
Byte2, 481
Byte4, 481
UByte, 481
UByte2, 481
UByte4, 481

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 525

ArTypes, 481
ArUtil

BIT0, 484
BIT1, 484
BIT10, 484
BIT11, 484
BIT12, 484
BIT13, 484
BIT14, 484
BIT15, 484
BIT2, 484
BIT3, 484
BIT4, 484
BIT5, 484
BIT6, 484
BIT7, 484
BIT8, 484
BIT9, 484
REGKEY CLASSES ROOT,

484
REGKEY CURRENT -

CONFIG, 484
REGKEY CURRENT USER,

484
REGKEY LOCAL -

MACHINE, 484
REGKEY USERS, 484

ArUtil, 482
appendSlash, 485
BITS, 484
deleteSet, 485
deleteSetPairs, 485
escapeSpaces, 485
findFile, 485
fixSlashes, 486
fixSlashesBackward, 486
fixSlashesForward, 486
getStringFromFile, 486
getStringFromRegistry, 486
getTime, 487
REGKEY, 484
sizeFile, 487
sleep, 487
splitString, 488
strcmp, 488, 489
stripDir, 490

stripFile, 490
ArVCC4

ArVCC4, 493
canZoom, 492
connectHandler, 491
getMaxNegPan, 492
getMaxNegTilt, 492
getMaxPanSlew, 493
getMaxPosPan, 491
getMaxPosTilt, 492
getMaxTiltSlew, 493
getMaxZoom, 493
getMinPanSlew, 493
getMinTiltSlew, 493
getMinZoom, 493
getPan, 492
getPanSlew, 493
getTilt, 492
getTiltSlew, 493
getZoom, 492
haltPanTilt, 492
haltZoom, 492
init, 491
pan, 491
panRel, 491
panSlew, 492
panTilt, 492
panTiltRel, 491
power, 491
preparePacket, 492
tilt, 491
tiltRel, 491
tiltSlew, 492
zoom, 492

ArVCC4, 491
ArVCC4, 493

ArVCC4Commands
CONTROL, 496
DELIM, 495
DEVICEID, 495
FOOTER, 496
HEADER, 496
INIT, 495
PANSLEW, 495
PANTILT, 495
POWER, 496

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

526 INDEX

SETRANGE, 496
STOP, 495
TILTSLEW, 495
ZOOM, 496
ZOOMSTOP, 496

ArVCC4Commands, 495
ArVCC4Packet

∼ArVCC4Packet, 497
ArVCC4Packet, 497
finalize, 497

ArVCC4Packet, 497
asyncConnect

ArRobot, 362
ArSick, 425

asyncConnectHandler
ArRobot, 363

atan2
ArMath, 231

attachKeyHandler
ArRobot, 363

awaitExec
ArDPPTU, 126

BACKSPACE
ArKeyHandler, 219

BASE
ArDPPTUCommands, 130

baseActivate
ArMode, 237

baseDeactivate
ArMode, 237

baseHelp
ArMode, 236

basePanSlew
ArDPPTU, 127

baseTiltSlew
ArDPPTU, 127

BAUD19200
ArSick, 422

BAUD38400
ArSick, 423

BAUD9600
ArSick, 422

BaudRate
ArSick, 422

beginInvalidationSweep

ArRangeBuffer, 295
beginRedoBuffer

ArRangeBuffer, 295
BIT0

ArUtil, 484
BIT1

ArUtil, 484
BIT10

ArUtil, 484
BIT11

ArUtil, 484
BIT12

ArUtil, 484
BIT13

ArUtil, 484
BIT14

ArUtil, 484
BIT15

ArUtil, 484
BIT2

ArUtil, 484
BIT3

ArUtil, 484
BIT4

ArUtil, 484
BIT5

ArUtil, 484
BIT6

ArUtil, 484
BIT7

ArUtil, 484
BIT8

ArUtil, 484
BIT9

ArUtil, 484
BITS

ArUtil, 484
blank

ArDPPTU, 124
BLOB DATA SIZE

ArACTS 1 2, 86
block

ArSignalHandler, 440
blockCommon

ArSignalHandler, 440
blockCommonThisThread

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 527

ArSignalHandler, 441
blockingConnect

ArRobot, 364
ArSick, 426

BOOL
ArArg, 101

Boolean
ArPref, 281

broadcast
ArCondition, 116

bufToByte
ArBasePacket, 108

bufToByte2
ArBasePacket, 108

bufToByte4
ArBasePacket, 108

bufToData
ArBasePacket, 110

bufToStr
ArBasePacket, 110

bufToUByte
ArBasePacket, 108

bufToUByte2
ArBasePacket, 108

bufToUByte4
ArBasePacket, 108

BUMPSTALL
ArCommands, 114

Byte
ArTypes, 481

Byte2
ArTypes, 481

byte2ToBuf
ArAMPTUPacket, 97
ArBasePacket, 107
ArSonyPacket, 453

byte2ToBufAtPos
ArSonyPacket, 453

Byte4
ArTypes, 481

byte4ToBuf
ArBasePacket, 107

byteToBuf
ArAMPTUPacket, 97
ArBasePacket, 107

calcCheckSum
ArRobotPacket, 393

calcCRC
ArSickPacket, 432

CALCOMP
ArCommands, 115

cancel
ArThread, 473

cancelAll
ArThread, 474

cancelGoal
ArActionGoto, 56

canGetRealPanTilt
ArPTZ, 288

canGetRealZoom
ArPTZ, 288

canZoom
ArAMPTU, 93
ArDPPTU, 124
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 492

checkArgument
ArArgumentParser, 104

checkArm
ArP2Arm, 265

checkKeys
ArKeyHandler, 218

checkParameterArgument
ArArgumentParser, 104

checkRangeDevicesCumulativeBox
ArRobot, 364

checkRangeDevicesCumulativePolar
ArRobot, 365

checkRangeDevicesCurrentBox
ArRobot, 365

checkRangeDevicesCurrentPolar
ArRobot, 366

clear
ArSectors, 405

clearDirectMotion
ArRobot, 366

clearPointers
ArArg, 100

CLOSE
ArCommands, 113

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

528 INDEX

close
ArDeviceConnection, 120
ArLog, 223
ArLogFileConnection, 226
ArModuleLoader, 253
ArNetServer, 257
ArSerialConnection, 413
ArSocket, 445
ArTcpConnection, 468

closeAll
ArModuleLoader, 252

closePort
ArACTS 1 2, 87

Colbert
ArLog, 224

com
ArRobot, 367
ArRobotPacketSender, 399

com2Bytes
ArRobot, 367
ArRobotPacketSender, 399

comInt
ArRobot, 367
ArRobotPacketSender, 400

COMM FAILED
ArP2Arm, 264

Commands
ArCommands, 113
ArGripperCommands, 202

comStr
ArRobot, 368
ArRobotPacketSender, 400

comStrN
ArRobot, 368
ArRobotPacketSender, 400

CONFIG
ArCommands, 114

configure
ArSick, 426

configureShort
ArSick, 426

connect
ArSocket, 444

connectHandler
ArGripper, 197
ArPTZ, 289

ArVCC4, 491
connectTo

ArSocket, 444, 445
CONT

ArAMPTUCommands, 95
CONTROL

ArDPPTUCommands, 130
ArVCC4Commands, 496

convertDegToTicks
ArP2Arm, 262

convertTicksToDeg
ArP2Arm, 263

copy
ArSocket, 444, 448

cos
ArMath, 231

COULD NOT OPEN PORT
ArP2Arm, 264

COULD NOT SET UP PORT
ArP2Arm, 265

create
ArASyncTask, 105
ArSocket, 444
ArThread, 472

createHandlerNonThreaded
ArSignalHandler, 441

createHandlerThreaded
ArSignalHandler, 441

cumulativeReadingBox
ArRangeDevice, 302

cumulativeReadingPolar
ArRangeDevice, 302

currentReadingBox
ArRangeDevice, 303

currentReadingPolar
ArRangeDevice, 303

DATA HEADER
ArACTS 1 2, 86

dataToBuf
ArBasePacket, 111

DCHEAD
ArCommands, 114

deactivate
ArAction, 39
ArActionGroup, 58

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 529

ArActionKeydrive, 70
ArMode, 236
ArModeCamera, 239
ArModeGripper, 241
ArModeSonar, 243
ArModeTeleop, 245
ArModeWander, 247

