

Saphira Software
 Manual

Saphira Version 8.0a

Saphira/Aria integration

Copyright 2001 Kurt G. Konolige
SRI International, Menlo Park, California

Under international copyright laws, this manual or any portion may not be copied or on any way

duplicated without the expressed written consent of Kurt Konolige.

The various names and logos for products used in this manual are registered trademarks or trademarks of

their respective companies. Mention of any third-party hardware or software constitutes neither an
endorsement nor a recommendation.

ii

Saphira Software Manual

Contents
1 SAPHIRA SOFTWARE & RESOURCES 1

1.1 Documentation and Sample Programs 1
1.1.1 ARIA Documentaion 1
1.1.2 Manuals and Tutorials 1
1.1.3 Online API 1
1.1.4 Class Notes 1

1.2 Saphira and Aria 2
1.3 Saphira Client/Server 2
1.4 Colbert Robot Programming Language 2
1.5 Behaviors 2
1.6 Localization and Navigation 2
1.7 Maps 3
1.8 Robot Simulator 3
1.9 Required and Optional Components 3
1.10 Saphira Client Installation 3
1.11 Saphira Quick Start 5
1.12 Additional Resources 6

1.12.1 FTP Software Archive 6
1.12.2 Saphira Newsgroup 6
1.12.3 SRI Saphira Web Pages 7
1.12.4 Support 7
1.12.5 Acknowledgments 7

2 SAPHIRA AND ARIA SYSTEM OVERVIEW 9
2.1 System Architecture 9

2.1.2 Micro-Tasking OS 10
2.1.2 User Routines 11
Packet Communications 11
State Reflector 11

2.2 Control Architecture 12
Representation of Space 12
Direct Motion Control 13
Behavioral Control 13
Activities and Colbert 13
Sensor Interpretation Routines 13
Localization and Maps 14
Realtime, Optimal Path Planning 14
Graphics Display 14

2.3 Running the Sample Client 14
2.3.1 Loading an Activity File 14
2.12.1 Connecting to a Robot 15
2.12.2 Local Perceptual Space Display 16
2.12.3 Artifacts 17
2.12.4 Information Area 17
2.3.2 Text Interaction Area 17
2.3.3 Menus 18

iii

2.3.4 Keyboard Actions 19
2.3.5 Activities Window 19
System Environment Variables 21

3 THE SIMULATOR 23
3.1 Starting the Simulator 23

3.1.1 Listening on Other Ports 23
3.2 Parameter File 24
World Description File 25
3.3 Simulator Menus 25

3.3.1 Load (Files) Menu 25
3.3.2 Connect Menu 25
3.3.3 Display Menu (Grow, Shrink) 25
3.3.4 Recenter Menu 25
3.3.5 Original Position 25
3.3.6 Information Area 25

3.4 Mouse Actions 25
3.5 Compass 26

4 CREATING LOADABLE FILES 27
4.1 Host System Requirements 27
4.2 Compiling and Linking C++ Source Files 27

4.2.1 Debugging C Code under UNIX 28
4.2.2 Debugging C Code under MS Windows 29

5 SAPHIRA API DOCUMENTATION 32

6 MARKOV LOCALIZATION MODULE 35
6.1 Markov Localization Overview 35
6.2 Loading the ML Module 35
6.3 Localization Parameters 36
6.4 Localization Menu 37
6.5 Initialization Functions 38

7 GRADIENT PATH PLANNING 39
7.1 Gradient Overview 39
7.2 Loading the Gradient Module 40
7.3 Gradient Menu 40
7.4 Gradient Functions 41

8 PARAMETER FILES 43
8.1 Parameter File Types 43
8.2 Sample Parameter File 43

9 SAMPLE WORLD DESCRIPTION FILE 47

iv

Saphira Software Manual

List of Tables
Table 1-1 Installed directories for Saphira/Aria Version 8.0a 5
Table 2-1 Keyboard joystick commands for the Saphira client. 20
Table 2-2 Environment variables used to control defaults in Saphira clients. 22
Table 3-1. Example drive error tolerance values for a parameters file. 24

v

List of Figures

Figure 2-1 Saphira/Aria System Architecture. 10
Figure 2-2 Saphira client Local Perceptual Space. 15
Figure 2-3 Sensor buffer dialog. Controls the sensor accumulation buffers. 19
Figure 2-4 Activity Display Window. This window shows the state of currently executing activities

(black) and behavioral actions (red). 20
Figure 3-1. A sample window of the simulator. 24
Figure 4-1. Concurrent execution of Saphira OS and user asynchronous tasks. 28
Figure 6-1 Localization module snapshot. The red cloud is the set of sample points for Markov

Localization. The green arrow shows the best estimate of robot position at the last update. The
sample cloud is updated as the robot moves, typically every 1.0 meters or 20 degrees. 36

Figure 6-2 Localization parameter dialog window. 37
Figure 7-1 Gradient module snapshot. The red cloud is the set of sample points for Markov

Localization, which is also loaded. The red line connecting the robot and the goal position is the
optimal path, calculated by the Gradient algorithm during the current time step. The red
rectangular box is the neighborhood considered by the algorithm. Note that the path goes around
the map walls, even where the robot cannot see them. 39

vi

Saphira Software Manual

1 Saphira Software & Resources
This manual is intended to be an introduction to the Saphira robot control system for application

programmers. It serves as an overview of Saphira, as well as a guide to running the standard Saphira client.
It also contains reference material for the Saphira API.

1.1 Documentation and Sample Programs
Robot programming is a complex task, and this manual is an overview guide and reference. Further

documentation and examples can be found in the documentation directory of the Saphira distribution. In
particular, there are tutorials on many aspects of Saphira programming.

1.1.1 ARIA Documentaion
Aria has a number of examples and test programs, as well as documentation of the class hierarchy

generated from the header files and source code. Aria documentation will be very useful to those wishing to
write Saphira programs.

1.1.2 Manuals and Tutorials
Various specific aspects of Saphira and Aria are discussed in detail in manuals and tutorials available in

the Saphira docs directory. Tutorial programs, complete with source code, are in the subdirectories of the
tutorial directory.
Document Contents Tutorial code
actions.pdf Describes the different modes of

robot control in Saphira/Aria,
including behavioral action
schemas.

tutor/movit
colbert/direct.act

loadable.pdf Tutorial on compiling and loading
C++ program files under Saphira.

tutor/loadable

colbert.pdf Technical paper on the Colbert
robot programming language.

colbert-user.pdf User’s Manual for the Colbert
robot programming language.

tutor/movit
tutor/loadable
colbert/direct.act
colbert/bump.act

motion.pdf Technical description of
probability-based robot movement
and localization.

tutor/sample-move
tutor/sample-update
tutor/sonardist

 Tutorial programs for
synchronous and asynchronous
tasks in Saphira.

tutor/task

 Tutorial programs for obstacle
avoidance and wall-crawling
behaviors.

tutor/crawl

1.1.3 Online API
The Saphira and Aria class and function API’s are now documented using the Doxygen documentation

system. HTML versions are available in Saphira/docs/html and Aria/docs/reference/html.

1.1.4 Class Notes
Saphira/Aria is the system used in Stanford’s Robot Programming Lab, CS225B. You can find more

information about the class at the website cs225b.stanford.edu.

1

1: Saphira Software and Resources

1.2 Saphira and Aria
Saphira 8.x is based on Aria, a low-level robotic control system written by ActivMedia Robotics. Aria

contains much of the lower-level functionality previously incorporated into Saphira, as well as new
capabilities such as multiple-robot control. A good understanding of Aria is necessary for working with
Saphira, since Saphira will use many of Aria’s classes. Documentation on Aria is available from
ActivMedia Robotics.

While Aria is meant to provide flexible low-level access to robot capabilities, Saphira simplifies the
developer’s task by providing a convenient interface to many of these facilities.

1.3 Saphira Client/Server
Saphira is a robotics application development environment written, maintained, and constantly updated at

SRI International’s Artificial Intelligence Center, notably under the direction of Dr. Kurt Konolige, who
developed the Pioneer mobile robot platform.

Saphira operates in a client/server environment. The Saphira library is a set of routines for building
clients. The Saphira library integrates a number of useful Aria functions for sending commands to the server,
gathering information from the robot’s sensors, and packaging them for display in a graphical window-based
user interface. In addition, Saphira supports higher-level functions for robot control and sensor
interpretation, including the Colbert control executive, and a map-based localization and navigation system.

The Saphira client connects to a robot server with the basic components for robotics sensing and
navigation: drive motors and wheels, position encoders, and sensors. The server handles the low-level details
of robot sensor and drive management, sends information, and responds to Saphira through the Aria robot
interface.

The Saphira client library is available for Microsoft Windows 98/ME/2000, and for Linux systems.
Saphira sources and libraries are written in ANSI C++. There is an Application Programmer’s Interface
(API) of calls to the Saphira library. Programming details are in the following chapters of this manual, as
well as the tutorials and supporting documentation.

1.4 Colbert Robot Programming Language
Starting with Version 6.x, Saphira has added a C-like language, Colbert, for writing robot control

programs. With Colbert, users can quickly write and debug complex control procedures, called activities.
Activities have a finite-state semantics that makes them particularly suited to representing procedural
knowledge of sequences of action. Activities can start and stop direct robot actions, low-level behaviors, and
other activities. Activities are coordinated by the Colbert executive, which supports concurrent processing of
activities.

Colbert comes with a runtime evaluation environment in which users can interactively view their
programs, edit and rerun them, and link in additional C++ code. Users may program interactively in Colbert,
which makes many of the Saphira API functions available in the runtime environment.

1.5 Behaviors
Rule-based reactive control programs, called behaviors, are implemented using Aria’s ArAction class.

Saphira maintains a list of behavior schemas that can be invoked from Colbert or C++ programs. Behavior
output can be combined in flexible ways, using Aria’s ArResolver facility.

1.6 Localization and Navigation
Saphira incorporates sophisticated algorithms for some difficult robot tasks.
Localization is the task of keeping track of robot position within an environment. Saphira has facilities

for both sonar and laser rangefinder based localization. It uses efficient probabilistic techniques developed
recently by Dieter Fox and his colleagues.

2

Saphira Software Manual

Navigation is the task of determining a good path for the robot to follow to a goal, and also keeping the
robot out of trouble as it moves. Saphira uses the gradient method for this task. Developed by Kurt
Konolige, it is an optimal realtime path-planner for the robot.

1.7 Maps
Saphira uses line-drawing maps of the environment for localization and navigation. These maps can be

input by hand from textual coordinate files for simple environments. ActivMedia Robotics has two more
advanced map input methods. A graphical mapping interface allows the user to interactively create maps
using a GUI tool. For automatic map-building, ActivMedia Robotics has deployed Steffen Gutmann’s
ScanStudio, a sophisticated algorithm that builds maps automatically from laser range scans.

