

Colbert User Manual

Software version 8.0a (Saphira/Aria)

September 2001

Kurt Konolige
SRI International
konolige@ai.sri.com

http://www.ai.sri.com/~konolige

mailto:konolige@ai.sri.com
http://www.ai.sri.com/~konolige

Colbert User Manual 2

1 Introduction __ 4

2 Interacting with Colbert __ 5
2.1 Colbert Interaction Window ___ 5
2.2 Colbert files ___ 6
2.3 A Sample Colbert File: bump.act______________________________________ 6

3 Data Types and Operators___ 8
3.1 Basic Data Types___ 8
3.2 Reference and Dereference Operators ___________________________________ 8
3.3 Assignment Operators __ 8
3.4 Arrays ___ 8
3.5 Casting___ 8
3.6 Arithmetic, Logical, and Comparison Operators __________________________ 8
3.7 Structures __ 9

4 Standard C Commands __ 10
4.1 Declaring Global Variables ___ 10
4.2 C Expressions __ 10
4.3 Function Evaluation ___ 10
4.4 Assignment __ 11

5 Robot Motion Commands __ 12
5.1 Direct Action Commands___ 12
5.2 Direct Action Options__ 12
5.3 Behavioral Action Interface___ 13
5.4 Invoking Behavioral Actions __ 14
5.5 Suspending Behavioral Actions__ 14

6 Activity Definition __ 15
6.1 Activity Schemas__ 15
6.2 Activity Statements__ 16
6.3 Control Structures __ 16
6.4 Activity Labels ___ 17
6.5 Wait Points __ 17
6.6 Termination Commands ___ 17
6.7 Redefining Activities __ 18

7 Invoking Activities__ 19

Colbert User Manual 3

7.1 Activity State___ 19
7.2 Activity Invocation __ 20
7.3 Activity Structure ___ 21
7.4 Signals __ 22

8 State Reflection Functions ___ 24

9 Extensions: Interfacing to C/C++____________________________________ 25
9.1 Identifiers ___ 25
9.2 Constants__ 25
9.3 Variables __ 25
9.4 Functions __ 26
9.5 Behavioral Actions __ 27

10 Colbert Files___ 28
10.1 Special Files__ 28
10.2 File Structure __ 28

11 Miscellaneous Commands__ 29

Colbert User Manual 4

1 Introduction
This tutorial describes the Colbert implementation in Saphira. It gives details on Colbert files,

Colbert commands, control structures, and signals, and shows how to interface C/C++ variables and
functions to Colbert.

The reader should be familiar with C and C++ syntax and semantics.
The files colbert/direct.act, colbert/bump.act, tutor/movit, and

tutor/loadable are used as examples throughout the tutorial.
A useful overview of the Colbert system can be found in the Colbert paper.

Colbert User Manual 5

2 Interacting with Colbert
Colbert is a programming language for robots. Its primary purpose is as an executive in a more

complex 3-tier robot control architecture called Saphira/Aria (see Figure 2-1). In particular, Colbert can
issue motion commands, can sequence robot actions, and can execute complex hierarchical control
strategies using Saphira’s repertoire of sensing and control routines.

Colbert is an executable language, which means that Colbert statements can be directly executed by an
interpreter. The primary interaction most users will have with the robot is by issuing Colbert commands.
These commands can load files, define robot activities, and start and control robot programs. They also
enable the user to look at the state of the executing Saphira system.

Robot control strategies are written in Colbert as activities. An activity is a schema that contains
Colbert commands and control structures. Schemas can be instantiated and run by the Colbert interpreter,
and can issue the full ranges of Colbert commands.

Colbert is extensible in the sense that internal Saphira/Aria objects and functions can be made available
through the Colbert interface. This includes new objects and functions defined by the user, as well as any
of the pre-defined Saphira/Aria routines. Thus, a typical way to write and debug robot programs is to write
them in C++, and to write companion Colbert activities that interface to these programs, and allow you to
start, stop, and query them through the command interpreter.

Since it uses text-based commands, Colbert is also useful as a means of communicating and controlling
a robot via a remote net-based interface. We won’t go into the details of such an application in this
manual, but the facility is available.

2.1 Colbert Interaction Window
Most of the time, users will issue commands to the robot through the Colbert interaction window.