Degrees
ArSick, 423

DEGREES100
ArSick, 423

DEGREES180
ArSick, 423

degToRad
ArMath, 232

deleteSet
ArUtil, 485

deleteSetPairs
ArUtil, 485

delHandlerCB
ArSignalHandler, 441

DELIM
ArDPPTUCommands, 130
ArVCC4Commands, 495

delRobot
Aria, 204

deltaHeading
ArActionInput, 65

deltaVel
ArActionInput, 65

detach
ArThread, 473

DEVICEID
ArVCC4Commands, 495

DHEAD
ArCommands, 114

didAll
ArSectors, 405

DIGOUT
ArCommands, 114

DISABLE
ArDPPTUCommands, 130

disableMotors
ArRobot, 368

disableReset
ArDPPTU, 124

disconnect
ArRobot, 368
ArSick, 426

disMon
ArDPPTU, 126

distanceBetween
ArMath, 232

doInvTransform
ArTransform, 479

done
ArRecurrentTask, 311

doTransform
ArTransform, 478, 479

DOUBLE
ArArg, 101

Double
ArPref, 281

DOWN
ArKeyHandler, 219

down
ArActionKeydrive, 71

dropConnection
ArRobot, 356
ArSick, 422

duplicatePacket
ArBasePacket, 111
ArSickPacket, 433

empty
ArBasePacket, 111

ENABLE
ArCommands, 113
ArDPPTUCommands, 130

enableMotors
ArRobot, 369

ENCODER
ArCommands, 114

endAverage
ArActionDesired, 52

endCal
ArJoyHandler, 215

endInvalidationSweep
ArRangeBuffer, 295

endRedoBuffer
ArRangeBuffer, 296

ENDSIM

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

530 INDEX

ArCommands, 114
enMon

ArDPPTU, 126
ENTER

ArKeyHandler, 219
ESCAPE

ArKeyHandler, 219
escapeSpaces

ArUtil, 485
ESTOP

ArCommands, 114
exit

Aria, 206
ArModule, 249

F1
ArKeyHandler, 219

F2
ArKeyHandler, 219

F3
ArKeyHandler, 219

F4
ArKeyHandler, 219

fabs
ArMath, 232

FACTORY
ArDPPTUCommands, 130

factorySet
ArDPPTU, 125

failedConnect
ArRobot, 356
ArSick, 422

FAILURE
ArTaskState, 465

File
ArLog, 224

filterReadings
ArSick, 427

finalize
ArAMPTUPacket, 97
ArBasePacket, 107
ArDPPTUPacket, 132
ArRobotPacket, 393
ArSickPacket, 432
ArVCC4Packet, 497

find

ArSyncTask, 461
findAction

ArRobot, 369
findAngleTo

ArPose, 276
findDistanceTo

ArPose, 276
findFile

ArUtil, 485
findNonRecursive

ArSyncTask, 461, 462
findRangeDevice

ArRobot, 369
findRobot

Aria, 206
findTask

ArRobot, 369
findUserTask

ArRobot, 370
findValidPort

ArSocket, 444
fire

ArAction, 40
ArActionAvoidFront, 42
ArActionAvoidSide, 44
ArActionBumpers, 46
ArActionConstantVelocity, 48
ArActionGoto, 57
ArActionInput, 66
ArActionJoydrive, 69
ArActionKeydrive, 71
ArActionLimiterBackwards,

74
ArActionLimiterForwards, 76
ArActionLimiterTableSensor,

78
ArActionStallRecover, 80
ArActionStop, 82
ArActionTurn, 84

FIRST
ArListPos, 222

fixAngle
ArMath, 233

fixSlashes
ArUtil, 486

fixSlashesBackward

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 531

ArUtil, 486
fixSlashesForward

ArUtil, 486
FOOTER

ArVCC4Commands, 496
forceUninit

ArTaskPool, 463

GENIO
ArGripper, 197

get
ArRobot, 344

getActionList
ArActionGroup, 58

getActionMap
ArRobot, 370

getAdjusted
ArJoyHandler, 215

getAnalog
ArRobot, 347

getAnalogPortSelected
ArRobot, 347

getAngleConvFactor
ArRobotParams, 403

getArea
ArACTSBlob, 90

getArg
ArAction, 39

getArgc
ArArgumentBuilder, 102

getArgv
ArArgumentBuilder, 102

getArmVersion
ArP2Arm, 262

GETAUX
ArCommands, 114

getBasePanSlew
ArDPPTU, 128

getBaseTiltSlew
ArDPPTU, 128

getBatteryVoltage
ArRobot, 346

getBaud
ArSerialConnection, 413

getBlob
ArACTS 1 2, 87

getBlockAllSignals
ArThread, 473

getBool
ArArg, 100
ArPref, 281

getBoolSet
ArPref, 281

getBottom
ArACTSBlob, 90

getBreakBeamState
ArGripper, 198

getBuf
ArBasePacket, 109

getBuffer
ArRangeBuffer, 296

getButton
ArJoyHandler, 215

getClass
ArRobotParams, 402

getCloseDist
ArActionGoto, 56

getClosestBox
ArRangeBuffer, 296

getClosestPolar
ArRangeBuffer, 297

getClosestSonarNumber
ArRobot, 349

getClosestSonarRange
ArRobot, 348

getCompass
ArRobot, 347

getConnectionCycleMultiplier
ArRobot, 370

getConnectionTimeoutTime
ArRobot, 371
ArSick, 427

getControl
ArRobot, 371

getCounter
ArRobot, 354

getCounterTaken
ArSensorReading, 408

getCumulativeBuffer
ArRangeDevice, 300

getCumulativeRangeBuffer
ArRangeDevice, 300

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

532 INDEX

getCurrentBuffer
ArRangeDevice, 300

getCurrentRangeBuffer
ArRangeDevice, 300

getCycleTime
ArRobot, 371

getData
ArACTS 1 2, 86

getDegDiff
ArSickLogger, 430

getDegrees
ArSick, 421

getDeltaHeading
ArActionDesired, 50

getDeltaHeadingDesiredChannel
ArActionDesired, 51

getDeltaHeadingStrength
ArActionDesired, 50

getDescription
ArAction, 39
ArArg, 100
ArResolver, 312

getDesired
ArAction, 39
ArActionAvoidFront, 41
ArActionAvoidSide, 43
ArActionBumpers, 45
ArActionConstantVelocity, 47
ArActionGoto, 57
ArActionInput, 65
ArActionJoydrive, 68
ArActionKeydrive, 70
ArActionLimiterBackwards,