1.8 Robot Simulator
Saphira comes with a software simulator of a physical robot and its environment. This feature allows

developers to debug applications conveniently on a computer without using a physical robot.
The simulator has realistic error models for the sonar sensors, laser range-finder, and wheel encoders.

Even its communication interface is the same as for a physical robot, so developers won’t need to reprogram
or make any special changes to the client to have it run with either the real robot or the simulator.

The simulator also lets you construct 2-D models of real or imagined environments, called worlds. World
models are abstractions of the real world, with linear segments representing the vertical surfaces of corridors,
hallways, and the objects in them. Because the 2-D world models are only an abstraction of the real world,
we encourage you to refine your client software using the real robot in a real-world environment.

1.9 Required and Optional Components
The following is a list of components that you’ll need, as well as some options you may desire, to operate

your robot with Saphira. Consult your mobile robot’s Operation Manual for component details.

9 Mobile robot with Saphira-enabled servers
9 Radio modems or Ethernet radio bridge (optional)
9 Computer: Pentium or 486-class PC with Microsoft Windows 98/ME/2000 or Linux operating

system
9 Open communication port (TCP/IP or serial)
9 20 megabytes of hard-disk storage
9 PKUNZIP (PCs), GUNZIP (PCs and UNIX), StuffIt Lite, or compatible archive-decompression

software
Necessary for program development:

9 C++-program source-file editor and compiler. Note: under MS Windows, Saphira supports only
Microsoft’s Visual C/C++ software.

1.10 Saphira Client Installation
The latest information for installing and running Saphira can be found in the readme file in the

distribution; please examine this file carefully before and during installation. The update file has
information about major changes in the latest releases of the Saphira system; you should consult it as a
general guide for updating older programs.

The Saphira distribution software, including the saphira(.exe) demonstration program, Colbert,
simulator, and accompanying C libraries, come stored as a compressed archive of directories and files either
on a CD ROM, or at the ActivMedia Internet site. Each archive is configured and compiled for a particular
operating system, such as Windows98/2000 or Solaris. Choose the version that matches your client computer
system. You may obtain additional Saphira archives for other platforms and updates from the ActivMedia
Internet site; see Additional Resources later in this chapter for details.

3

1: Saphira Software and Resources

The MSW versions are PKZIP’d, and UNIX versions come GZIP’d and TAR’d. To decompress the
software into usable files, you will need the appropriate decompression/archive software: PKUNZIP,
GUNZIP, or compatible program; consult the respective program’s user manual or help files.

For Linux and other UNIX users, we recommend that you unpack the tar file in a standard directory such
as /usr/local or another publicly accessible directory, and set the appropriate permissions for access
and use by your robotics groups. Copy the Saphira archive to that directory, then uncompress and untar the
Saphira archive. For example, with Linux the command is:
tar -zxvf linux80a.tgz

The extraction process will create two directories, Saphira and Aria. These directories must be
children of the same directory..

For MSW, uncompress the ZIP archive; the location of the files is up to you. On extraction, the files in
the ZIP archive will create two top-level directories, Saphira and Aria. These directories must be
children of the same directory.

Table 1-1 below shows the general structure of the Saphira directories.

IMPORTANT NOTICE!
All Saphira operations require that the environment variables SAPHIRA and ARIA be set to their

respective top-level directories, e.g., /usr/local/Saphira and /usr/local/Aria on a Unix
system (note that the directory name does not have a final slash), or c:\Saphira and c:\Aria on
an Microsoft Windows system. If you do not set this variable correctly, Saphira clients and the simulator
will fail to work, or fail to work properly! Please set this as soon as you install the distribution.

If you have a previous installation of Saphira/Aria, your environment variables will still be set
correctly, since the new distribution will overlay the previous one.

UNIX systems should use one of the following methods, preferably in the user’s .cshrc or other default
shell script parameter file:

export SAPHIRA=/usr/local/Saphira (bash shell)
setenv SAPHIRA /usr/local/Saphira (csh shell)

In MS Windows 95/98/ME, assuming the top-level Saphira directory is c:\Saphira, add the following
line to the file C:\AUTOEXEC.BAT:

SET SAPHIRA=C:\Saphira

4

Saphira Software Manual

5

In Windows NT/2000/XP, go to Start/Settings/System, and click on the Environment tab. Add the
variable SAPHIRA and ARIA in either the user or system-wide settings.

The Saphira library is now in a sharable form on both UNIX and MS Windows machines. This means
that a Saphira application will link into the library at runtime, rather than compile time. All clients share a
copy of the library, take up less space, and are quicker to compile. Saphira applications must be able to find
these libraries.

• Under UNIX, the distribution contains the file Saphira/lib/libsf.so and
Aria/lib/libAria.so. You can make the library accessible to an application in two
ways. We recommend leaving it in this directory and putting the directory name onto the load
library list using the shell command:

export LD_LIBRARY_PATH=${SAPHIRA}/lib:$(ARIA)/lib
A second method is to copy the library file into the standard library directory, usually
/usr/lib.

• Under MS Windows, the shared libraries are Saphira\lib\sf.dll and
Aria\lib\aria.dll. You must copy or move this file to the standard MS Windows
system directory. In Windows 95/98/ME this is C:\Windows\System; in Windows
NT/2000/XP it is C:\Winnt\System32.

If an application cannot find the shared libraries, it will complain and exit. Also, problems will arise if the
application uses older libraries. It is good practice to clean up by deleting older shared libraries after doing
an installation.

1.11 Saphira Quick Start
To start the Saphira client demonstration program, navigate to inside the lib/ directory and execute the

program named saphira(.exe). For instance, use the mouse to double-click the saphira.exe icon
inside the Saphira/lib/ folder on your MS Windows desktop.

With UNIX, you must be running the X-Window system to execute the Saphira client software and make
sure to export or setenv the SAPHIRA and ARIA environment variables.

The Saphira client window will appear, with a graphics display of the robot internals, a text information

Saphira/
 lib/
 saphira(.exe) Saphira/Colbert runtime application
 pioneer(.exe) simulator
 sf.dll, libsf.so DLL or shared object library
 colbert/ Colbert language samples
 ohandler/
 include/ header files
 src/ source files
 maps/ Saphira example maps
 tutor/ tutorial programs
 movit/ direct and behavioral examples
 …
 worlds/ simulator world files
 readme explanation text file
 update comparison of versions
 license operation license

Aria/
 lib/ Aria libraries
 docs/ Aria documentation
 include/ Aria header files
 src/ Aria source files

Table 1-1 Installed directories for Saphira/Aria Version 8.0a

1: Saphira Software and Resources

display, and an interaction window. Type help in the interaction window for a list of command classes that
you can query for further information.

Have a robot server or the simulator readied for a Saphira connection. For example, execute the
Saphira/lib/pioneer(.exe) robot simulator on the same computer, or simply turn on your Pioneer
robot and connect its serial port (or radio modems) to your basestation computer running the Saphira
demonstration program.

In the Saphira interaction window, type connect serial to connect on the standard serial port. If
your radio modem is connected to a different serial port, use connect serial <port>, where <port>
is the name of the serial port, e.g., /dev/ttyS1 or COM2. Or, use the pulldown Connect menu at the
top of the Saphira window.

If you’re using the simulator, you can connect using connect, which opens a local port to the simulator
and starts things up. You should have started the simulator first by executing pioneer(.exe) from the
Saphira/lib/ directory. You also can connect via the Connect menu on the main Saphira window.

After you initiate the connection, the Saphira client and robot server perform a synchronization routine
and, if successful, will establish a connection. We provide a number of clues on both the client and server so
that you can follow the synchronization process. Success is distinct: The Saphira main window comes alive
with sonar readings, and the robot’s sonars begin a rhythmic, audible ticking.

We detail Saphira client operation in the following chapter. For now, we leave it to you to find the
manual drive keys and take your robot for a joyride. (Hints: arrows move, and the spacebar stops the
motors.) The demonstration Colbert program Saphira/colbert/demo.act is loaded automatically in
the sample application; it and has more activities you can try out, by starting them from the
Function/Activities window.

1.12 Additional Resources
Every new Saphira customer gets three additional and valuable resources: a private account on

ActivMedia’s Internet server for download of Saphira software, updates, and manuals; the opportunity to
register on one or more of private robotics newsgroups; and e-mail access to the Saphira support team.

1.12.1 FTP Software Archive
ActivMedia has a server connected full-time to the Internet, where customers may obtain Saphira

software and support materials. Access is restricted to ActivMedia customers, including Pioneer, AmigoBot,
PeopleBot, and MonsterBot owners.

The ActivMedia server name is:

ftp.activmedia.com
Consult your computer’s system manual for connection software and instructions for downloading files

via the UNIX file-transfer protocol (ftp) or equivalent service.

1.12.2 Saphira Newsgroup
ActivMedia also maintain several special e-mail-based newsgroups for robot owners to share ideas,

software, and questions. To find out more about these special newsgroups, send an e-mail message with your
reply e-mail address as shown in Figure 1-2, below:

6

Saphira Software Manual

7

 To: majordomo@activmedia.com
 From: <your return email address goes here>
 Subject: help (Subject: always ignored)

 (body of message—choose one or more commands:)
 help (returns instructions)
 lists (returns list of newsgroups)
 subscribe <list name here> (waddayatink?)
 unsubscribe <list name here> (ditto)
 end

Figure 1-2. Follow this format to find out more about newsgroups available through ActivMedia.

The groups currently are unmoderated, so please confine your comments and inquiries to those concerning
robot operation and programming.

1.12.3 SRI Saphira Web Pages
Saphira is under continuing active development at SRI International. SRI maintains a set of web pages

with more information about Saphira, including
• tutorials and other documentation on various parts of Saphira
• class projects from Stanford CS225B, Real-World Autonomous Systems
• information about SRI robots and projects that use Saphira, including the integration of

Saphira with SRI’s Open Agent Architecture
• links to other sites using Pioneer robots and Saphira

The entry to the SRI Saphira web pages is http://www.ai.sri.com/~konolige/saphira.

1.12.4 Support
Have a problem? Can’t find the answer in this or any of the accompanying manuals? Or know a way that

we might improve our robots and software? Share your thoughts and questions directly with us:

support@activmedia.com
Your message goes to our team of developers, who will help you directly or point you to a place where

you may find help. Because this is a support option, not a general-interest newsgroup, we must reserve the
option to reply only to questions about bugs or problems with ActivMedia-manufactured robots or Saphira.