When Saphira starts up and loads its user interface, it creates a main window. The three parts of the
window are a graphical display of the robot geometry (the Local Perceptual Space), a list of parameters
about the robot and its communication on the left, and a Colbert interaction window on the bottom (see
Figure 2-2).

Within the interaction window, users type Colbert commands. Each command is executed after the
carriage-return, unless it is continued onto the next line with a trailing backslash (“\”). Any results from
the command are printed in the same window. So, users can query the value of internal Saphira/Aria
variables that have been made available to Colbert (Section 8).

All commands issued from the command line are done in noblock mode (see Section 7). For
example, if you asked the robot to move forward one meter (move(1000)), then the command returns
immediately, even though it takes the robot some time to move the required distance.

Planning

Sensing Motor
Commands

Execution

Motion control

Figure 2-1 Schematic of the Saphira robot control
architecture. The Colbert executive controls the action

of the system.

Colbert User Manual 6

Figure 2-2 Saphira main window. The Colbert interaction window is at the bottom.

In addition to the results of commands, text from sfMessage commands is printed in the Colbert
interaction window, if it exists. Tracing information from running activities is also printed here.

2.2 Colbert files
Colbert files, also called activity files, are text files containing Colbert statements. Usually the

statements define a set of Colbert activities and global variables. They can also contain arbitrary Colbert
commands, for example to load a file, or start an activity.

When Saphira first starts up, it looks for the special file startup.act in the colbert/ directory.
If present, it loads this file. The default startup.act loads the FLTK windowing system used by
Saphira. For changing the default, see Section 10.1.

2.3 A Sample Colbert File: bump.act
The file colbert/bump.act is a sample file containing several activities, and associated Colbert

commands. It illustrates the kind of file that will typically be written for controlling the robot.
The first part of the file, shown below, has some comments (in either C++ or C style), along with

definitions of some global variables. All the variables in Colbert exist within a single name space, like C.
Once defined, a variable cannot be redefined to be a different type. Note here the very simple Colbert

Colbert User Manual 7

syntax, which is a subset of C --- it isn’t possible to define and set a global variable in the same statement,
it requires two statements.

//
// bump.act -- simple recovery from stall
//

//
// Saphira 8.x
// Kurt Konolige 2001
//

int MOVEVAL;
MOVEVAL = 250;
int BACKVAL;
BACKVAL = 200;
int TURNDEG;
TURNDEG = 40;

The interesting part of a Colbert file is usually the definition of activities. Activities are schemas for

controlling the robot, with a finite-state machine semantics. For more information about activities, please
see the paper on Colbert.

//
// activity to get out of a jam by turning and moving forward
// assumes we've already moved backwards
//

act getout(int dist, int turnDeg)
{
 if (sfStalledMotor(sfLEFT))
 turnDeg = -turnDeg;
 turn (turnDeg) timeout 10;// just in case, we timeout
 move(dist) timeout 10;
 actions; // resume behavioral actions
 succeed;
}

[omitted text, including definition of the bng activity]

start bng;
trace bng;

At the very end of the file, there are two Colbert commands. The first, start bng, starts up one of

the activities in the file. Like Colbert commands issued in the interaction window, this one automatically is
issued without blocking (Section 7), so execution of commands continues from the file.

The last command, trace bng, sets tracing for the bng activity. Whenever bng is active, it will
start printing messages about the current line being executed (Section 11).

Colbert User Manual 8

3 Data Types and Operators
Colbert’s syntax is derived from C. But, it is not intended to be a replacement for C, and it implements

only a subset of the C language. In addition, it contains some constructs that are useful for robot motion
control, but are not strictly C syntax.

Colbert programs are not meant to be complex or computationally intensive. They give the user high-
level control of the processes that operate the robot. Colbert is a flexible means of starting and stopping
various processes that are needed in complex control tasks, and allowing the user to monitor, interact, and
intervene in controlling the robot.

3.1 Basic Data Types
There are four basic data types in Colbert:

1. int integers
2. float single-precision floating point
3. string strings
4. void void pointers

These are the only basic data types that can be defined from within Colbert itself. Note the changes
from standard C. There is no double floating-point type or char type; strings are a basic type. Void is
used for declaring general pointers, which can point to arbitrary data types.

Another change from C is that there are no modifiers for basic types, such as short, volatile,
long, unsigned, static, etc.