73
ArActionLimiterForwards, 75
ArActionLimiterTableSensor,

77
ArActionStallRecover, 79
ArActionStop, 81
ArActionTurn, 83

getDeviceConnection
ArPTZ, 289
ArRobot, 371
ArRobotPacketReceiver, 395
ArRobotPacketSender, 398
ArSick, 419

ArSickPacketReceiver, 435
getDiffConvFactor

ArRobotParams, 403
getDigIn

ArRobot, 347
getDigOut

ArRobot, 347
getDirectMotionPrecedenceTime

ArRobot, 372
getDirectory

Aria, 206
getDistConvFactor

ArRobotParams, 403
getDistDiff

ArSickLogger, 430
getDouble

ArArg, 100
ArPref, 281

getDoubles
ArJoyHandler, 215

getDoubleSet
ArPref, 282

getEncoderCorrectionCallback
ArRobot, 372

getEncoderPose
ArRobot, 348

getEncoderPoseTaken
ArSensorReading, 406

getEncoderTransform
ArRobot, 372

getError
ArCondition, 116
ArMutex, 255
ArSocket, 446
ArThread, 473

getErrorStr
ArSocket, 446

getFD
ArSocket, 446

getFilterNearDist
ArSick, 421

getFlags
ArRobot, 346

getFunc
ArThread, 473

getFunctor

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 533

ArSyncTask, 459
getGoal

ArActionGoto, 56
getGraspTime

ArGripper, 198
getGripState

ArGripper, 198
getHandler

ArSignalHandler, 442
getHardwareControl

ArSerialConnection, 413
getHeaderLength

ArBasePacket, 109
getHeading

ArActionDesired, 50
getHeadingStrength

ArActionDesired, 50
getHost

ArTcpConnection, 468
getHostName

ArSocket, 447
getID

ArRobotPacket, 393
ArSickPacket, 432

getIncrement
ArSick, 421

getInt
ArArg, 100
ArPref, 282

getIntSet
ArPref, 282

getIOAnalog
ArRobot, 347

getIOAnalogSize
ArRobot, 347

getIODigIn
ArRobot, 347

getIODigInSize
ArRobot, 347

getIODigOut
ArRobot, 347

getIODigOutSize
ArRobot, 347

getIOPacketTime
ArRobot, 348

getJoinable

ArThread, 473
getJoint

ArP2Arm, 262
getJointPos

ArP2Arm, 262
getJointPosTicks

ArP2Arm, 262
getKey

ArKeyHandler, 218
ArMode, 236

getKey2
ArMode, 236

getKeyHandler
Aria, 205
ArRobot, 355

getLaserFlipped
ArRobotParams, 404

getLaserPort
ArRobotParams, 404

getLaserPossessed
ArRobotParams, 404

getLaserPowerControlled
ArRobotParams, 404

getLaserX
ArRobotParams, 404

getLaserY
ArRobotParams, 404

getLastPacketTime
ArRobot, 372

getLastReadingTime
ArSick, 420

getLastStatusTime
ArP2Arm, 262

getLeft
ArACTSBlob, 90

getLeftVel
ArRobot, 346

getLength
ArBasePacket, 109

getLogFile
ArLogFileConnection, 227

getLogPose
ArLogFileConnection, 226

getMaxLength
ArBasePacket, 109

getMaxNegPan

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

534 INDEX

ArAMPTU, 93
ArDPPTU, 126
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

getMaxNegTilt
ArAMPTU, 93
ArDPPTU, 126
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

getMaxNegVel
ArActionDesired, 50

getMaxNegVelDesiredChannel
ArActionDesired, 51

getMaxNegVelStrength
ArActionDesired, 50

getMaxPanSlew
ArVCC4, 493

getMaxPosPan
ArAMPTU, 93
ArDPPTU, 126
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 491

getMaxPosTilt
ArAMPTU, 93
ArDPPTU, 126
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

getMaxRange
ArRangeDevice, 300

getMaxRotVel
ArActionDesired, 50
ArRobot, 345

getMaxRotVelDesiredChannel
ArActionDesired, 51

getMaxRotVelocity
ArRobotParams, 402

getMaxRotVelStrength
ArActionDesired, 50

getMaxTiltSlew
ArVCC4, 493

getMaxTransVel
ArRobot, 345

getMaxVel
ArActionDesired, 50

getMaxVelDesiredChannel
ArActionDesired, 51

getMaxVelocity
ArRobotParams, 402

getMaxVelStrength
ArActionDesired, 50

getMaxZoom
ArPTZ, 289
ArSonyPTZ, 456
ArVCC4, 493

getMinPanSlew
ArVCC4, 493

getMinTiltSlew
ArVCC4, 493

getMinZoom
ArPTZ, 289
ArSonyPTZ, 456
ArVCC4, 493

getMotorPacCount
ArRobot, 348

getMoveDoneDist
ArRobot, 344

getMoving
ArP2Arm, 262

getMSec
ArTime, 477

getMSecSinceLastPacket
ArGripper, 198

getMutex
ArMutex, 255

getName
ArAction, 39
ArArg, 99
ArMode, 235
ArRangeDevice, 299
ArResolver, 312
ArRobot, 349
ArSyncTask, 459

getNumArgs
ArAction, 39

getNumberOfReadings
ArInterpolation, 209

getNumBlobs
ArACTS 1 2, 87

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 535

getNumSonar
ArRobot, 348
ArRobotParams, 403

getOpenMessage
ArDeviceConnection, 120
ArLogFileConnection, 227
ArSerialConnection, 413
ArTcpConnection, 468

getPaddleState
ArGripper, 198

getPan
ArAMPTU, 93
ArDPPTU, 128
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

getPanAccel
ArDPPTU, 128

getPanSlew
ArDPPTU, 128
ArVCC4, 493

getParams
ArRobot, 348

getPool
ArTaskPool, 463

getPort
ArSerialConnection, 414
ArTcpConnection, 468

getPose
ArArg, 100
ArInterpolation, 210
ArPose, 276
ArRobot, 345
ArSensorReading, 406