1.12.5 Acknowledgments
The Saphira system reflects the work of many people at SRI, starting with Stan Rosenschein, Leslie

Kaelbling, and Stan Reifel, who built and programmed Flakey in the mid 1980’s. Major contributions have
been made by Alessandro Saffiotti, Karen Myers, Enrique Ruspini, Didier Guzzoni, and many others.

The Aria system was created by the ActivMedia software team. The primary architect is Matt LaFary.
Major contributions come from Chris Newton and Joe XXXX.

Saphira Software Manual

2 Saphira and Aria System Overview
Saphira is an architecture for mobile robot control. Originally, it was developed for the research robot

Flakey1 at SRI International, and after being in use for over 10 years has evolved into an architecture that
supports a wide variety of research and application programming for mobile robotics. Saphira and Flakey
appeared in the October 1994 show Scientific American Frontiers with Alan Alda. Saphira and the Pioneer
robots placed first in the AAAI robot competition “Call a Meeting” in August 1996, which also appeared in
an April 1997 segment of the same program.2

With Saphira 8.x, the Saphira system has been split into two parts. Lower-level routines have been re-
organized and re-implemented as a separate software system, Aria. Aria is developed and maintained by
ActivMedia Robotics. It is a production-level system for robot control, based on an extensive set of C++
classes. The class structure of Aria makes it easy to expand and develop new programs: for example, to add
new sensor drivers to the system.

The Saphira/Aria system can be thought of as two architectures, with one built on top of the other. The
system architecture, implemented entirely in Aria, is an integrated set of routines for communicating with
and controlling a robot from a host computer. The system architecture is designed to make it easy to define
robot applications by linking in client programs. Because of this, the system architecture is an open
architecture. Users who wish to write their own robot control systems, but don’t want to worry about the
intricacies of hardware control and communication, can take advantage of the micro-tasking and state
reflection properties of the system architecture to bootstrap their applications. For example, a user interested
in developing a novel neural network control system might work at this level.

On top of the system routines is a robot control architecture, that is, a design for controlling mobile
robots that addresses many of the problems involved in navigation, from low-level control of motors and
sensors to high-level issues such as planning and object recognition. Saphira and Aria share the control
architecture duties, with Aria providing the basic elements of action and sensor interpretation. Saphira’s
contribution to the control architecture contains a rich set of representations and routines for processing
sensory input, building world models, and controlling the actions of the robot. As with the system
architecture, the routines in the control architecture are tightly integrated to present a coherent framework for
robot control. The control architecture is flexible enough that users may pick among various methods for
achieving an objective, for example, choosing between a behavioral control regime or a more direct control
of the motors. It is also an open architecture, as users may substitute their own methods for many of the
predefined routines, or add new functions and share their innovations with other research groups.

In this section, we’ll give a brief overview of the two architectures and discuss the main concepts of
Saphira and Aria. More in-depth information can be found in the documentation at the SRI Saphira web site
(http://www.ai.sri.com/~konolige/saphira) and ActivMedia’s Aria website.

2.1 System Architecture
Think of the system architecture as the basic operating system for robot control. Figure 2-1 shows the

structure for a typical robot application. Saphira/Aria routines are in blue, user routines in red Saphira/Aria
routines are all micro-tasks that are invoked during every synchronous cycle (100 ms) by Aria’s built-in
micro-tasking OS. These routines handle packet communication with the robot, build up an internal picture
of the robot’s state (Aria), and perform more complex tasks, such as navigation and sensor interpretation
(Saphira).

1 See http://www.ai.sri.com/people/flakey for a description of Flakey and further references.
2 A write-up of this event is in AI Magazine, Spring 1997 (for a summary see
http://www.ai.sri.com/~konolige/saphira/aaai.html).

9

http://www.ai.sri.com/~konolige/saphira

2: Saphira System Overview

10

Synchronous micro-tasking OS

Packet communications

State reflector

Control and
application
routines

User micro-tasks
and activities

User
async
routines

TTY or TCP/IP
connection

Saphira/Aria Client Processes

Figure 2-1 Saphira/Aria System Architecture.

Blue areas represent routines in the Saphira/Aria libraries, redroutines are from
the user. All the routines on the left are executed synchronously every 100 ms.
Additional user routines may also execute asynchronously as separate threads and
share the same address space.

2.1.2 Micro-Tasking OS
The Saphira/Aria architecture is built on top of a synchronous, interrupt-driven OS. Micro-tasks are

finite-state machines (FSMs) that are registered with the OS. Each 100 ms, the OS cycles through all
registered FSMs, and performs one step in each of them. Because these steps are performed at fixed time
intervals, all the FSMs operate synchronously, that is, they can depend on the state of the whole system
being updated and stable before they are called. It’s not necessary to worry about state values changing while
the FSM is executing. FSMs also can take advantage of the fixed cycle time to provide precise timing delays,
which are often useful in robot control. Because of the 100 ms cycle, the architecture supports reactive
control of the robot in response to rapidly changing environmental conditions.

The micro-tasking OS involves some limitations: each micro-task must accomplish its job within a small
amount of time and relinquish control to the micro-task OS. But with the computational capability of today’s
computers, where a 500 MHz Pentium processor is an average microprocessor, even complicated processing
such as the probability calculations for sonar processing can be done in milliseconds.

The use of a micro-tasking OS also helps to distribute the problem of controlling the robot over many
small, incremental routines. It is often easier to design and debug a complex robot control system by
implementing small tasks, debugging them, and them combining them to achieve greater competence.

Saphira Software Manual

2.1.2 User Routines
User routines are of two kinds. The first kind is a micro-task, like the Saphira/Aria library routines, that

runs synchronously every cycle. In effect, the user micro-task is an extension of the library routines and can
access the system architecture at any level. Typically the lowest level that user routines will work at is with
the state reflector, which is an abstract view of the robot’s internal state.

Saphira/Aria and user micro-tasks are written in the C++ language, and all operate within the same
executing thread, so they share variables and data structures. User micro-tasks have full access to all the
information typically used by Saphira/Aria routines.

Although user micro-tasks can be coded directly as FSMs in the C++ language, it’s much more
convenient to write activities in the Colbert language. The activity language has a rich set of control concepts
and a user-friendly syntax, both of which make writing control programs much easier. Activities are a special
type of micro-task and run in the same 100 ms cycle as other micro-tasks. Activities are interpreted by the
Colbert executive, so the user can trace them, break into and examine their actions, and rewrite them, without
leaving the running application. Developers can concentrate on refining their algorithms, rather than dealing
with the limitations of debugging in a compile-reload/re-execute cycle.

Because they are invoked every 100 ms, micro-tasks must partition their work into small segments that
can comfortably operate within this limit, e.g., checking some part of the robot state and issuing a motor
command. For more complicated tasks, such as planning, more time may be required, and this is where the
second kind of user routine is important. Asynchronous routines are separate threads of execution that share
a common address space with the Saphira library routines, but they are independent of the 100 ms
synchronous cycle. The user may start as many of these separate execution threads as desired, subject to
limitations of the host operating system. The Saphira system has priority over any user threads; thus, such
time-consuming operations as planning can coexist with the Saphira/Aria system architecture, without
affecting the real-time nature of robot control.

Finally, because all Saphira/Aria routines are in several libraries, user programs that link to these routines
need to include only those routines they will actually use. So, a client executable can be a compact program,
even though the Saphira/Aria libraries contain facilities for many different kinds of robot programs.

Packet Communications
Aria supports a packet-based communications protocol for sending commands to the robot server and

receiving information back from the robot. Typical clients will send an average of one to four commands a
second, and all clients receive 10 packets a second back from the robot. These information packets contain
sensor readings and motor movement information (see Section Error! Reference source not found.). The
amount of data sent is typically only 30 to 50 bytes per packet, so even a relatively modest 9600 baud
channel can accommodate it. Aria has the capability of connecting to a robot server over a tty line, an
Ethernet with TCP/IP, or a local IPC link.

Because the data channel may be unreliable (e.g., a radio modem), packets have a checksum to determine
if the packet is corrupted. If so, the packet is discarded, which avoids the overhead of sending
acknowledgment packets and assures that the system will receive new packets in a timely manner. But the
packet communication routines must be sensitive to lost information, and have several methods for assuring
that commands and information are eventually received, even in noisy environments. If a significant
percentage of packets are lost, then Aria’s performance will degrade.

State Reflector
It is tedious for robot control programs to deal with the issues of packet communication. So, Saphira

incorporates an internal state reflector to mirror the robot’s state on the host computer. Essentially, the state
reflector is an abstract view of the actual robot’s internal state. There is information about the robot’s
movement and sensors, all conveniently packaged into data structures available to any micro-task or
asynchronous user routine. Similarly, to control the robot, a routine sets the appropriate control variable in
the state reflector, and the communication routines will send the appropriate command to the robot.

11

2: Saphira System Overview

2.2 Control Architecture
The control architecture is built on top of the state reflector (Figure 2-1). It consists of a set of micro-

tasks and asynchronous tasks that implement all of the functions required for mobile robot navigation in an
office environment. A typical client will use a subset of this functionality.

Global Map

Local
Perceptual
Space

State Reflector

Colbert
Executive

Multi-robot
Interface

TCP/IP link to
other agents

Markov
localization
routines

Sensor interp
routines

Direct motion
control

Behavioral
control

Display
routines

Gradient
realtime path
planner

Figure 2-1. Saphira/Aria Control Architecture

The control architecture is a set of routines that interpret sensor readings
relative to a geometric world model, and a set of action routines that map
robot states to control actions. Markov localization routines link the robot’s
local sensor readings to its map of the world, and the Colbert Executive
sequences actions to achieve specific goals. The multi-robot interface links
the robot to other robots using TCP/IP connections. Aria system is in blue,
Saphira in red.

Representation of Space
Mobile robots operate in a geometric space, and the representation of that space is critical to their

performance. There are two main geometrical representations in Saphira. The Local Perceptual Space (LPS)
is an egocentric coordinate system a few meters in radius centered on the robot. For a larger perspective,
Saphira uses a Global Map Space (GMS) to represent objects that are part of the robot’s environment, in
absolute (global) coordinates.

The LPS is useful for keeping track of the robot’s motion over short space-time intervals, fusing sensor
readings, and registering obstacles to be avoided. The LPS gives the robot a sense of its local surroundings.
The main Saphira interface window displays the robot’s LPS (see Figure2-1). In local mode (from the

12

Saphira Software Manual

Display menu), the robot stays centered in the window, pointing up, and the world revolves around it.
Keeping the robot fixed in position makes it easy to describe strategies for avoiding obstacles, going to goal
positions, and so on.