Integers and floating-point number are input with the standard C syntax, e.g.
 3.41459 // floating point number
 34 // integer, base 10
 0x35 // integer, hexadecimal
Strings are input using standard C syntax for strings. Special characters such as “\n” and “\t” are defined, as well

as the escape sequences “\0xx” for a single character.

3.2 Reference and Dereference Operators
The reference operator (&) and dereference operator (*) exist, as in C.

3.3 Assignment Operators
Only the standard assignment operator, “=”, is defined in Colbert. No compound assignment operators

are defined, e.g., “*=” or “+=”.

3.4 Arrays
Arrays and array references are not supported in Colbert. In particular, you can’t reference elements of

a string data type from Colbert. However, string operations can be imported into Colbert by making C
string functions available in Colbert.

3.5 Casting
Colbert does not support explicit casting operations. Implicit casting is performed in arguments to

operators and functions.

3.6 Arithmetic, Logical, and Comparison Operators
The following arithmetic and logical operators are defined, with precedence as in C. The operators

support implicit casting of types, e.g., adding a float and an int promotes the int to a float, and returns a
float.

1. Arithmetic operators: + ++ - (unary) – (binary) -- * / %
2. Logical operators: | & ! ~
3. Comparison operators: < <= > >= || && == !=

Colbert User Manual 9

3.7 Structures
Structures cannot be defined within Colbert itself. However, Colbert supports creation and access of

structures that have been defined in C or C++, and made available to Colbert (Section 9). With the advent
of Saphira 8.x, structures are not used much, since their functionality has been replaced by objects.
Unfortunately, the syntax and semantics of objects in C++ is complicated enough to preclude a direct
Colbert interface. However, it is possible to interface static C++ functions to Colbert, and thus expose
much of the functionality of the object-oriented approach of Saphira and Aria.

Assume that mystruct is a structure defined within a C/C++ file, and imported to Colbert. The
structure has the following definition in the C/C++ file:

 struct mystruct
 {
 int s_int;
 float s_float;
 };

Then, variables with a type mystruct can be defined in Colbert:

 > mystruct a;
 a declared
 > a.s_int = 3;
 a.s_int = 3
 > a.s_float = 4.5;
 a.s_float = 4.5
 > mystruct *b;
 b declared
 > b = &a;
 b = 0x3a0c45
 > b->s_int;
 b->s_int = 3

The operators “.” And “->” are defined in Colbert.

Colbert User Manual 10

4 Standard C Commands
Colbert commands are used to control the operation of the Colbert executive and the robot. All

Colbert commands can be issued directly to the command interpreter, either in the Colbert window, or at
the top level of a Colbert file. They may also appear within Colbert activities.

This section defines Colbert commands that are equivalent to common C commands.

4.1 Declaring Global Variables
Global variables are declared using the basic data types and dereference operator, as in C. However,

you cannot define a variable and set it in the same statement. Here is how some variables are defined and
set in Colbert:

> int a;
a declared
> a = 4;
a = 4
> String b;
b declared;
> b = “abc”;
b = “abc”
> int *c;
c declared
> c = &a;
c = 0x1345f650 // returns the address of the variable a
> int x = 4; // syntax error, cannot set and define
*** Parsing error at token “=”

A global variable, once defined, cannot be redefined. It exists for as long as the current Saphira
application exists. Since there is only a single namespace, care must be taken to name global variables so
they won’t interfere with others that may be already defined. Any complex set of Colbert programs should
have a naming convention in place to assure this.

4.2 C Expressions
Any C expression in Colbert’s language can be evaluated as a command, and the result returned. Here

are some examples:

> int a;
 a declare;
 > a = 43;
 a = 43
 > a + -12; // this is a C expression
 Eval to (int) 31 // return value type is given

4.3 Function Evaluation
C-type functions cannot be defined in Colbert; the main functional form is an activity (Section 6).

However, C or C++ functions that are present in files loaded into Saphira can be made available to Colbert,
via the extension interface (Section 7.4). These functions can be evaluated, using the standard C syntax.
For example, the function

int myfn(int a);

is defined in tutor/loadable/testload.cpp, and made available in Colbert. Then, we can
issue the function evaluation:

 > myfn(1000);

Eval to (int) 1002 // result of evaluation

Colbert User Manual 11

4.4 Assignment
Assignment is done with the “=” symbol only. The left-hand side of an assignment operation must be

an lvalue. An lvalue is defined recursively:
1. Variables are lvalues
2. Struct members are lvalues
3. A dereference of an lvalue is an lvalue

Colbert User Manual 12

5 Robot Motion Commands
Special commands in Colbert are available to move the robot. There are two types: direct action

commands, which result in direct control over the robot; and behavioral action commands, which are
actions that are combined as a set of behaviors to control the robot. The Saphira Tutorial on Actions is a
useful document for understanding this section.