getPoseInterpNumReadings
ArRobot, 354

getPoseInterpPosition
ArRobot, 373

getPoseTaken
ArRangeBuffer, 293
ArSensorReading, 406

getRange
ArSensorReading, 408

getRangeConvFactor
ArRobotParams, 403

getRangeDeviceList

ArRobot, 373
getRawReadings

ArRangeDevice, 304
getReadLength

ArBasePacket, 109
getRealPan

ArPTZ, 288
getRealTilt

ArPTZ, 288
getRealZoom

ArPTZ, 288
getReceivedAddress

ArSickPacket, 433
getRequestIOPackets

ArRobotParams, 402
getResolver

ArRobot, 353
getRight

ArACTSBlob, 90
getRightVel

ArRobot, 346
getRobot

ArACTS 1 2, 85
ArModule, 249
ArP2Arm, 262
ArRangeDevice, 299

getRobotDiagonal
ArRobot, 346
ArRobotParams, 402

getRobotList
Aria, 205

getRobotName
ArRobot, 345

getRobotParams
ArRobot, 373

getRobotRadius
ArRobot, 346
ArRobotParams, 402

getRobotSubType
ArRobot, 345

getRobotType
ArRobot, 345

getRotVel
ArRobot, 346

getRunExitListCopy
ArRobot, 356

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

536 INDEX

getRunning
ArThread, 473

getRunningWithLock
ArThread, 473

getSec
ArTime, 477

getSendingAddress
ArSickPacket, 434

getSensorDX
ArSensorReading, 407

getSensorDY
ArSensorReading, 407

getSensorPosition
ArSensorReading, 409
ArSick, 419

getSensorPositionTh
ArSick, 419

getSensorPositionX
ArSick, 419

getSensorPositionY
ArSick, 419

getSensorTh
ArSensorReading, 406

getSensorX
ArSensorReading, 406

getSensorY
ArSensorReading, 406

getSetCount
ArPref, 282

getSickPacCount
ArSick, 420

getSize
ArRangeBuffer, 293

getSocket
ArTcpConnection, 467

getSockName
ArSocket, 445

getSonarPacCount
ArRobot, 348

getSonarRange
ArRobot, 373

getSonarReading
ArRobot, 374

getSonarTh
ArRobotParams, 404

getSonarX

ArRobotParams, 404
getSonarY

ArRobotParams, 404
getSpeed

ArActionGoto, 56
getSpeeds

ArJoyHandler, 214
getStallValue

ArRobot, 346
getState

ArSyncTask, 458
getStateReflectionRefreshTime

ArRobot, 374
getStats

ArJoyHandler, 214
getStatus

ArDeviceConnection, 120
ArLogFileConnection, 227
ArP2Arm, 262
ArSerialConnection, 414
ArTcpConnection, 469

getStatusMessage
ArDeviceConnection, 120

getStopIfNoButtonPressed
ArActionJoydrive, 67

getString
ArArg, 100
ArPref, 283

getStringFromFile
ArUtil, 486

getStringFromRegistry
ArUtil, 486

getStringSet
ArPref, 283

getSubClass
ArRobotParams, 402

getSyncTaskRoot
ArRobot, 374

getTh
ArPose, 275
ArRobot, 345
ArTransform, 478

getThRad
ArPose, 275

getThread
ArThread, 473

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 537

getThTaken
ArSensorReading, 407

getTilt
ArAMPTU, 93
ArDPPTU, 128
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

getTiltAccel
ArDPPTU, 128

getTiltSlew
ArDPPTU, 128
ArVCC4, 493

getTime
ArUtil, 487

getTimeRead
ArDeviceConnection, 121
ArLogFileConnection, 227
ArSerialConnection, 414
ArTcpConnection, 469

getTimeReceived
ArRobotPacket, 393
ArSickPacket, 433

getToGlobalTransform
ArRobot, 375

getToLocalTransform
ArRobot, 375

getTop
ArACTSBlob, 90

getType
ArArg, 101
ArGripper, 199
ArSocket, 446

getUnfiltered
ArJoyHandler, 216

getUnitNumber
ArAMPTUPacket, 98

getUseOSCal
ArActionJoydrive, 69
ArJoyHandler, 216

getVel
ArActionDesired, 49
ArRobot, 346

getVel2Divisor
ArRobotParams, 403

getVelConvFactor

ArRobotParams, 403
getVelDesiredChannel

ArActionDesired, 51
getVelStrength

ArActionDesired, 50
getX

ArPose, 275
ArRobot, 345
ArSensorReading, 406

getXCG
ArACTSBlob, 90

getXTaken
ArSensorReading, 407

getY
ArPose, 275
ArRobot, 345
ArSensorReading, 406

getYCG
ArACTSBlob, 90

getYTaken
ArSensorReading, 407

getZoom
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

giveUpKeys
ArActionKeydrive, 71

go
ArRecurrentTask, 310

GRIP CLOSE
ArGripperCommands, 202

GRIP OPEN
ArGripperCommands, 202

GRIP PRESSURE
ArGripperCommands, 202

GRIP STOP
ArGripperCommands, 202

gripClose
ArGripper, 199

gripOpen
ArGripper, 199

GRIPPAC
ArGripper, 197

GRIPPER
ArCommands, 114

GRIPPER DEPLOY

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

538 INDEX

ArGripperCommands, 202
GRIPPER HALT

ArGripperCommands, 202
GRIPPER STORE

ArGripperCommands, 202
gripperDeploy

ArGripper, 199
gripperHalt

ArGripper, 199
GRIPPERPACREQUEST

ArCommands, 114
gripperStore

ArGripper, 199
GRIPPERVAL

ArCommands, 114
gripPressure

ArGripper, 200
gripStop

ArGripper, 200

HALT
ArDPPTUCommands, 130

haltAll
ArDPPTU, 126

haltPan
ArDPPTU, 126

haltPanTilt
ArVCC4, 492

haltTilt
ArDPPTU, 126

haltZoom
ArVCC4, 492

handle
ArSignalHandler, 442

handlePacket
ArRobot, 356

hasFrontBumpers
ArRobot, 348

hasMoveCommand
ArRobotParams, 402

hasRangeDevice
ArRobot, 375

hasRearBumpers
ArRobot, 348

hasTableSensingIR
ArRobot, 347

haveAchievedGoal
ArActionGoto, 56

haveFrontBumpers
ArRobotParams, 403

haveJoystick
ArJoyHandler, 213

haveNewTableSensingIR
ArRobotParams, 403

haveRearBumpers
ArRobotParams, 403

haveSonar
ArRobotParams, 404

haveTableSensingIR
ArRobotParams, 403

HEAD
ArCommands, 114

HEADER
ArVCC4Commands, 496

help
ArMode, 237
ArModeCamera, 240
ArModeGripper, 242
ArModeSonar, 244
ArModeTeleop, 245
ArModeWander, 247

highMotPower
ArDPPTU, 127

home
ArP2Arm, 266

hostAddr
ArSocket, 446

hostToNetOrder
ArSocket, 447

IMMED
ArDPPTUCommands, 131

immedExec
ArDPPTU, 125

inAddr
ArSocket, 445

incCounter
ArRobot, 355

Increment
ArSick, 423

INCREMENT HALF
ArSick, 423

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 539

INCREMENT ONE
ArSick, 423

indepMove
ArDPPTU, 127

InfoPacket
ArP2Arm, 264

INIT
ArAMPTUCommands, 96
ArDPPTUCommands, 130
ArTaskState, 465
ArVCC4Commands, 495

init
ArAMPTU, 92
ArDPPTU, 124
Aria, 206
ArJoyHandler, 213
ArLog, 224
ArModule, 250
ArP2Arm, 266
ArPTZ, 287
ArRobot, 375
ArRobotParams, 402
ArSocket, 448
ArSonyPTZ, 455
ArTaskPool, 463
ArThread, 475
ArVCC4, 491

initMon
ArDPPTU, 126

inPort
ArSocket, 445

INT
ArArg, 101

Integer
ArPref, 281

internalConnectHandler
ArSick, 427

internalConnectSim
ArSick, 427

internalGreeting
ArNetServer, 257

internalHelp
ArNetServer, 257, 258

internalOpen
ArLogFileConnection, 226
ArTcpConnection, 467

internalQuit
ArNetServer, 258

internalShutdown
ArNetServer, 258

inToA
ArSocket, 447

INVALID
ArArg, 101

INVALID JOINT
ArP2Arm, 265

INVALID POSITION
ArP2Arm, 265

invalidateReading
ArRangeBuffer, 297

invert
ArACTS 1 2, 87

invoke
ArFunctor, 133
ArFunctor1, 135, 136
ArFunctor1C, 137, 139
ArFunctor2, 141, 142
ArFunctor2C, 144, 147
ArFunctor3, 150, 151
ArFunctor3C, 155, 158, 159
ArFunctorC, 162
ArGlobalFunctor, 165
ArGlobalFunctor1, 167, 168
ArGlobalFunctor2, 170, 172
ArGlobalFunctor3, 175, 178
ArPeriodicTask, 272
ArRetFunctor, 314

invokeR
ArGlobalRetFunctor, 181
ArGlobalRetFunctor1, 183,

184
ArGlobalRetFunctor2, 186,

188
ArGlobalRetFunctor3, 190,

192, 193
ArRetFunctor, 314
ArRetFunctor1, 315, 316
ArRetFunctor1C, 317, 319
ArRetFunctor2, 321, 322
ArRetFunctor2C, 324, 326
ArRetFunctor3, 329, 330
ArRetFunctor3C, 333, 336