Structures in the GMS are called artifacts, and represent objects in the environment or internal structures,
such as paths. A collection of objects, such as corridors, doors, and rooms, can be grouped together into a
map and saved for later use. The GMS is not displayed as a separate structure, but its artifacts appear in the
LPS display window.

Direct Motion Control
The simplest method of controlling the robot is to modify the robot motion setpoints in the state reflector.

A motion setpoint is a value for a control variable that the motion controller on the robot will try to achieve.
For example, one of the motion setpoints is forward velocity. Setting this in the state reflector will cause the
communications routines to reflect its value to the robot, whose onboard controllers will then try to keep the
robot going at the required velocity.

Two direct motion channels handle rotation and translation of the robot. Any combination of velocity or
position setpoints may be used for these channels (see Section Error! Reference source not found.).

Behavioral Control
For more complicated motion control, Aria provides a facility for implementing behaviors as sets of

control rules. Behaviors have a priority and activity level, as well as other well-defined state variables that
mediate their interaction with other behaviors and with their invoking routines. For example, a routine can
check whether a behavior has achieved its goal or not by checking the appropriate behavior-state variable.

Version 8.x includes several major changes in behavior management. Aria implements a general behavior
architecture in which behaviors are C++ objects. The interaction among behaviors is implemented by a
resolver class. Aria provides several types of resolvers, and the user can define his own additional resolvers
for particular applications. Behaviors are now integrated with Colbert activities, so that they appear as the
leaves of an executing activity tree.

Behaviors can be turned on and off by sending them signals, either from the interaction window, or from
the Activities window.

Activities and Colbert
To manage complex goal-seeking activities, Saphira provides a method of scheduling actions of the robot

using a new control language, called Colbert. With Colbert, you can build libraries of activities that sequence
actions of the robot in response to environmental conditions. For example, a typical activity might move the
robot down a corridor while avoiding obstacles and checking for blockages.

Activity schemas are the basic building block of Colbert. When instantiated, an activity schema is
scheduled by the Colbert executive as another micro-task, with advanced facilities for spawning child
activities and behaviors, and coordinating actions among concurrently running activities.

Activity schemas are written using the Colbert Language. The language has a rich set of control concepts,
and a user-friendly syntax, similar to C’s, that makes writing activities much easier. Because the language is
interpreted by the executive, it is much easier to develop and debug activities, because errors can be trapped,
an activity changed in a text editor, and then reinvoked, without leaving the running application.

Sensor Interpretation Routines
Sensor interpretation routines are processes that extract data from sensors or the LPS, and return

information to the LPS. Saphira activates interpretative processes in response to different tasks. Obstacle
detection and surface reconstruction are some of the routines that currently exist; all work with data reflected
from the sonars, laser range-finders, and motion sensing.

13

2: Saphira System Overview

Localization and Maps
In the global map space, Saphira maintains a set of internal data structures (artifacts) that represent the

office environment. Artifacts include corridors, door, walls, and rooms. These maps can be created either by
direct input from a map file, or by running the robot in the environment and letting Saphira extract the
relevant information.

Localization is the process of keeping the robot’s global location in an internal map consistent with
sensor readings from the local environment. Saphira implements an efficient Markov Localization algorithm
for taking information from sonars or laser range-finders, matching it to map structures in the GMS, then
updating the robot’s position.

Realtime, Optimal Path Planning
Saphira 8.x incorporates a new, efficient method for planning optimal paths in real time. The Gradient

Method, developed at SRI International, operates with both map artifacts and current sensor information to
generate optimal paths that move the robot safely through the environment.

Graphics Display
Displaying internal information of the client is essential for debugging robot control programs. Saphira

provides a set of graphics routines that can be called by micro-tasks. A set of pre-defined micro-tasks display
information about the state reflector and other data structures, such as the artifacts of the GMS. User
programs also may invoke the graphics routines directly to display relevant information.
Multi-Robot Interface

Aria is a multi-robot control system, with a class structure set up to handle multiple instances of robot
controllers. Currently, Saphira is oriented towards controlling a single robot. In the immediate future, we
plan on providing access to Aria’s multi-robot facilities through Saphira.

Additionally, we are working on providing a TCP/IP interface between robot controllers running on
different physical robots. This interface will tie together Saphira/Aria clients, enabling them to form a
distributed robot control system.

2.3 Running the Sample Client
This section exercises some of Saphira’s capabilities through a sample client. It also illustrates the

graphical user interface for interacting with clients.
To run the sample application, execute the file saphira(.exe) in the Saphira bin distribution

directory. This executable requires only runtime files found on your system, and the relevant loadable
libraries from Saphira and Aria (sf.dll/aria.dll or libsf.so/libAria.so). You should have
installed these as directed in Section 1.10.

The Saphira client will initialize an interface window showing the LPS (see Figure 2-2). The robot is near
the center of the display, which shows the sonar information returned to the client program. An information
area appears at the left of the window, the menu bar at the top, and a text-based interaction window at the
bottom.

2.3.1 Loading an Activity File
The Saphira client in bin/saphira(.exe) has only a bare set of micro-tasks loaded. The

capabilities of the client are increased by loading in Colbert files, which contain activity schemas and
invocations of API functions. A sample activity file, colbert/demo.act, is used as an example in the
rest of this section (the .act extension signifies a Colbert language file). When the saphira client starts,
it looks for the file startup.act in the current load directory, which by default is
$(SAPHIRA)/colbert. The initialization file loads the windowing system, and then the demonstration
file demo.act.

To load your own init file, you can either change the load directory by setting the environment variable
SAPHIRA_LOAD, or change the startup.act file in the colbert/ directory. Be careful, though, to

14

Saphira Software Manual

Figure 2-2 Saphira client Local Perceptual Space.

Small squares are sonar readings; green ones are the current sonar values, blue and
black are history buffers. The small rectangle immediately in front of the robot is the
angular setpoint. Larger green rectangles indicate areas of sensitivity for the behaviors
controlling the robot. The lines are wall artifacts, from a loaded map. Information
about the robot’s position, velocity, and internal state are shown on the left.

have your own startup file load the windowing system as in colbert/startup.act, or you won’t get a
Saphira GUI.

The demo.act file defines a Wander activity schema, then invokes it and a few predefined behaviors
for obstacle avoidance. Please refer to the code for more details.

2.12.1 Connecting to a Robot
As we mentioned earlier, connecting Saphira with either the simulator or the actual robot is similar. First,

if you are using the simulator, make sure that the correct robot parameters are loaded (the simulator defaults
to using Pioneer parameters; see Chapter 3). Otherwise, the Saphira client auto-detects the robot server type

15

2: Saphira System Overview

and loads its parameters when first connected (see the robot manuals for details), so it isn’t necessary to load
a parameter file into the Saphira application unless you’re using a custom configuration.

You can connect using either the interaction window commands or the menu.
• Serial port connection to Pioneer (radio modem or fixed line). In the Saphira interaction

window, type connect serial to connect on the standard serial port. If your radio modem
is connected to a different serial port, use connect serial <port>, where <port> is
the name of the serial port, e.g., /dev/ttyS1 or COM2. The Connect/Serial Port
menu item will also work for the standard serial port. You can set the standard serial port and
baud rate; see Section XXX for details.

• Simulator connection. If you’ve started the simulator, it’s listening on a local TCP/IP port.
Type connect, which opens the local port to the simulator and starts things up. Or, choose the
Connect/Local menu item.

If you have a problem connecting with the simulator or robot server, the communication connection will
fail, and a message describing the problem will appear in Saphira’s main window information area. Typical
causes for failure of the simulator or the actual robot (and their solutions) include:

• Make sure the simulator is running and no other Saphira client or simulator server is running on the
same machine.

• In rare cases, the communications pipe may be blocked. This can occur if the server or client exits
abnormally from a previous connection, without shutting it down properly. Try deleting the pipe file
and starting again. If this doesn’t work, the only remedy is rebooting the machine.

• Make sure that the communications tether or radio modem is plugged into the correct serial port
with the correct cable.

• Remove the serial tether cable from the robot’s serial port if you use the radio modem.
• Make sure the client radio modem is within range of robot, is on the correct channel, and has a

strong link signal.
• Make sure the serial port is not in use by another application.

Once connected, the Saphira client will display information about the state of the robot and allow you to
command the robot from the menu and keyboard.

2.12.2 Local Perceptual Space Display
The Saphira client’s display contains most of the items likely to be found in the robot’s LPS. It is a

bird’s-eye view of the environment around the robot. The LPS may be switched between a robot-centric
display and global coordinates, using the Display/Local menu item.

The main Saphira window components include:
Robot icon

The robot icon near the center of the screen shows the robot in relation to its environment. If in local
view, the LPS appears in robot-centric coordinates: the robot remains at the center of the screen and the
environment moves around it. In GMS (global) mode (the default), the environment becomes fixed and the
robot icon wanders around the screen. The size of the robot icon is controlled by the RobotRadius and
RobotDiagonal values in the robot’s parameter file (see Chapter 6)
Sonar readings

Accumulated sonar readings appear on screen as small open rectangles, in blue and black. Current sonar
readings are green rectangles. The number of accumulated sonar readings can be set by the user.
Control point

The small rectangle directly in front of the robot icon is its heading control point, as returned by the
server in robot-centric coordinates. Normally, this control point is positioned directly ahead of the robot,
veering to one side or the other in response to a turn directive from the client. The robot controller adjusts its
heading accordingly, trying to keep heading towards the control point.

16

Saphira Software Manual

Obstacle sensitivity areas
Several obstacle-avoidance behaviors draw large rectangles in the LPS, indicating areas of sensitivity for

the behaviors. These rectangles can change color when an obstacle is detected.

2.12.3 Artifacts
Artifacts are internal representations of external objects or imaginary constructions, such as goal

positions or map elements. In the LPS display of Figure 2-2 map walls are drawn as lines.

2.12.4 Information Area
The information area is at the left of the main window. It contains data returned from the robot server.

Status (St)
Shows the robot server status as no conn, power, or no servo when the motors are stuck.

Velocity (Tr, Rot)
The robots translational (Tr) velocity in millimeters per second and rotational (Rot) velocity in degrees

per second.
Position (X, Y, Th)

Absolute robot position in millimeters and degrees. Note that this is not the server dead-reckoned
position, which has accumulated errors. Instead, it is the registered global position of the robot based on
Saphira’s map registration routines operating in conjunction with position integration returned from the
server.
Communication (MPac, SPac, VPac)

The communication values in the information area are the number of packets of the given type received
in the last second. They are useful for checking the communication link with the server. Normally, a client
will receive 10 motor packets (Mpac) and approximately 25 sonar packets (SPac) per second. Vision
packets (Vpac) currently are not supported.
Battery

The battery (Bat) voltage level on the server indicates when the robot needs to be recharged.
Behaviors

The Behaviors button is lit if behavioral actions are enabled for Saphira. Behavioral actions are
overridden by direct actions, e.g., joysticking the robot using movement keys from the LPS window.
Behavioral actions can be turned back on by pressing the Behaviors button.
Motors

The Motors button is used to enable the motors on a physical robot (the simulator’s motors are always
“enabled”).