One peculiarity of the motion commands is that they can be issued in several modes. The modes are
indicated by optional parameters to the command. For example, a motion command such as move() will
normally cause the Colbert executive to wait for completion of the command before proceeding with the
next command. But this action can be changed with the noblock parameter, which issues the move and
then goes immediately to the next statement.

5.1 Direct Action Commands
These are the direct action commands:

Goal Movement Continued Movement
move(int mm) speed(mm/sec)
turnto(int deg) rotate(mm/sec)
turn(int deg) stop

The main distinction between the two types of actions, from Colbert’s point of view, is whether they

induce a goal movement or not. The actions in the first column, the goal movement actions, normally
cause the Colbert executive to halt until their execution finishes. The actions in the second column, the
continued movement actions, return immediately and continue execution, although their effects may last for
an arbitrary amount of time.

Another distinction is whether the command causes a translation or rotational motion. The two types
of motion are independent, so that a move() command can be active simultaneously with a rotate()
command, for example (see the Saphira Tutorial on Actions). The stop command, which takes no
arguments, stops both translational and rotational movement. To stop just translation, issue a move(0)
command; for rotation, turn(0).

All of these commands are interruptible, that is, issuing another translation command while a move()
is active will halt the move().

move(int mm) moves the robot forward (positive mm) or backwards (negative mm) a distance

of |mm| millimeters.
turnto(int deg) turns the robot to point in the direction deg. This direction is according

to the robot’s global coordinate system.
turn(int deg) turns the robot incrementally an angle |deg|. This direction is counter-

clockwise for positive deg, and clockwise for negative deg.
speed(int mmsec) sets a velocity setpoint for the robot to |mmsec| (in mm/sec). The

velocity is forward if mmsec is positive, otherwise it is backwards. The robot will continue
to move at this velocity until another translational command is issued.

rotate(int degsec) sets a rotational velocity setpoint for the robot to |degsec| (in
deg/sec). The velocity is counterclockwise if degsec is positive, otherwise it is clockwise.
The robot will continue to move at this velocity until another rotational command is issued.

stop stops all robot motion, canceling any translational or rotational commands.

5.2 Direct Action Options
Several options are available to change the default behavior of the direct action commands. The

general form of a direct action command is:

Colbert User Manual 13

command(arg) [noblock] [timeout n]

The options can be in any order. noblock causes the Colbert executive to continue executing the

next statement immediately, without waiting for the movement command to finish. This option only makes
sense on the movement goal commands (move, turn, turnto), since the others are effectively issued in
noblock mode by default.

Movement commands issued to the Colbert interpreter in the interaction window, or at the top level of
a file, are always issued in noblock mode.

The optional timeout argument specifies a maximum number of cycles for execution of the
command. Each cycle is 100 ms in the current version of Saphira. timeout takes a single numeric
argument, which must be a C integer; general C expressions are not allowed. Again, this option only
makes sense for the movement goal commands.

noblock and timeout options can be issued together.

5.3 Behavioral Action Interface
Behavioral actions are defined as subclasses of ArAction in C++ code, and are made available to

Colbert when they are loaded and their schema is added to the behavioral action schema list with
sfAddEvalAction. For example, in the file tutor/movit/movit.cpp, the SfMovitAction
action is added to the schema list by creating its schema instance:

 sfAddEvalAction("Movit", (void *)SfMovitAction::invoke,

 2, sfINT, sfINT);

The SfMovitAction schema is now indexed under the schema name Movit, and Colbert
commands will refer to this name.

Parameters to a behavioral action are specified within the invoke() function of the class. Here is the
invoke() function for the SfMovitAction class:

SfMovitAction *
SfMovitAction::invoke(int distance, int heading)
{
 return new SfMovitAction(distance, heading);
}

The general format of the invoke() function is the same for all behavioral actions. It must be
defined as a static member function. It can take up to seven arguments, and each should be a Colbert type
(int, float, char *, or void *). Note that the invoke() function returns a new instance of the action.
Although here the invoke() function and the constructor both have the same arguments, this is not
necessary in general. In fact, to interface to an existing ArAction class that has non-Colbert arguments,
simply define a subclass with only the invoke() function, containing just Colbert arguments.