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

540 INDEX

ArRetFunctorC, 339
IOREQUEST

ArCommands, 114
isActive

ArAction, 38
isAfter

ArTime, 476
isAllocatingPackets

ArRobotPacketReceiver, 395
ArSickPacketReceiver, 435

isAt
ArTime, 476

isBefore
ArTime, 476

isConnected
ArACTS 1 2, 85
ArRobot, 376
ArSick, 419

isControllingPower
ArSick, 421

isCycleChained
ArRobot, 354

isDirectMotion
ArRobot, 376

isGood
ArP2Arm, 262

isGripMoving
ArGripper, 200

isHeadingDone
ArRobot, 376

isHolonomic
ArRobotParams, 402

isLaserFlipped
ArSick, 421

isLeftBreakBeamTriggered
ArRobot, 348

isLeftMotorStalled
ArRobot, 346

isLeftTableSensingIRTriggered
ArRobot, 347

isLiftMaxed
ArGripper, 200

isLiftMoving
ArGripper, 200

isMoveDone
ArRobot, 376

isNew
ArSensorReading, 409

isOpen
ArNetServer, 257

isPowered
ArP2Arm, 262

isRightBreakBeamTriggered
ArRobot, 348

isRightMotorStalled
ArRobot, 346

isRightTableSensingIRTriggered
ArRobot, 347

isRunning
ArPeriodicTask, 272
ArRobot, 377

isSonarNew
ArRobot, 377

isTimeStamping
ArDeviceConnection, 121
ArLogFileConnection, 228
ArSerialConnection, 414
ArTcpConnection, 469

isUsingSim
ArSick, 421

join
ArThread, 473

joinAll
ArThread, 474

JOYDRIVE
ArCommands, 114

joystickInited
ArActionJoydrive, 67

KEY
ArKeyHandler, 219

keyHandlerExit
ArRobot, 356

LAST
ArListPos, 222

LEFT
ArKeyHandler, 219

left
ArActionKeydrive, 71

LIFT CARRY

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 541

ArGripperCommands, 203
LIFT DOWN

ArGripperCommands, 202
LIFT STOP

ArGripperCommands, 202
LIFT UP

ArGripperCommands, 202
liftCarry

ArGripper, 200
liftDown

ArGripper, 201
liftStop

ArGripper, 201
liftUp

ArGripper, 201
LIMIT

ArDPPTUCommands, 131
limitEnforce

ArDPPTU, 125
load

ArModuleLoader, 253
LOADPARAM

ArCommands, 114
loadParamFile

ArRobot, 377
LOADWORLD

ArCommands, 114
lock

ArMutex, 256
ArRobot, 355
ArThread, 473

lockDevice
ArRangeDevice, 304
ArRangeDeviceThreaded, 308

log
ArLog, 224

LogLevel
ArLog, 223

LogType
ArLog, 223

loopOnce
ArRobot, 377

lowerPanSlew
ArDPPTU, 127

lowerTiltSlew
ArDPPTU, 127

lowMotPower
ArDPPTU, 127

lowStatPower
ArDPPTU, 127

madeConnection
ArRobot, 356
ArSick, 422

MAX BLOBS
ArACTS 1 2, 86

MAX DATA
ArACTS 1 2, 86

MAX PAN
ArSonyPTZ, 457

MAX PAN ACCEL
ArDPPTU, 129

MAX PAN SLEW
ArDPPTU, 129

MAX STRENGTH
ArActionDesiredChannel, 55

MAX TILT
ArDPPTU, 129
ArSonyPTZ, 457

MAX TILT ACCEL
ArDPPTU, 129

MAX TILT SLEW
ArDPPTU, 129

MAX ZOOM
ArSonyPTZ, 457

maxHostNameLen
ArSocket, 447

merge
ArActionDesired, 52

MIN PAN
ArDPPTU, 129

MIN PAN ACCEL
ArDPPTU, 129

MIN PAN SLEW
ArDPPTU, 129

MIN STRENGTH
ArActionDesiredChannel, 55

MIN TILT
ArDPPTU, 129

MIN TILT ACCEL
ArDPPTU, 129

MIN TILT SLEW

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

542 INDEX

ArDPPTU, 129
MIN ZOOM

ArSonyPTZ, 457
MONITOR

ArDPPTUCommands, 131
MOVE

ArCommands, 113
move

ArRobot, 378
moveStep

ArP2Arm, 266
moveStepTicks

ArP2Arm, 266
moveTo

ArP2Arm, 267
ArRobot, 378

moveToTicks
ArP2Arm, 267

moveVel
ArP2Arm, 268

mSecSince
ArTime, 476

mSecTo
ArTime, 476

myRobot
ArModule, 249

myRunning
ArThread, 474

nameSignal
ArSignalHandler, 439

netToHostOrder
ArSocket, 447

newData
ArSensorReading, 409

NO ARM FOUND
ArP2Arm, 264

NO STRENGTH
ArActionDesiredChannel, 55

NOGRIPPER
ArGripper, 197

None
ArLog, 224

Normal
ArLog, 223

NOT CONNECTED

ArP2Arm, 265
NOT INITED

ArP2Arm, 264
NUM CHANNELS

ArACTS 1 2, 86
numFrontBumpers

ArRobotParams, 403
NumJoints

ArP2Arm, 263
numRearBumpers

ArRobotParams, 403

OFFSET
ArDPPTUCommands, 131

offStatPower
ArDPPTU, 126

OPEN
ArCommands, 113

Open
ArLogFileConnection, 226
ArSerialConnection, 412
ArTcpConnection, 467

open
ArLogFileConnection, 228
ArNetServer, 258
ArSerialConnection, 415
ArSocket, 444
ArTcpConnection, 469