2.3.2 Text Interaction Area
The interaction area is at the bottom of the window. Here Saphira prints information about the system,

and the user can type commands to the Colbert evaluator.
In the interaction area, you can do the following tasks:

• Load activity files and change the working directory
• Connect and disconnect from a robot server
• Define, start, and stop activities
• Trace and untrace activities
• Get help on API and evaluator functions
• Examine and set internal Saphira variables

The evaluator lets users write and debug programs from the running Saphira application. Usually, the
user code will be in a text file that is read into the system with the load command, as we did for this
example (colbert/demo.act). The code file contains a mixture of activity schema definitions and calls

17

2: Saphira System Overview

to library functions. The user can invoke the activities from the interaction area with the start command,
or use the Activities window. During execution, the user can examine the state of Saphira variables, and stop
and start other activities. If an error occurs, the offending activity is suspended and a message is printed. The
user can change the Colbert text file, reload it, and run the changed activities. There is no need to exit from
the application and recompile. Even new C++ functions can be dynamically linked into the system by
loading a shared object file.

2.3.3 Menus
The main client window contains several pull-down menus. These let you control the display of

information in the LPS and related subwindows, manage communication to the server, and load and save
parameter and map files:
Connect Menu

The Connect menu lets you make and break a connection to the robot server. The menu contains three
items: the standard serial port, a local port for the simulator, and a TCP connection. Choosing one of these
items causes the client to try to connect to the physical robot or to the simulator. Parameters such as the baud
rate and port names can be changed from the interaction window or via library calls.

The Disconnect option closes an open connection to the robot.
Files Menu

The Files menu has items for loading different kinds of files, and for exiting from the Saphira system.
Load World File brings up a dialog to load a world file map into Saphira. You can also use the

Colbert loadworld command.
Load Activity File brings up a dialog to load a Colbert activity file into Saphira. You can also

use the Colbert load command.
Load Library File brings up a dialog to load a compiled library file (DLL or shared object file)

into Saphira. You can also use the Colbert loadlib command.
Exit causes the client program to terminate, closing any open connection first.

View Menu
The View menu control various aspects of the display windows.
Clicking either the Grow or Shrink item causes the LPS display to grow or shrink in scale, respectively.
The Rate item is a pulldown menu controlling the display update rate. On some systems, high update

rates consume significant portions of available CPU time, and lowering the update rate will increase
performance. If the number of motor packets (Mpacs) per second falls significantly below 10, and you have
a good connection to the robot server, then a high display-update rate may be the culprit.

Robot Onscreen, if checked, keeps the viewport of the display window so that the robot is always visible.
Robocentric, if checked, changes the display so that everything is viewed from the perspective of the

robot, which stays centered and pointing up in the middle of the window. Global mode (unchecked) shows
the robot wandering in the global coordinate system.

Robot Visible and Artifacts Visible turn on or off the drawing of the robot and other artifacts to the
window.

Activity Window, when selected, will bring up the Activity Window for viewing the state of Colbert
activities and behavioral actions.
Sensors Menu

The Sensors menu has entries for the current sensor interpreters loaded for the Saphira client. Usually
these are the sonar and laser range finder programs. Selecting either one will bring up a Sensor Window for
controlling the action of the sensor buffers.

18

Saphira Software Manual

19

Figure 2-3 Sensor buffer dialog. Controls the sensor
accumulation buffers.

The sensor buffer dialog windows give control over the size and display of the sensor history buffers.
Generally, range sensors such as sonars accumulate readings into various history buffers, so that other
routines can get a larger view of the world than that provided by single readings.

There are two types of history buffers. A current buffer holds the last N readings from the sensor, and
the readings are replaced as new ones come in, on a first-in, last-out basis. For example, in a typical case the
sonar current buffer will hold the last 30 sonar readings. If the readings are coming in at 20 per second, the
buffer will hold the last 1.5 seconds of sonar readings. Since the readings are dynamically replaced, objects
that come into view and then go away will not leave a lasting impression on the buffer. Current buffer
readings appear in blue (for sonars) on the LPS window.

The accumulation buffer holds longer-term readings, and usually ones that are more certain of being
correct. When new readings are added, old readings near them are erased; typically items stay in the buffer
for longer amounts of time. Accumulation buffer readings appear in black (for sonars) in the LPS window.

The sliders in the sensor buffer dialog will change the number of slots in the buffers. The Clear/Reset
item clears all of the sonar readings from the buffer. The display of the buffer can be toggled with the
Display button.

2.3.4 Keyboard Actions
In addition to using Saphira’s pulldown menus, you may control some of the functions of the robot server

directly from the client keyboard. The keys shown in Table 2-1 show motion control of the robot (keyboard
joystick). These keys work only when the main Saphira window is active, that is, you have to left-click in the
graphics window first.

The sample Saphira client we provide defines a set of keyboard actions for robot motion and for turning
some behaviors on and off. In a user application, there are in the Saphira API for intercepting keyboard
actions and mouse clicks.

The Stop behavior, not surprisingly, stops the robot. It is useful when you want the robot to stop if no
other behavior is managing the robot’s movements. For example, if the Constant Velocity behavior is
invoked and then killed, the robot will still have a residual forward velocity. In the absence of any other
behaviors, it will keep moving forward. Invoking Stop at a low priority assures that the robot will stop if it is
not doing anything else.

2.3.5 Activities Window

2: Saphira System Overview

20

Key Action

i, ↑ Increment forward velocity

m, ↓ Decrement forward velocity

j, ← Incremental left turn

l, → Incremental right turn

k, space All stop

Table 2-1 Keyboard joystick commands for the Saphira
client.

Saphira’s Activities window shows the state and relationship of all current Colbert activities and
behavioral actions (Figure 2-4). Open it from the Activities menu item in the View menu of the main
window.

The Activities window contains a scrolled list where each line has the activity’s name and its state. The
state information is updated in real time as the activity state changes.

Relationships between activities are indicated by line indentations. For instance, in the example in Figure

Figure 2-4 Activity Display Window. This window shows the state of currently executing activities
(black) and behavioral actions (red).

Saphira Software Manual

2-4, the second activity getout is indented to show that it is a child of the first activity, bng (bump and
go). These activities can be found in the file Colbert/bump.act; just type “load bump” to load it.

Bng monitors the state of the robot; when the robot bumps into something and the wheels stall, it starts
up the getout activity to back up the robot and turn it away from the obstacle. That’s the point at which
this snapshot of the Activities Window was taken. There are also three behavioral actions that are started by
demo.act, in a suspended state.

You may manually interrupt an activity by shift-clicking it with the mouse. If the activity is running, this
will force it into the suspend state. Use the same action to reactivate an interrupted/suspended activity.
This will invoke the resume state. Normally, an activity will respond to this state by reinitializing and
starting its characteristic behaviors.

System Environment Variables
Several environment variables can be set to control defaults in Saphira clients. Following is a complete

list of them, and their effects. In MS Windows, environment variables are set in AUTOEXEC.BAT, or via the
user profiles (Windows NT/2000/XP). In UNIX, they are set from a shell using setenv or export.

21

2: Saphira System Overview

22

Environment Variable Effect

SAPHIRA Top level of the Saphira distribution. This variable must
be set for Saphira clients and the simulator to run
correctly. In Unix, there should be no final slash in the
path, e.g., /usr/local/Saphira.

SAPHIRA_LOAD Initial load directory for the Colbert evaluator. This
directory is searched for the file startup.act when the
Colbert evaluator starts. If not set, defaults to the directory
from which the client was started.

SAPHIRA_COMSERIAL Serial port for connecting to the robot. Defaults to the
primary serial port for the system being used, e.g., COM1
under MS Windows, /dev/ttyS0 under Linux, and so
on.

SAPHIRA_SERIALBAUD Baud rate for serial connection. Defaults to 9600.

SAPHIRA_COMPORT Local TCP/IP port for connection to the Saphira simulator.
Can be set so that multiple copies of the simulator can run
on the same machine, and clients can connect to them; use
numbers greater than 8101. This variable affects both the
simulator and the client application. Default depends on
the system.

SAPHIRA_COMSERVER Machine name or IP address for TCP/IP connection.
Defaults to NULL.

Table 2-2 Environment variables used to control defaults in Saphira clients.

Saphira Software Manual

3 The Simulator
The simulator is a very useful alternative to a physical robot for developing robotics programs. Although

there is nothing like real world conditions to humble the most ambitious robotics project, the simulator does
have the distinct advantage of having a single-step mode in which you can reenact every detail of your
programs, including a robotics fatality.

And, too, the simulator has realistic error models for the sonar sensors and wheel encoders so that, in
general, if a client program works with the simulator, it will work on the physical robot. The simulator also
lets you construct a simple world in which the simulated robot navigates. You can even change the robot’s
operating characteristics to simulate your own robot designs. And because the packet interface of the
simulator is the same as the physical robot, no changes to the client program are required in switching
between the two.

The disadvantage of the simulator is that the environment model is an abstraction of the real world, with
simple 2-D linear segments in place of the complex geometrical objects the real robot will encounter in the
real world. For example, the simulator assumes all objects are sensor-high, so it can’t simulate a door stop—
something the real robot will have to overcome to traverse rooms in a real building.

3.1 Starting the Simulator
Execute the program named pioneer(.exe) in the Saphira lib/ directory. (By default, the simulator

acts like the Pioneer II Mobile Robot—hence, its name. We tell you how to simulate other robots in a
following section of this Chapter.) Normally, the simulator connects to the client using a TCP/IP port on the
same machine. It is also possible to run multiple copies of the simulator on the same machine with different
communication channels (handy for class work), or to have the simulator listen on a tty port or a TCP/IP port
on a remote machine.

If, for some reason, the client terminates abnormally, the simulator can be disconnected using the
Disconnect option from the Quit menu. Disconnecting or quitting the simulator while the client is connected
will cause the client to disconnect.

Once connected with a client, the simulator displays a window of its activity. A sample window is shown
in Figure 3-1. The simulated robot is the circular icon in the center of the screen; the straight lines are
simulated world segments: walls, corridors, rooms, and so on. A collection of segments—a world—may be
defined in a simple text file (see below) and loaded from the simulator’s Load (Files) menu.