The body of the behavioral action is contained in the run() function of the class. Within the body,
various object variables are available for computation, including variables where the arguments have been
stored by the constructor.

At every Saphira cycle (100 ms), an active behavioral action will have its run() function evaluated.
The result of the behavioral action is specified by returning an ArActionDesired object. Details on
how to set and return this object are given in the Saphira Tutorial on Actions.

Like direct actions, behavioral actions can be either goal-directed movements (e.g., go to a point) or
continued movements (e.g., wander). Goal-directed behavioral actions should deactivate themselves when
they finish. In SfMovitAction, this occurs when the robot has gone the required distance:

 if (gone >= myDistance)
 {
 sfMessage("Finished Movit");

Colbert User Manual 14

 deactivate(); // turn off when done
 return NULL;
 }

The deactivate() function is called from within the run() function, to turn the action off. Note

that run() returns NULL in this case, to indicate that it is not controlling the robot.

5.4 Invoking Behavioral Actions
The start command is used to invoke a behavioral action. The general form for this command is:

start <schema_name>[(arg1, arg2, ..., argn)]
 [noblock]
 [priority k]
 [timeout n]
 [iname <instance_name>]
 [suspend];

The start command starts a new instance of the behavioral action, or modifies an instance that is
already present in the list of behavioral action instances. The instance name of the action is
<schema_name>, unless the iname modifier is present, in which case it is <instance_name>.

A new instance is added to the behavioral action list if its instance name does not match the instance
name of any other action on the list. If it does match, then Colbert checks to see whether the current
instance is still running. If it is, then an error is issued. Otherwise, the current instance is removed, and a
new one is started.

All behavioral actions will block Colbert execution until they are completed or signaled to finish.
They will complete internally when the function deactivate() is called within the run() function.
Externally, they can be signaled by activities (Section 7.4), or terminated by the optional timeout
parameter. As with direct actions, a behavioral action can be given a maximum time to run, at which point
it will be terminated by the Colbert executive. The time is specified in Saphira cycles (100 ms).

The optional parameter noblock starts the behavioral action in nonblocking mode. In this mode, the
Colbert executive continues to execute immediately with the next statement in the activity, while the action
continues to run in parallel. At the top level of a Colbert file, and within the Colbert interpreter window,
all behavioral action commands automatically are issued in noblock form.

The priority of the behavioral action can be specified with the optional priority parameter. See the
Saphira Tutorial on Actions for a description of the effects of priorities on behavioral actions. The default
priority for an action is 0, that is, the lowest possible priority.

The keyword suspend starts the behavioral action in a suspended state. The action is present in the
current action list, but it is not active, and does not contribute to the behavior of the robot. When
suspended, its run() function is not called. Starting an action in the suspended state is useful if you want
to have the action present for signaling, but don’t yet want it to contribute to the overall behavior of the
robot.

The order of the optional parameters is arbitrary.

5.5 Suspending Behavioral Actions
Behavioral actions and direct actions conflict with each other: it is not possible to execute both

simultaneously. Direct actions have precedence over behavioral actions, so that if a direct action is
executed, it will automatically turn off the behavioral action cycle.

The behavioral action cycle will stay off until it is explicitly turned back on (there is also a timeout
mechanism; see ArRobot::setDirectMotionPrecedenceTime()). To allow behavioral actions,
use the Colbert command behaviors, or the C++ function:

SfROBOT->clearDirectMotion() .

Colbert User Manual 15

6 Activity Definition
Activities are routines for controlling robot behaviors. Within an activity, it is possible to sequence

robot actions, to start and stop subactivities, and in general to issue commands under programmed control.
Activities are not C or C++ functions. Their semantics is different, being based on concurrent finite-

state machines. The paper on Colbert is a useful reference for the semantics of activities.

6.1 Activity Schemas
An activity is defined by specifying a schema, an activity body and its associated parameters.

Examples of activity schema definitions are in the colbert/direct.act and colbert/bump.act
files.