OPEN ALREADY OPEN
ArSerialConnection, 413

OPEN BAD HOST
ArTcpConnection, 467

OPEN CON REFUSED
ArTcpConnection, 468

OPEN COULD NOT OPEN -
PORT

ArSerialConnection, 412
OPEN COULD NOT SET BAUD

ArSerialConnection, 413
OPEN COULD NOT SET UP -

PORT
ArSerialConnection, 412

OPEN FILE NOT FOUND
ArLogFileConnection, 226

OPEN INVALID BAUD RATE
ArSerialConnection, 413

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 543

OPEN NET FAIL
ArTcpConnection, 467

OPEN NO ROUTE
ArTcpConnection, 468

OPEN NOT A LOG FILE
ArLogFileConnection, 226

openPort
ArACTS 1 2, 87

openSimple
ArDeviceConnection, 119
ArLogFileConnection, 225
ArSerialConnection, 411
ArTcpConnection, 466

operator()
ArFunctor, 133
ArFunctor1, 135, 136
ArFunctor1C, 137, 139
ArFunctor2, 141, 142
ArFunctor2C, 145, 148
ArFunctor3, 150, 152
ArFunctor3C, 155, 159, 160
ArFunctorC, 162
ArGlobalFunctor, 165
ArGlobalFunctor1, 167, 169
ArGlobalFunctor2, 171, 173
ArGlobalFunctor3, 176, 178,

179
ArRetFunctor, 314

ourPool
ArTaskPool, 464

P2ArmJoint, 498
packetHandler

ArGripper, 197
ArIrrfDevice, 212
ArPTZ, 290
ArRobot, 378

PacketType
ArP2Arm, 264

PAN
ArDPPTUCommands, 131

pan
ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455

ArVCC4, 491
panAccel

ArDPPTU, 127
panRel

ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 491

PANSLEW
ArAMPTUCommands, 96
ArVCC4Commands, 495

panSlew
ArAMPTU, 93
ArDPPTU, 128
ArVCC4, 492

panSlewRel
ArDPPTU, 128

PANTILT
ArAMPTUCommands, 95
ArVCC4Commands, 495

panTilt
ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 492

PANTILTDCCW
ArAMPTUCommands, 95

PANTILTDCW
ArAMPTUCommands, 95

panTiltRel
ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 491

PANTILTUCCW
ArAMPTUCommands, 95

PANTILTUCW
ArAMPTUCommands, 95

park
ArP2Arm, 261

PAUSE
ArAMPTUCommands, 95

pause

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

544 INDEX

ArAMPTU, 93
PLAYLIST

ArCommands, 115
pointRotate

ArMath, 230
POLLING

ArCommands, 113
Pos

ArListPos, 222
POSE

ArArg, 101
POWER

ArVCC4Commands, 496
power

ArVCC4, 491
powerOff

ArP2Arm, 268
powerOn

ArP2Arm, 269
preparePacket

ArVCC4, 492
print

ArAction, 39
ArACTSBlob, 91
ArArg, 100
ArArgumentBuilder, 102
ArBasePacket, 107
ArPose, 275
ArSyncTask, 462
ArTime, 477

printActions
ArRobot, 353

printAllTasks
ArRobot, 379

printHex
ArBasePacket, 107

printState
ArGripper, 197

printUserTasks
ArRobot, 379

processEncoderPacket
ArRobot, 356

processIOPacket
ArRobot, 356

processMotorPacket
ArRobot, 356

processNewSonar
ArRobot, 356

processPacket
ArSick, 421

processParamFile
ArRobot, 357

processReadings
ArSonarDevice, 451

PTUPOS
ArCommands, 114

PULSE
ArCommands, 113

PURGE
ArAMPTUCommands, 95

purge
ArAMPTU, 93

QUERYTYPE
ArGripper, 197

radToDeg
ArMath, 233

random
ArMath, 231

read
ArDeviceConnection, 121
ArLogFileConnection, 228
ArSerialConnection, 415
ArSocket, 448
ArTcpConnection, 470

readPacket
ArPTZ, 291

readString
ArSocket, 449

receiveBlobInfo
ArACTS 1 2, 88

receivePacket
ArRobotPacketReceiver, 396
ArSickPacketReceiver, 436

recvFrom
ArSocket, 445

redoReading
ArRangeBuffer, 298

REGKEY
ArUtil, 484

REGKEY CLASSES ROOT

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 545

ArUtil, 484
REGKEY CURRENT CONFIG

ArUtil, 484
REGKEY CURRENT USER

ArUtil, 484
REGKEY LOCAL MACHINE

ArUtil, 484
REGKEY USERS

ArUtil, 484
regMotPower

ArDPPTU, 127
regStatPower

ArDPPTU, 126
reload

ArModuleLoader, 254
RELPANCCW

ArAMPTUCommands, 95
RELPANCW

ArAMPTUCommands, 95
RELTILTD

ArAMPTUCommands, 95
RELTILTU

ArAMPTUCommands, 95
remAction

ArActionGroup, 59
ArRobot, 379

remCommand
ArNetServer, 259

remConnectCB
ArRobot, 380
ArSick, 428

remDisconnectNormallyCB
ArRobot, 380
ArSick, 428

remDisconnectOnErrorCB
ArRobot, 380
ArSick, 428

remFailedConnectCB
ArRobot, 380
ArSick, 428

remKeyHandler
ArKeyHandler, 220

removeActions
ArActionGroup, 58

remPacketHandler
ArRobot, 381

remRangeDevice
ArRobot, 381

remRunExitCB
ArRobot, 381

remSensorInterpTask
ArRobot, 382

remUserTask
ArRobot, 382

requestInfo
ArP2Arm, 269

requestInit
ArP2Arm, 269

requestPacket
ArACTS 1 2, 88

requestQuit
ArACTS 1 2, 88

requestStatus
ArAMPTU, 93
ArP2Arm, 270

RESET
ArDPPTUCommands, 131

reset
ArActionDesired, 49
ArInterpolation, 209
ArRangeBuffer, 294
ArRecurrentTask, 310

resetAll
ArDPPTU, 125

resetCalib
ArDPPTU, 124

resetPan
ArDPPTU, 125

resetRead
ArBasePacket, 111
ArRobotPacket, 394
ArSickPacket, 434

resetSensorPosition
ArSensorReading, 409

RESETSIMTOORIGIN
ArCommands, 115

resetTilt
ArDPPTU, 125

resolve
ArResolver, 312

RESP
ArAMPTUCommands, 96

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

546 INDEX

restore
ArKeyHandler, 218

restoreSet
ArDPPTU, 125

RESUME
ArTaskState, 465

resume
ArAMPTU, 93

RIGHT
ArKeyHandler, 219

right
ArActionKeydrive, 71

ROBOT NOT SETUP
ArP2Arm, 264

robotConnectCallback
ArSick, 422

robotLocker
ArRobot, 382

robotPacketHandler
ArPTZ, 291

robotTask
ArSickLogger, 430

robotUnlocker
ArRobot, 383

ROTATE
ArCommands, 114

roundInt
ArMath, 233

run
ArRangeDeviceThreaded, 308
ArRobot, 383
ArSyncTask, 462

runAsync
ArRangeDeviceThreaded, 308
ArRobot, 383

runInThisThread
ArASyncTask, 106

runOnce
ArNetServer, 257
ArSick, 421

runOnRobot
ArSick, 429

runTask
ArPeriodicTask, 272
ArTaskPool, 463

runThread

ArASyncTask, 106
ArRangeDeviceThreaded, 308
ArRecurrentTask, 311
ArSick, 421
ArSignalHandler, 442