3.1.1 Listening on Other Ports
The simulator listens on a TCP/IP port for connections from a server. By default, this is port 8101. Only

one simulator may be connected at a time to that port. In some cases, it is convenient to start up multiple
copies of the simulator; or, for some reason, the socket may be busy or unavailable. In these cases, the
simulator can be started with an alternative socket name. Set the environment variable SAPHIRA_COMPORT
to the name of the desired socket before starting the simulator, and it will be used instead of the default. The
simulator window shows which socket it’s listening on.

To connect to a particular socket from the client side, set the SAPHIRA_COMPIPE environment variable
to the name of the desired simulator socket before trying to connect. Under UNIX and Windows NT,
different users can set these variables in a unique way, so that several users logged in to the same machine
can start up their private versions of the simulator.

23

5. Saphira API

24

Figure 3-1. A sample window of the simulator.

3.2 Parameter File
The default operating parameters for the simulator are for the Pioneer II. You may reset these working

parameters to simulate nearly any mobile robot by constructing then loading a special robot parameter file
into the simulator from the Load/Files menu. Find a variety of prepared parameter files in the Saphira
params/ directory. The newly loaded model is active for as long as you run the simulator or until you load
another parameter file.

You use a parameter file to prescribe a variety of simulated robot characteristics, such as placement of
sonars and drive-error tolerances. Once constructed, store your parameter file in common text (ASCII)
format in the params/ directory; usually, you add the suffix .p to the file name. A sample, annotated
parameter file listing is in Appendix A, and the parameter file resides in the Saphira collection as
params/pioneer.p.

Three important parameters control the amount of error in the simulated robot’s motion (Table 3-1).
Consult the listing in Section 6 for more details.

Table 3-1. Example drive error tolerance values for a parameters file.

Parameter Pioneer Value Description

EncodeJitter 0.01 Error in distance

AngleJitter 0.02 Error in angular position

AngleDrift 0.003 Angular drift with forward
movement

Saphira Software Manual

World Description File
A world description file is a plain text (ASCII) document typically stored with the file name suffix

.wld, which describes the size and contents of a simulated world. A sample world file can be found in the
Chapter 0, along with instructions on how to create your own worlds. We’ve also included several sample
world files with the Saphira distribution found in the worlds/ directory.

If the simulator is connected to a client, the client can tell the simulator to load a world file via the
sfLoadWorldFile function.

3.3 Simulator Menus
Several simulator menus control the parameters and actions of the simulated robot. The menu options

provide controls for loading world and parameter files, for adjusting the display, and for changing the
connection type, for example. (Not all menus are implemented in every version.)

3.3.1 Load (Files) Menu
The File/Load Params item brings up a file selection dialog to load a robot parameter file. The parameter

file changes the characteristics of the simulated robot, such as the number and placement of the sonars. By
default, the Pioneer robot parameters are loaded.

The File/Load World item brings up a file-selection dialog to load a world file.

3.3.2 Connect Menu
The Connect menu disconnects the simulator from an aborted client, or exits the simulator.
The Disconnect item causes an immediate disconnect of the simulator from its connected client.

Normally, the simulator will disconnect automatically when the client sends it the sfCLOSE command.
In situations in which the client has a system error and exits abnormally, the client may remain connected,

even though the connection is no longer valid. In this case, the Disconnect item will force the connection to
close, so the simulator can go back to a listening state.

The Exit item terminates the simulator. A connected simulator should be disconnected first from the
client side, or it will cause the client to abort.

3.3.3 Display Menu (Grow, Shrink)
The Grow and Shrink menus or change the size of the display.

3.3.4 Recenter Menu
Selecting the Recenter menu item centers the display around the current robot position. It does not change

the robot’s position.
Usually, the simulator will keep the robot icon near the center of the display by moving the display

window when the robot approaches an edge.

3.3.5 Original Position
Pressing this button will return the simulated robot to the position given by the loaded map. This button

is very useful for resetting while debugging.

3.3.6 Information Area
The information area at the bottom of the simulator window shows messages about the connection status.

It also shows the absolute x,y position of the robot in meters, and the angle of the robot in degrees.

3.4 Mouse Actions
The left mouse button puts the simulated robot at the position of the cursor. This moves the robot in its

world, and the x,y coordinates at the bottom of the screen will change. If the robot becomes stuck against a
wall, using the left mouse button to move it a little can unstick it.

The middle button moves the simulated world position at the cursor to the center of the display.

25

5. Saphira API

3.5 Compass
The simulator’s compass has a standard deviation of 3 degrees from the robot’s true heading. Compass

readings are sent back in the information packet. The simulated compass differs from the real compass in that
it does not reflect bias in the magnetic environment, which can be quite severe. In the simulator, magnetic
north is always along the positive x direction.

26

Saphira Software Manual

4 Creating Loadable Files
This chapter describes how to create Saphira clients. As of version 8.0, we recommend using the

standard Saphira client as the robot control client, and customizing its behavior by loading in shared object
files containing more system and user code. The base client is lib/saphira(.exe). The loaded files
may be Colbert language interpreted files, or compiled C++ code in shared object files.

Also with version 8.0, Saphira is a completely object-oriented system (as is Aria). The language of
Saphira is C++, and loadable files should also be written in this language (it is possible to use a mixture of
C++ and C).

C++ programs can be compiled into object files using standard compilers, such as gcc or MS Visual
C++. The header files in ohandler/include contain prototypes and definitions of structures and
variables in the Saphira library. After compiling his or her files, the developer links them with the Saphira
library to create either a shared object file, or an executable client. Shared object files are loaded into
Colbert, and clients are stand-alone systems for controlling the robot. User clients may also invoke the
Colbert evaluator; for instance, the standard client lib/saphira(.exe) calls the evaluator as a micro-
task.

The next chapter contains details of the Saphira API, which should be used as a reference guide to the
Saphira libraries. In addition to the Saphira API, the best reference material is the example clients and shared
object files that are defined in the Saphira distribution and in the tutorial documentation at the SRI Saphira
website (http://www.ai.sri.com/~konolige/saphira).

Saphira uses the Aria libraries, and all Aria functions and classes are available in Saphira. Users should
be familiar with the Aria documentation when writing Saphira programs, because often there will be a
mixture of Saphira and Aria classes and functions.

There is a tutorial, Compiling, Loading, and Debugging C++ Files, which gives details about the
compilation and debugging process for Saphira load files. There is also a tutorial example program,
tutor/loadable, with a sample load file.

4.1 Host System Requirements
Saphira and Aria libraries are available for Linux and MS Windows systems. For UNIX systems, we

recommend using the Gnu gcc compiler and linking tools from the Free Software Foundation. These tools
provide a uniform base for making clients, and the sample programs are all made with them.

Saphira now uses the FLTK cross-platform windowing system for GUI objects (www.fltk.org). It has
classes for drawing within the Saphira graphics window. Users may also write their own FLTK GUI
interfaces.

For MS Windows, the libraries have been compiled with MS Visual C 6 tools. A DLL file and an
associated LIB file are available.

4.2 Compiling and Linking C++ Source Files
To compile a loadable shared object file or Saphira client, you must have installed the Saphira

distribution according to the directions in the readme file. In particular, the environment variable SAPHIRA
must be set to the top level of the distribution: we recommend /usr/local/Saphira in a UNIX system,
for example.

After installing the Saphira distribution, follow these steps to create a client or a shared object file:

1. Write a C++ program containing your code, including calls to Saphira library functions.
2. Compile the program to produce an object file.
3. Link the object file together with the relevant Saphira library to create a shared object file.

As of Saphira 8.0, all the Saphira library routines are contained in a shared library. In MS Windows, this
is sf.dll; in UNIX systems, it is the shared library libsf.so.

27

http://www.ai.sri.com/~konolige/saphira
http://www.fltk.org/

5. Saphira API

In MS Windows, shared libraries (DLLs) cannot be relinked unless no application is using them. If you
have loaded a DLL, then make changes to the source code and try to relink it, you will get an error saying
that the DLL file is busy. The unload command can be used to unload the DLL from Saphira so the link
can proceed.

The Saphira library headers, as well as other relevant system and graphics headers, are loaded by the
handler/Saphira.h file. This file is always included when creating loadable shared object files.

Figure 4-1 is a graphical view of the standard Saphira client execution process. The main client thread
starts up, and invokes the Saphira OS to run the synchronous task loop. After start-up, the OS wakes up
every 100 ms and runs every micro-task.

For most robot programming, all operations can be handled in micro-tasks. If a more compute-intensive
task must be done concurrently, the user can now run asynchronous routines concurrently with the Saphira
OS, which is executing its micro-tasks every 100 ms. The micro-tasks and the asynchronous user routines
share the same address space and can communicate via global and class variables.

4.2.1 Debugging C Code under UNIX
The Colbert interaction window is a handy facility for debugging clients, because you can query the

values of variables, start and stop activities, and so on. Often, it may be necessary to invoke a more heavy-
duty debugging apparatus, especially for complicated C programs. The Gnu debugger gdb can be useful,
especially when started in Emacs. Here are a few tips for interacting with the Gnu debugger.

To start up, give gdb the name of the client executable (usually saphira). At the debugger prompt,
type run to start the client. Before running the program, the Saphira libraries (libsf.so) aren’t loaded,
so you can’t set breakpoints in Saphira functions. Similarly, user load files aren’t yet present. After the client
is running and you have loaded any shared object files into Colbert, you can set breakpoints by interrupting
back to the debugger prompt. All the Saphira library exported functions and variables can be examined, and
you can set breakpoints in the library functions. The Saphira library has been compiled with the -g option,
so its symbols are available to the debugger. However, the source code is not in the distribution, so you can’t
step through library functions.

If you loaded a user shared object file into Colbert, say testload.so, you won’t see its symbols, even
if you used the -g option on compilation. That’s because user shared objects are read by the dynamic loader,
and the debugger has no way of tracking these loads. So, it must be explicitly told of user shared object files
with the sharedlibrary command. For example, giving the debugger command sharedlibrary

 Main
thread

Saphira
OS

Execute
micro-tasks

Execute
micro-tasks

Execute
micro-tasks

100 ms

200 ms

300 ms

Start uTask
thread

User
async
routines

Figure 4-1. Concurrent execution of Saphira OS and user asynchronous tasks.

28

Saphira Software Manual

testload.so will make all the symbols in this file available to the debugger, assuming it was compiled
with the -g option.

4.2.2 Debugging C Code under MS Windows
You can use the MSVC debugger to set breakpoints and step through compiled C code loaded into

Colbert as DLLs. All of the exported library symbols can also be examined, although source code is not
available.