The general form of an activity schema definition is:

act <schema_name>[(<param1>, <param2>, ..., <paramN>)]
{
 <declare_stmts>
 [update { <update_stmts> }]
 <activity_stmts>
}

The parameter list is optional; if it is not included, the activity takes no arguments. The parameters are
specified using the basic data types given in Section 3.1: int, float, string, or void, and the
dereference operator “*”. For example, the following activity schema takes two arguments:

act aa(int p1, float *p2)

{
 sfMessage(“%d %f”, p1, *p2);
}

This activity, when invoked, will just print out the values of its two arguments. Note that the second
argument is a pointer to a floating-point number.

Arbitrary data can be passed in to an activity by the use of void * pointers. For example, Colbert
cannot represent C++ objects such as artifacts. So, to pass an SfPoint object as an argument, specify the
argument as a void * pointer.

The body of the activity has three distinct parts. In the declarations, any variables that are to be used in
the activity are declared. If there are no variables, then this section would be empty. All variables are local
to the activity. If there is a conflict between the name of a local variable and a global variable, the local
one takes precedence.

The second part, the update part, is optional, and usually not present. The update statements are
restricted to function and assignment statements. These statements are evaluated on every Saphira cycle
that the activity is active, that is, is not in a completed state (see Section 7.1). Their purpose is to allow the
calculation of information that may be important for the activity. For example, suppose the activity wants
to check, in a number of places, whether there is a motor stall or not. Something like the following would
be appropriate:

act aa()

{
 int stalled;
 update
 { stalled = sfStalledMotor(sfLEFT) || sfStalledMotor(sfRIGHT); }
 while (1)
 {
 if (stalled)
 ...

Colbert User Manual 16

 }
}

On every Saphira cycle, the value of stalled is computed from the sfStalledMotor functions.
This value is then available within the rest of the activity.

The final part of the body contains activity statements that are executed as a finite-state machine by the
Colbert executive. These statements are discussed in the next few subsections.

6.2 Activity Statements
The activity section of the body of an activity schema is composed of statements. Each statement is a

Colbert command, such as assignment or movement command, or a control structure (if , while, or
goto), or a label. Several special Colbert commands are available for signaling and other Colbert-specific
actions.

6.3 Control Structures
Control structures change the flow of control within the body of the activity.
There is one conditional control structure, if. The syntax is the same as its C counterpart. This

example is from colbert/bump.act:

 if (sfStalledMotor(sfLEFT))
 turnDeg = -TURNDEG;
else
 turnDeg = TURNDEG;

Looping is performed by the while control structure. Its syntax is the same as its C counterpart. This
example is the patrol activity from colbert/direct.act:

act patrol(int a) /* go back and forth 'a' times */

{
 while (a)
 {
 a = a-1;
 move(1000);
 turnto(0);
 move(1000);
 turnto(180);
 }
}

The goto command changes the execution focus to a particular label within the body of the activity.
It is an error to specify a goto command to a label that does not exist, and Colbert will catch this on the
definition of the activity.

The example below shows how goto can be used to form a loop:

act patrol(int a) /* go back and forth 'a' times */
{
begin:
 if (a <= 0) goto done;
 a = a-1;
 move(1000);
 turnto(0);
 move(1000);
 turnto(180);
 goto begin;

Colbert User Manual 17

done:
}

6.4 Activity Labels
[This section is out of date]
Labels can be contained only within the activity statement portion of an activity. Their syntax is the

same as in C, and they are targets for the goto command.
Several special labels are defined as the targets of external signals:

OnInterrupt: this label is the target of the interrupt signal (see Section 7.4). When an
interrupt signal is sent to the activity, it branches to this label, and executes any commands
found after it. Usually these commands will halt the robot, or clean up in some way. Note
that the activity only gets one cycle to perform these commands; any command that causes a
wait in the Colbert executive (e.g., a move() command issued without noblock) suspends
further processing, and the activity enters the interrupted state.

OnResume: this label is the target for a resume signal sent to the activity. Whenever the
activity is resumed from an interrupt or suspension, processing will start after this label. If
the label doesn’t exist, then processing on a resume starts from the first statement of the main
body.