RVEL
ArCommands, 114

saveSet
ArDPPTU, 125

SAY
ArCommands, 114

secSince
ArTime, 476

secTo
ArTime, 476

self
ArThread, 475

sendPacket
ArPTZ, 291

sendTo
ArSocket, 445

sendToAllClients
ArNetServer, 259

sensorInterpCallback
ArSick, 421

sensorInterpHandler
ArPTZ, 289

SETA
ArCommands, 113

setArea
ArACTSBlob, 90

setAutoParkTimer
ArP2Arm, 270

setBaud
ArSerialConnection, 415

setBool
ArArg, 100
ArPref, 283

setBoolSet
ArPref, 283

setBottom
ArACTSBlob, 91

setBroadcast
ArSocket, 445

setBuf

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 547

ArBasePacket, 109
setCloseDist

ArActionGoto, 56
setConnectionCycleMultiplier

ArRobot, 383
setConnectionTimeoutTime

ArRobot, 384
ArSick, 429

setCumulativeBufferSize
ArRangeDevice, 304

setCumulativeMaxRange
ArIrrfDevice, 211
ArSonarDevice, 451

setCurrentBufferSize
ArRangeDevice, 305

setCycleChained
ArRobot, 354

setCycleTime
ArRobot, 384

setDeadReconPose
ArRobot, 384

setDegDiff
ArSickLogger, 430

setDeltaHeading
ArActionDesired, 52
ArRobot, 384

setDeviceConnection
ArPTZ, 292
ArRobot, 385
ArRobotPacketReceiver, 395
ArRobotPacketSender, 398
ArSick, 419
ArSickPacketReceiver, 435

setDirectMotionPrecedenceTime
ArRobot, 385

setDirectory
Aria, 207

setDistDiff
ArSickLogger, 430

setDoClose
ArSocket, 446

setDouble
ArArg, 100
ArPref, 284

setDoubleSet
ArPref, 284

setEncoderCorrectionCallback
ArRobot, 385

setEncoderTransform
ArRobot, 386

setFilterNearDist
ArSick, 420

setGoal
ArActionGoto, 56

setGripperParkTimer
ArP2Arm, 270

setHardwareControl
ArSerialConnection, 416

setHeaderLength
ArBasePacket, 109

setHeading
ArActionDesired, 53
ArRobot, 386

setHeadingDoneDiff
ArRobot, 344

setIncrements
ArActionKeydrive, 70

setInt
ArArg, 100
ArPref, 284

setIntSet
ArPref, 285

setKeyHandler
Aria, 205

setLeft
ArACTSBlob, 91

setLength
ArBasePacket, 109

setLinger
ArSocket, 445

setMaxNegVel
ArActionDesired, 53

setMaxRange
ArRangeDevice, 300

setMaxRotVel
ArActionDesired, 53
ArRobot, 387

setMaxTransVel
ArRobot, 387

setMaxVel
ArActionDesired, 53

setMoveDoneDist

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

548 INDEX

ArRobot, 344
setMSec

ArTime, 477
setName

ArRobot, 349
setNextArgument

ArAction, 39
setNonBlock

ArSocket, 446
setNumberOfReadings

ArInterpolation, 209
SETO

ArCommands, 113
setP1

ArFunctor1C, 139
ArFunctor2C, 148
ArFunctor3C, 160
ArGlobalFunctor1, 169
ArGlobalFunctor2, 173
ArGlobalFunctor3, 179
ArGlobalRetFunctor1, 185
ArGlobalRetFunctor2, 188
ArGlobalRetFunctor3, 193
ArRetFunctor1C, 319
ArRetFunctor2C, 327
ArRetFunctor3C, 337

setP2
ArFunctor2C, 148
ArFunctor3C, 160
ArGlobalFunctor2, 173
ArGlobalFunctor3, 179
ArGlobalRetFunctor2, 188
ArGlobalRetFunctor3, 193
ArRetFunctor2C, 327
ArRetFunctor3C, 337

setP3
ArFunctor3C, 160
ArGlobalFunctor3, 180
ArGlobalRetFunctor3, 194
ArRetFunctor3C, 337

setPacketCB
ArP2Arm, 262

setPool
ArTaskPool, 463

setPort
ArSerialConnection, 416

setPose
ArArg, 100
ArPose, 276, 277

setPoseInterpNumReadings
ArRobot, 354

setPoseTaken
ArRangeBuffer, 293

SETRA
ArCommands, 114

SETRANGE
ArVCC4Commands, 496

setResolver
ArRobot, 353

setReuseAddress
ArSocket, 446

setRight
ArACTSBlob, 91

setRobot
ArAction, 39
ArActionKeydrive, 70
ArACTS 1 2, 85
ArIrrfDevice, 211
ArModule, 249
ArP2Arm, 260
ArRangeDevice, 299
ArSick, 421
ArSonarDevice, 451

setRotVel
ArRobot, 387

setRunning
ArPeriodicTask, 272
ArThread, 473

SETRV
ArCommands, 114

setSec
ArTime, 477

setSendingAddress
ArSickPacket, 434

setSensorPosition
ArSick, 419

SETSIMORIGINTH
ArCommands, 115

SETSIMORIGINX
ArCommands, 115

SETSIMORIGINY
ArCommands, 115

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 549

setSize
ArRangeBuffer, 298

setSocket
ArTcpConnection, 470

setSpeed
ArActionGoto, 56

setSpeeds
ArActionJoydrive, 67
ArActionKeydrive, 70
ArJoyHandler, 213

setState
ArSyncTask, 458

setStateReflectionRefreshTime
ArRobot, 388

setStats
ArJoyHandler, 214

setStatus
ArTcpConnection, 467

setStopIfNoButtonPressed
ArActionJoydrive, 67

setStoppedCB
ArP2Arm, 262

setString
ArArg, 100
ArPref, 285

setTh
ArPose, 274

setThis
ArFunctor1C, 140
ArFunctor2C, 149
ArFunctor3C, 160, 161
ArFunctorC, 163
ArRetFunctor1C, 320
ArRetFunctor2C, 327
ArRetFunctor3C, 337, 338
ArRetFunctorC, 340