To invoke the debugger, start from an MSVC project creating the DLL in question (use the Debug build
option). Use the Execute command; you will be prompted for the name of an executable file, which
should be the Saphira client. After the client is started, load the DLL into it via Colbert’s load command.
The MSVC debugger will halt the client on breakpoints, and you can examine the state of the computation.

29

Saphira Software Manual

31

5. Saphira API

5 Saphira API Documentation
The Saphira and Aria class and function API’s are now documented using the Doxygen documentation

system. HTML versions are available in Saphira/docs/html and Aria/docs/reference/html.

32

Saphira Software Manual

33

Saphira Software Manual

6 Markov Localization Module
Saphira incorporates an efficient version of Monte-Carlo Markov Localization [Fox et al. 1999] that can

keep the robot localized in a global map, based on sonar or laser sensors.
The ML module is packaged as both an application for demonstrating the capabilities of the algorithm,

and an API for invoking the ML functionality from a Saphira client.

6.1 Markov Localization Overview
Markov Localization is a process for estimating the state of the robot, in particular, its pose. The basic

idea is to divide the motion of the robot into a set of discrete steps (e.g., 1 meter of distance or 20 degrees of
turn between steps). At each new step, the position of the robot is estimated from dead reckoning
information, and sensor returns compared against an a priori map.

The estimation is a two-step process: prediction from the dead reckoning information, and update from
the sensor information. Generally, uncertainty in the robot’s pose grows with the prediction step, and is
reduced with the update step, where the pose is registered with the map. The process is Markovian because
it is assumed to be history-less: it doesn’t matter how the robot got to a particular place --- all information is
given by the robot’s current pose and uncertainty.

There are several ways of representing uncertainty in the robot’s pose; a good overview is in the
document, Robot Notes: Robot Motion in the docs/ directory. For this implementation, we chose the
efficient Monte-Carlo method, where the uncertain robot pose is represented as a set of sample poses. The
sample poses are concentrated around the most likely area for the robot to be.

There are a number of parameters that are important for the ML process. Chief among these are the
number of sample points, the gain applied when updating with sensor information, and the distance between
updates. All of these parameters are set to reasonable values on startup, and can be manipulated by the user
program, or via the GUI interface.

6.2 Loading the ML Module
Here are the relevant library files for the ML algorithms:

Name Description
lib/loc.so,
lib\loc.dll

Core library routines and API interface for
Markov Localization with sonars or laser
rangefinder.

lib/flloc.so,
lib\flloc.dll

GUI library; adds menu items and dialogs for
changing localization parameters.

colbert/flloc.act,
lrfloc.act, scan.act

Application initialization files. Use
flloc.act to initialize ML with sonar
sensors. Use lrfloc.act to initialize ML
with laser rangefinder and the standard
aic.wld file. Use scan.act to initialize
ML with laser rangefinder and a grid map built
from ScanStudio, and to run the Gradient
module in addition.

The simplest way to start is to load flloc.act, using the Colbert command “load flloc”. This

will load a sample world file (aic.wld), the core ML library and the GUI, and start up the ML processes.
Start the simulator with the same world file, connect to it, and the red sample cloud will follow the correct
real-world position of the robot. Select Update Position from the Localize menu, and the Saphira

35

12. API Reference

Figure 6-1 Localization module snapshot. The red cloud is the set of sample points for Markov
Localization. The green arrow shows the best estimate of robot position at the last update. The
sample cloud is updated as the robot moves, typically every 1.0 meters or 20 degrees.

client will stay tracked to this position. Figure 6-1 shows a snapshot of the ML module algorithm during a
typical robot run.

Loading the libraries does not actually create the localization objects. To do this, the function
mcSonarInit() or mcLrfInit() must be called (Section 6.5). mcSonarInit() is called by
flloc.act, and mcLrfInit() is called by lrfloc.act.

6.3 Localization Parameters
ML parameters can be manipulated through a pop-up dialog. Pull down the Localize menu, and select

the Parameters item. The window shown in Figure 6-2 will appear. Using the tabs, the number of samples,
gain, and frequency of update can be changed. These changes take effect immediately.

36

Saphira Software Manual

37

Changing the number of samples results in the sample poses all being reset to zero, so the sample cloud
will vanish. It can be restored to the robot position using the Localize->Sample Set->Center on
Robot iterm.

The following table gives the Colbert/C++ functions for setting parameters of the ML process.
Function Parameter
mcSetNumSamples(int n) Sets the number of samples to n. All sample poses

are reset to zero, and mcSetGauss may be called to
re-center the sample set on the robot.

mcSetMove(int ds, int dth, int dt) Sets the distance the robot must move (in mm and
degrees) before an update takes place. Also, when
the robot stops moving, and update will take place
after dt sync cycles to move the cloud to the robot.
If dt is 0, no such update takes place.

mcSetGain(int pct) Sets the gain of the sensor information in the update
step to the percent pct. If pct is 0, no sensor
information is used. Reasonable values range from
10 to 50 percent, depending on the environment, the
application, and the sensors.

mcSetGauss(float ds, float dth) Centers the sample cloud in a gaussian around the
robot, with a deviation of ds in distance (mm) and
dth in angle (degrees).

6.4 Localization Menu
Using the Localize menu, several aspects of the display and performance of the ML module can be

manipulated.
• The display of the sample cloud and the best estimate can be turned off and on.
• The display of the underlying map grid can be toggled. The map grid feathers out the map

walls, so that the update step has a more continuous nature.
• Update Samples checkbox. Use this checkbox to toggle the state of the ML process. If the box

is checked, ML will proceed as the robot moves. Unchecked, ML is halted.
• Update Robot Pos checkbox. Use this checkbox to jump the robot to the position of the best

estimate from ML. If unchecked, the sample point estimate and the robot position will diverge.
• The Sample Set item changes the position of the sample set. Center on Robot causes it to

assume a gaussian shape around the robot’s center. Uniform causes it to spread uniformly over

Figure 6-2 Localization parameter dialog window.

12. API Reference

the space occupied by the map. This is useful for experiments with global localization, where
the pose of the robot is initially unknown.

• Update Map. If a new world map is loaded into Saphira, the data structures used by the ML
module must be updated; choosing this menu item will do so.

6.5 Initialization Functions
Several functions are available for initializing the ML module. These functions can be called from

Colbert or from C++ code. Initialization sets up the ML process object, and performs other necessary
processing such as setting up the map data structures.
Function Parameter
mcSonarInit() Initializes the ML module, using sonar readings for

the update step. A world file map should already
have been loaded, since this function also sets up the
ML map structures.

mcLrfInit() Initializes the ML module, using laser range finder
readings for the update step. A world file map
should already have been loaded, since this function
also sets up the ML map structures.

mcLrfScanInit() Initializes the ML module, using laser range finder
readings for the update step. Instead of a world file
map, this form of the ML algorithm uses a scan map
generated by ScanStudio. The scan map must be
loaded after this call.

mcLoadScanMap(char *mfile) Loads the scan map file mfile into the system. The
scan map file must be generated with ScanStudio.
mcLrfScanInit() should have been previously
called.

38

Saphira Software Manual

7 Gradient Path Planning
For efficient movement based on local obstacles and world maps, Saphira has a realtime path planner

based on the gradient method [Konolige 2000]. For planning paths and moving in a world map, the gradient
method is typically used with Markov Localization to keep the robot registered with a map as it moves.

The Gradient module is packaged as both an application for demonstrating the capabilities of the
algorithm, and an API for invoking the Gradient functionality from a Saphira client.

7.1 Gradient Overview
Gradient Path Planning is a process for determining optimal paths for the robot, in real time. These

paths can take into account both local obstacles, sensed by sonars and/or laser range-finder devices; and
global map information such as the location of walls and other structural obstacles.

At each sync cycle (100 ms), the Gradient module calculates the lowest-cost path from a goal point or set
of goal points to the robot. The algorithm starts by considering a local neighborhood connecting the robot
and the goal or goals, and then expands its search if no path is found. There is a user-settable limit on the
size of the neighborhood considered.

Figure 7-1 Gradient module snapshot. The red cloud is the set of sample points for Markov
Localization, which is also loaded. The red line connecting the robot and the goal position is the
optimal path, calculated by the Gradient algorithm during the current time step. The red
rectangular box is the neighborhood considered by the algorithm. Note that the path goes
around the map walls, even where the robot cannot see them.

39

12. API Reference

7.2 Loading the Gradient Module
Here are the relevant library files for the Gradient algorithms:

Name Description
lib/grad.so,
lib\grad.dll

Core library routines and API interface for the
Gradient algortihms with sonars and/or laser
rangefinder.

lib/flgrad.so,
lib\flgrad.dll

GUI library; adds menu items and dialogs for
changing gradient performance characteristics.

colbert/flgrad.act,
scan.act

Application initialization files. Use
flgrad.act to initialize Gradient for either
sonars or laser range finders (or both). Use
scan.act to initialize ML with laser
rangefinder and a grid map built from
ScanStudio, and to run the Gradient module in
addition.

Normally Gradient is run in conjunction with localization and a map, although it can be run by itself for

local obstacle avoidance.
The simplest way to start is to load flloc.act, using the Colbert command “load flloc”. This

will load a sample world file (aic.wld), the core ML library and the GUI, and start up the ML processes.
Then, load the Gradient library and GUI with the flgrad.act file, using the Colbert command “load
flgrad”. Start the simulator with the same world file, connect to it, and the red sample cloud will follow
the correct real-world position of the robot. Select Update Position from the Localize menu, and
the Saphira client will stay tracked to this position. Finally, pull down the Gradient menu, and check the
Use Artifacts item. This will make sure Gradient pays attention to the map walls.

At this point you’re ready to roll. Goal positions are set by shift-left-click in the Saphira graphics window
(you may have to just click first in the graphics window to select it). You should see a path such as the one
in Figure 7-1, which shows a snapshot of the Gradient algorithm during a typical robot run.

If the robot is connected, and Behaviors are turned on (the Behavior button is lit on the left side of the
Saphira main window), then the robot will start moving towards the goal. The Gradient algorithms include
programs that calculate an optimal speed along the path, so that the robot slows down near tight curves and
speeds up on straightways.

The goal can be changed at any time, by shift-left-click in the graphics window. The path will change
immediately.

7.3 Gradient Menu
Using the Gradient menu, several aspects of the display and performance of the Gradient module can

be manipulated.
• The display of the path and goal can be toggled on and off.
• The display of the cost field (accel) and gradient field can be toggled on and off.
• The sensors used in local obstacle avoidance can be toggled, using the check boxes.
• Artifact obstacles (map walls) can be toggled on or off.

There is no parameter dialog window for Gradient yet, although the menu item for it is present.