6.5 Wait Points
Coordination among activities often involves an activity waiting a certain amount of time, or waiting

for a condition to become true. There are two Colbert activity statements for waiting.

wait <n>;

This command waits <n> Saphira cycles (100 ms), where <n> is an integer. Note that a specific

integer must be given here, not a general C expression.
To wait until a condition is achieved, use:

waitfor <cond> [timeout <n>];

Here <cond> is a Colbert expression that is evaluated on every cycle. If it is non-zero, then the

waitfor finishes and processing proceeds with the next statement.
An optional timeout parameter can be given to waitfor statements. If the waitfor does not finish

before the given number of cycles, then it is terminated and processing proceeds with the next statement.

6.6 Termination Commands
An activity is finished when control reaches the end of the activity. For example, in the patrol

activity above, when the variable a reaches 0, the while loop terminates and control reaches the end of
the activity. At this point the activity has finished, and by default its termination state is success (see
Section 7.1 for a description of activity states).

Activities do not return values, so there is no return statement corresponding to the return of C
functions. It is possible to terminate an activity in ways other than by completion, however. There are two
commands that terminate the activity immediately:

fail; // terminate with failure status
succeed; // terminate with success status

Colbert User Manual 18

6.7 Redefining Activities
Activity schemas can be redefined, by issuing another act definition. The new definition supersedes

the old one for all future instances of the activity. If there are any currently executing instances, they
continue to execute with the old definition. So, if an activity file is edited and reloaded, any activity
instances must be purged before the new definitions will take effect.

Colbert User Manual 19

7 Invoking Activities
Colbert maintains a set of activity instantiations on an activity list. An activity instance is placed on

the list using the start command (Section 7.2 below). For every activity on the list, the Colbert
executive evaluates the activity once per Saphira cycle (100 ms). Depending on the state of the activity,
the executive will evaluate some commands from the activity, then move on to the next. In this way,
activities generate a sequence of commands to control the robot.

The activities on the activity list have both a parallel and a hierarchical structure. The nature of this
structure is explained in Section 7.3. Activities can execute in parallel, and they can also wait for the
execution of subactivities.

Activities can also receive and send signals to each other. Signals are used to change the state of an
activity, or to remove an activity from the activity list (Section 7.4)

7.1 Activity State
Each activity on the list has an associated state, which is usually the current line at which execution is

taking place. There are also some special states for activities:

suspended If an activity is suspended, it does not contribute to the behavior of the robot,
and the Colbert executive skips processing it. A suspended activity can be restarted using the
resume command (Section 7.4) or the start command (Section 7.2).

timedout The timed out state is similar to the suspended state, in that no execution takes
place. It is the result of the activity using up its allotted time, given on invocation with the
timeout parameter.

success This state is used by an activity to indicate that it has successfully completed its
processing. No further execution takes place, unless the activity is signaled with a resumption
signal.

failure Similar to success, but the activity has unsuccessfully completed its processing.

The state of all activities and behavioral actions is shown graphically in the activities window, if the

windowing system has been loaded into Saphira (Figure 7-1). Any red entries are for behavioral actions.
The state of the activity is shown in square brackets, and the dependency structure is indicated by
indentation. In this case, the activity aa has started up two sub-activities, one of which has completed
successfully.

Activity instances are shown in boldface red text. The colbert/bump.act files has been loaded,
and the bng activity has started and is waiting for a motor stall at line 3 of the activity.

The state of an activity can be accessed in Colbert or C/C++ by using the sfGetTaskState
function. This function takes an argument which is the instance name of the activity, and returns the state
as an integer. For example, here is how to access the state of the bng activity:

 > sfGetTaskState(“bng”);

Eval to (int) 12
> sfGetTaskState(“Wander”);
Eval to (int) 1

The return value is 12 for bng because the task is executing, and the state is the current line number +
9. States with integer values of 9 and below are reserved for special states of the activity. For example, the
suspended state is state 1. Table 7-1 lists the special states, their numeric values, and variables that can be
used to refer to them in Colbert or C/C++ code.

The state of an active behavioral action can be either sfINIT (0) or sfSUCCESS if it has been
deactivated, which signals goal achievement. Behavioral actions can be suspended and removed, just like
activities.

Several other functions access the state values of an activity.

Colbert User Manual 20

Figure 7-1 The Activities display window of the Saphira

application.

sfTaskFinished(<instance_name>)
sfTaskSuspended(<instance_name>)

An activity is finished if its state is one of the completed states: timed out, success, or failure. If the
named activity instance does not exist, sfTaskFinished will return true (1).