setThRad
ArPose, 274

setTimeReceived
ArRobotPacket, 393
ArSickPacket, 433

setToNow
ArTime, 476

setTop
ArACTSBlob, 91

setTransform

ArTransform, 479
setType

ArGripper, 201
setUnitNumber

ArAMPTUPacket, 98
setUpPacketHandlers

ArRobot, 356
setUpSyncList

ArRobot, 356
setUseOSCal

ArActionJoydrive, 69
ArJoyHandler, 216

SETV
ArCommands, 113

setVel
ArActionDesired, 54
ArActionInput, 65
ArRobot, 388

setVel2
ArRobot, 388

setX
ArPose, 274

setXCG
ArACTSBlob, 90

setY
ArPose, 274

setYCG
ArACTSBlob, 90

shutdown
Aria, 207
ArSocket, 449

SIGHANDLE NONE
Aria, 205

SIGHANDLE SINGLE
Aria, 205

SIGHANDLE THREAD
Aria, 205

SigHandleMethod
Aria, 205

signal
ArCondition, 116

signalHandlerCB
Aria, 205

simPacketHandler
ArSick, 421

sin

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

550 INDEX

ArMath, 233
sizeFile

ArUtil, 487
slaveExec

ArDPPTU, 126
sleep

ArUtil, 487
sockAddrIn

ArSocket, 445
sockAddrLen

ArSocket, 447
SONAR

ArCommands, 114
SOUND

ArCommands, 115
SOUNDTOG

ArCommands, 115
SPACE

ArKeyHandler, 219
space

ArActionKeydrive, 71
SPEED

ArDPPTUCommands, 131
splitString

ArUtil, 488
startAverage

ArActionDesired, 54
startCal

ArJoyHandler, 217
State

ArP2Arm, 264
ArSick, 423
ArTaskState, 465

STATE CHANGE BAUD
ArSick, 423

STATE CONFIGURE
ArSick, 423

STATE CONNECTED
ArSick, 423

STATE INIT
ArSick, 423

STATE INSTALL MODE
ArSick, 423

STATE NONE
ArSick, 423

STATE SET MODE

ArSick, 423
STATE START READINGS

ArSick, 423
STATE WAIT FOR -

CONFIGURE ACK
ArSick, 423

STATE WAIT FOR INSTALL -
MODE ACK

ArSick, 423
STATE WAIT FOR POWER ON

ArSick, 423
STATE WAIT FOR SET MODE -

ACK
ArSick, 423

STATE WAIT FOR START ACK
ArSick, 423

stateReflector
ArRobot, 389

STATUS
ArAMPTUCommands, 95

Status
ArDeviceConnection, 119
ArModuleLoader, 253
ArMutex, 256
ArThread, 475

STATUS ALREADY -
DETATCHED

ArThread, 475
STATUS ALREADY LOADED

ArModuleLoader, 253
STATUS ALREADY LOCKED

ArMutex, 256
STATUS CLOSED ERROR

ArDeviceConnection, 119
STATUS CLOSED NORMALLY

ArDeviceConnection, 119
STATUS EXIT FAILED

ArModuleLoader, 253
STATUS FAILED

ArCondition, 117
ArMutex, 256
ArThread, 475

STATUS FAILED DESTROY
ArCondition, 117

STATUS FAILED INIT
ArCondition, 117

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 551

ArMutex, 256
STATUS FAILED OPEN

ArModuleLoader, 253
STATUS INIT FAILED

ArModuleLoader, 253
STATUS INVALID

ArModuleLoader, 253
ArThread, 475

STATUS JOIN SELF
ArThread, 475

STATUS MUTEX FAILED
ArCondition, 117

STATUS MUTEX FAILED INIT
ArCondition, 117

STATUS NEVER OPENED
ArDeviceConnection, 119

STATUS NO SUCH THREAD
ArThread, 475

STATUS NORESOURCE
ArThread, 475

STATUS NOT FOUND
ArModuleLoader, 253

STATUS OPEN
ArDeviceConnection, 119

STATUS OPEN FAILED
ArDeviceConnection, 119

STATUS SUCCESS
ArModuleLoader, 253

STATUS WAIT INTR
ArCondition, 117

STATUS WAIT TIMEDOUT
ArCondition, 117

StatusContinuous
ArP2Arm, 265

StatusOff
ArP2Arm, 265

StatusPacket
ArP2Arm, 264

StatusSingle
ArP2Arm, 265

StatusType
ArP2Arm, 265

StdErr
ArLog, 224

StdOut
ArLog, 224

STEP
ArCommands, 114

STOP
ArCommands, 114
ArVCC4Commands, 495

stop
ArP2Arm, 270
ArRobot, 389

stopAll
ArThread, 474

stopRunning
ArRobot, 389
ArThread, 472

strcmp
ArUtil, 488, 489

STRING
ArArg, 101

String
ArPref, 281

stripDir
ArUtil, 490

stripFile
ArUtil, 490

strNToBuf
ArBasePacket, 111

strToBuf
ArBasePacket, 112

strToBufPadded
ArBasePacket, 112

subAngle
ArMath, 234

SUCCESS
ArP2Arm, 264
ArTaskState, 465

SUSPEND
ArTaskState, 465

switchState
ArSick, 422

TAB
ArKeyHandler, 219

takeKeys
ArActionKeydrive, 71

task
ArRecurrentTask, 311

TCM2

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

552 INDEX

ArCommands, 114
Terse

ArLog, 223
TILT

ArDPPTUCommands, 131
tilt

ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 491

tiltAccel
ArDPPTU, 127

tiltRel
ArAMPTU, 92
ArDPPTU, 125
ArPTZ, 287
ArSonyPTZ, 455
ArVCC4, 491

TILTSLEW
ArAMPTUCommands, 96
ArVCC4Commands, 495

tiltSlew
ArAMPTU, 93
ArDPPTU, 128
ArVCC4, 492

tiltSlewRel
ArDPPTU, 128

timedWait
ArCondition, 116

transfer
ArSocket, 449

tryingToConnect
ArSick, 419

tryLock
ArMutex, 256
ArRobot, 355
ArThread, 473

tryLockDevice
ArRangeDevice, 305
ArRangeDeviceThreaded, 309

TTY2
ArCommands, 114

Type
ArArg, 101
ArGripper, 197

typedef
ArCondition, 117

UByte
ArTypes, 481

UByte2
ArTypes, 481

uByte2ToBuf
ArBasePacket, 108

UByte4
ArTypes, 481

uByte4ToBuf
ArBasePacket, 108

uByteToBuf
ArBasePacket, 108
ArSonyPacket, 453

unblock
ArSignalHandler, 442

unblockAll
ArSignalHandler, 443

unhandle
ArSignalHandler, 443

uninit
Aria, 208
ArP2Arm, 271
ArTaskPool, 463

unlock
ArMutex, 255
ArRobot, 355
ArThread, 473

unlockDevice
ArRangeDevice, 305
ArRangeDeviceThreaded, 309

UP
ArKeyHandler, 219

up
ArActionKeydrive, 71

update
ArSectors, 405

UPPER
ArDPPTUCommands, 131

upperPanSlew
ArDPPTU, 127

upperTiltSlew
ArDPPTU, 127

USER START

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 553

ArTaskState, 465
USERIO

ArGripper, 197
userTask

ArMode, 236
ArModeCamera, 239
ArModeGripper, 241
ArModeSonar, 243

ValType
ArPref, 281

VEL
ArCommands, 114

VEL2
ArCommands, 114

velMove
ArDPPTU, 127

VELOCITY
ArDPPTUCommands, 131

Verbose
ArLog, 223

verifyCheckSum
ArRobotPacket, 393

verifyCRC
ArSickPacket, 432

wait
ArCondition, 116

WAIT CONNECTED
ArRobot, 357

WAIT FAIL
ArRobot, 357

WAIT FAILED CONN
ArRobot, 357

WAIT INTR
ArRobot, 357

WAIT RUN EXIT
ArRobot, 357

WAIT TIMEDOUT
ArRobot, 357

waitForConnect
ArRobot, 389

waitForConnectOrConnFail
ArRobot, 390

waitForRunExit
ArRobot, 390

WaitState
ArRobot, 357

wakeAllConnOrFailWaitingThreads
ArRobot, 391

wakeAllConnWaitingThreads
ArRobot, 391

wakeAllRunExitWaitingThreads
ArRobot, 391

wakeAllWaitingThreads
ArRobot, 391

write
ArDeviceConnection, 122
ArLogFileConnection, 229
ArSerialConnection, 416
ArSocket, 449
ArTcpConnection, 470

writePacket
ArDeviceConnection, 122

writeString
ArSocket, 450

yield
ArThread, 474

ZOOM
ArAMPTUCommands, 95
ArVCC4Commands, 496

zoom
ArPTZ, 288
ArSonyPTZ, 456
ArVCC4, 492

zoomRel
ArPTZ, 288
ArSonyPTZ, 456

ZOOMSTOP
ArVCC4Commands, 496

Generated on Tue Nov 12 17:44:08 2002 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