40

Saphira Software Manual

7.4 Gradient Functions
Several functions are available for initializing and controlling the Gradient module. These functions can

be called from Colbert or from C++ code. Initialization sets up the Gradient process object, and performs
other necessary processing such as setting up the Gradient behavioral action.
Function Parameter
gradInit() Initializes the Gradient module. Should be called

right after loading the Gradient library.
gradSetMax(int width, int height) Sets the maximum size (in mm) of the neighborhood

considered by the Gradient module. The
neighborhood will expand until it reaches this size,
in searching for a valid path.

gradSetSpeed(int high, int mid) Sets the maximum speed for free running (high) and
more congested travel (mid) for the Gradient path-
following behavior. Speeds are in mm/sec.

gradSetGoal(float x, float y) Sets the Gradient goal to this global point (in mm).
The goal can be changed at any time.

gradSetMap(void *mobj) Sets the internal map to a ScanStudio map already
loaded into the system. Typically this will be a map
object returned by mcGetObject().

41

Saphira Software Manual

8 Parameter Files
This section describes the parameter files used by the Pioneer simulator and Saphira client to describe the

physical robot and its characteristics.

8.1 Parameter File Types
Pioneer robots have four parameter files:

pioneer.p
psos41x.p
psos41m.p
psosat.p

The sequence 41 refers to PSOS versions equal to or greater than PSOS version 4.1. Early versions of
the Pioneer that have not been upgraded to at least version 4.1 should use the pioneer.p parameter file.
These Pioneers do not send an autoconfiguration packet; therefore, Saphira clients by default are configured
for pre-PSOS 4.1 robots and will correctly control these robots without explicitly loading a parameter file.

Pioneer robots with PSOS 4.1 or later send an autoconfiguration packet on connection that tells the
Saphira client which parameter file to load. Pioneers made before August 1996 use old-style motors, and
these load psos41x.p. Those made after this date use new-style motors, and load psos41m.p. The only
difference is in some of the conversion factors for distance and velocity.

The Pioneer AT has its own parameter file, pionat.p. The only change from psos41m.p is that the
robot is larger than the other Pioneers.

The B14 and B21 robots from RWI also have parameter files, b14.p and b21.p.

8.2 Sample Parameter File
The sample parameter file in Listing 10-1 illustrates most of the parameters that can be set. This is the file

psos41m.p. An explanation of the parameters is given in Table 10-1, below.

;;
;; Parameters for the Pioneer robot
;; New motors
;;
AngleConvFactor 0.0061359 ; radians per encoder count diff (2PI/1024)
DistConvFactor 0.05066 ; 5in*PI / 7875 counts (mm/count)
VelConvFactor 2.5332 ; mm/sec / count (DistConvFactor * 50)
RobotRadius 220.0 ; radius in mm
RobotDiagonal 90.0 ; half-height to diagonal of octagon
Holonomic 1 ; turns in own radius
MaxRVelocity 2.0 ; radians per meter
MaxVelocity 400.0 ; mm per second

;;
;; Robot class, subclass
;;
Class Pioneer
Subclass PSOS41m
Name Erratic

;; These are for seven sonars: five front, two sides
;;
;; Sonar parameters
;; SonarNum N is number of sonars
;; SonarUnit I X Y TH is unit I (0 to N-1) description
;; X, Y are position of sonar in mm, TH is bearing in degrees
;;

43

12. API Reference

Listing 10-1. The example parameter file, psos41m.p, shows how to set most Saphira parameters.

RangeConvFactor 0.1734 ; sonar range mm per 2 usec tick
;;
SonarNum 7
;; # x y th
;;-------------------------
SonarUnit 0 100 100 90
SonarUnit 1 120 80 30
SonarUnit 2 130 40 15
SonarUnit 3 130 0 0
SonarUnit 4 130 -40 -15
SonarUnit 5 120 -80 -30
SonarUnit 6 100 -100 -90
SonarUnit 7 0 0 0

;; Number of readings to keep in circular buffers
FrontBuffer 20
SideBuffer 40

Listing 10-2.

Floating-point parameters can be in any standard format and do not require a decimal point. Integer
parameters may not have a decimal point. Strings are any sequence of non-space characters.
Table 10-1. Functions of Saphira parameters.

Parameter Type Description
AngleConvFactor float Converts from robot angle units (4096 per revolution) to radians.
VelConvFactor float Converts from robot velocity units to mm/sec
DistConvFactor float Converts from robot distance units to mm
DiffConvFactor float Converts from robot angular velocity to rads/sec
RangeConvFactor float Converts from robot sonar range units to mm

Holonomic integer Value of 1 says the robot is holonomic (can turn in place); value of 0

says it is nonholonomic (front-wheel steering). Holonomic robot icon
is octagonal; nonholonomic is rectangular.

RobotRadius float Radius of holonomic robot in mm.
RobotDiagonal float Placement of the horizontal bar indicating the robot’s front, in mm

from the front end. (Sorry about the name.)
RobotWidth float Width of nonholonomic robot, in mm.
RobotLength float Length of nonholonomic robot, in mm.

MaxVelocity float Maximum velocity of the robot, in mm/sec.
MaxRVelocity float Maximum rotational velocity of the robot in degrees/sec.
MaxAcceleration float Maximum acceleration of the robot in mm/sec/sec

Class string Robot class: pioneer, b14, b21. Not case-sensitive. Useful only for

the simulator, which will assume this robot personality. The client gets
this info from the autoconfiguration packet.

Subclass string Robot subclass. For the Pioneer, indicates the type of controller and
body combination. Values are psos41m, psos41x, or pionat. Not

44

M. G. McMaster
needs reference and caption

Saphira Software Manual

case-sensitive. Useful only for the simulator, as for the Class
parameter.

Name string Robot name. Useful only for the simulator, as for the Class
parameter.

SonarNum integer Number of active sonars.
SonarUnit n,x,y,th Description sonar unit n. The x,y,th arguments describe the pose of

the sonar on the robot body, relative to the robot center. Provide one
such entry for each active sonar unit. Used by both the simulator and
client.

FrontBuffer integer Number of front sonar readings to keep. Higher values mean the robot
will be more sensitive to obstacles but slower to get rid of moving
obstacle readings.

SideBuffer integer Number of side sonar readings to keep. Higher values mean the
interpretation routines can find longer side segments.

45

Saphira Software Manual

9 Sample World Description File
Worlds for the simulator are defined as a set of line segments using absolute or relative coordinates.

Comment lines begin with a semicolon. All other non-blank lines are interpreted as directives.
The first two lines of the file describe the width and height of the world, in millimeters. The simulator

won’t draw lines outside these boundaries. It’s usually a good idea to include a “world boundary” rectangle,
as is done in the example below, to keep the robot from running outside the world.

Any entry in the world file that starts with a number is interpreted as creating a single line segment. The
first two numbers are the x,y coordinates of the beginning and the second two are the coordinates of the end
of the line segment. The coordinate system for the world starts in the lower left, with +Y pointing up and +X
to the right (Figure 11-1).

+X, 0 degrees

+Y, 90 degrees

0,0

Figure 11-1. Coordinate system for world definition.

The position of segments may also be made relative to an embedded coordinate system. The push x y
theta directive in the world file causes subsequent segments to use the coordinate system with origin at x,y
and whose x axis points in the direction. The push directives may be nested, in which case the new
coordinate system is defined with respect to the previous one. A pop directive reverts to the previous
coordinate system.

The position x y theta directive positions the robot at the indicated coordinates.
Listing 11-1 is a fragment of the simple.wld world description file found in Saphira’s worlds

directory.

;;; Fragment of a simple world

width 38000
height 30000

 0 0 0 30000 ; World frontiers
 0 0 38000 0
 38000 30000 0 30000
 38000 30000 38000 0

push 10000 14000 0

47

12. API Reference

;; upper corridor ; length = 14,600; width = 2,000
 0 12000 3000 12000 ; EJ 231 - J. Lee
 3900 12000 4200 12000 ; EJ 233 - D. Moran
 5100 12000 8000 12000 ; EJ 235 - J. Bear
 8900 12000 9200 12000 ; EJ 237 - E. Ruspini
 10000 12000 12000 12000 ; EJ 239 - J. Dowding
 12800 12000 14600 12000

;; Starting position

position 17500 14000 -90

Listing 11-1. Fragment of the simple.wld world description file found in Saphira’s worlds
directory.

48

	Saphira Software & Resources
	Documentation and Sample Programs
	ARIA Documentaion
	Manuals and Tutorials
	Online API
	Class Notes

	Saphira and Aria
	Saphira Client/Server
	Colbert Robot Programming Language
	Behaviors
	Localization and Navigation
	Maps
	Robot Simulator
	Required and Optional Components
	Saphira Client Installation
	Saphira Quick Start
	Additional Resources
	FTP Software Archive
	Saphira Newsgroup
	SRI Saphira Web Pages
	Support
	Acknowledgments

	Saphira and Aria System Overview
	System Architecture
	Micro-Tasking OS
	User Routines
	Packet Communications
	State Reflector

	Control Architecture
	Representation of Space
	Direct Motion Control
	Behavioral Control
	Activities and Colbert
	Sensor Interpretation Routines
	Localization and Maps
	Realtime, Optimal Path Planning
	Graphics Display
	Multi-Robot Interface

	Running the Sample Client
	Loading an Activity File
	Connecting to a Robot
	Local Perceptual Space Display
	Robot icon
	Sonar readings
	Control point
	Obstacle sensitivity areas

	Artifacts
	Information Area
	Status (St)
	Velocity (Tr, Rot)
	Position (X, Y, Th)
	Communication (MPac, SPac, VPac)
	Battery
	Behaviors
	Motors

	Text Interaction Area
	Menus
	Connect Menu
	Files Menu
	View Menu
	Sensors Menu

	Keyboard Actions
	Activities Window
	System Environment Variables

	The Simulator
	Starting the Simulator
	Listening on Other Ports

	Parameter File
	World Description File
	Simulator Menus
	Load (Files) Menu
	Connect Menu
	Display Menu (Grow, Shrink)
	Recenter Menu
	Original Position
	Information Area

	Mouse Actions
	Compass

	Creating Loadable Files
	Host System Requirements
	Compiling and Linking C++ Source Files
	Debugging C Code under UNIX
	Debugging C Code under MS Windows

	Saphira API Documentation
	Markov Localization Module
	Markov Localization Overview
	Loading the ML Module
	Localization Parameters
	Localization Menu
	Initialization Functions

	Gradient Path Planning
	Gradient Overview
	Loading the Gradient Module
	Gradient Menu
	Gradient Functions

	Parameter Files
	Parameter File Types
	Sample Parameter File

	Sample World Description File