An activity is suspended if it is in either the suspended or interrupted state. If the named activity
instance does not exist, sfTaskSuspended returns false (0).

7.2 Activity Invocation
The start command is used to invoke an activity, placing it on the activity list, or reactivating a

suspended activity. The general form for this command is:

start <schema_name>[(arg1, arg2, ..., argn)]
 [noblock]
 [timeout n]
 [iname <instance_name>]
 [suspend];

The start command starts a new instance of the activity, or modifies an instance that is already

State Numeric
value

Symbolic value

suspended 1 SfSUSPEND
timedout 5 SfTIMEOUT
success 3 SfSUCCESS
failure 4 sfFAILURE

Table 7-1 Activity states and their numeric and
symbolic values.

Colbert User Manual 21

present in the list of activity instances. The instance name of the activity is <schema_name>, unless the
iname modifier is present, in which case it is <instance_name>.

A new activity instance is added to the activity list if its instance name does not match the instance
name of any other action on the list. If it does match, then the state of the current instance is checked. If it
is finished, then it is removed from the activity list, and the new one is started. If it is not finished, then an
error is issued, and no new activity is started.

All activities will block Colbert execution until they are completed or signaled to finish. They will
complete internally when they fall through the last statement, or when explicitly terminated with one of the
termination commands. Externally, they can be signaled by activities (Section 7.4), or terminated by the
optional timeout parameter. As with actions, an activity can be given a maximum time to run, at which
point it will be terminated by the Colbert executive. The time is specified in Saphira cycles (100 ms).

The optional parameter noblock starts the activity in nonblocking mode. In this mode, the Colbert
executive continues to execute immediately with the next statement in the calling activity, while the called
activity continues to run in parallel. At the top level of a Colbert file, and within the Colbert interpreter
window, activity invocation commands are automatically are issued in noblock form.

The keyword suspend starts the activity in a suspended state. The activity instance is present in the
current activity list, but it is not active, and does not contribute to the behavior of the robot. When
suspended, its body is not executed by the Colbert executive. Starting an activity in the suspended state is
useful if you want to have the activity present for signaling, but don’t yet want it to contribute to the
overall behavior of the robot.

The order of the optional parameters is arbitrary.

7.3 Activity Structure
Activity execution is controlled by the parallel and hierarchical structure of the activity list. Please see

the Colbert paper for a technical description of this structure. Here, we describe the implementation and
practical aspects of the structure.

All executing activities are held on the activity list. The activities form a hierarchy that consists of a
set of trees (a forest). At the top level, each activity is the root of a tree. There can be many such
activities; all of them execute in a round-robin fashion, with the Colbert executive evaluating them in their
order on the list. The order is determined by their instance name: instance names with a lower alphabetic
precedence are placed higher on the list, e.g., an activity name “a” appears before one name “b”. Note that
for efficiency reasons the activity window does not list top-level activities in this order, but rather in the
order they were created.

Whenever a new activity is invoked from within another activity, it becomes a subactivity of its caller.
This parent/child relationship forms a tree structure from each of the top-level activities. The tree structure
of a top-level activity is indicated graphically in the activity window, by indenting the child activities
below their parent. Activities at the same level of indentation are all children of the activity immediately
above them at a lesser indentation (Figure 7-2).

If all of the subactivities in the tree are invoked in blocking mode (the default), then the tree is always
linear (single-branching), and only the leaf node is executed by the Colbert executive; all of the other

Figure 7-2 Hierarchical activity structure displayed in the activity

window. bb and cc are children of aa; bb2 is a child of bb.

Colbert User Manual 22

activities are waiting for completion of subactivities. In this case, the top-level activity gives rise to only a
single point of execution.

It is possible to execute several subactivities of a top-level activity tree in parallel. In this case, the tree
can be more than single-branching, as in Figure 7-2. This tree was generated by the following commands
to Colbert:

 > act aa { start bb noblock; start ww iname cc; }

Defining aa
> act bb { start ww iname bb2; }
Defining bb
> act ww { waitfor 0; } // this just waits indefinitely
Defining ww
> start aa
Invoking activity aa

Note the presence of the keyword noblock in activity aa. With this keyword, activity bb is started
up, and processing of aa proceeds with the next statement, while bb continues executing. Thus,
noblock starts a new line of execution, and makes possible a branching execution structure within the
Colbert executive.

7.4 Signals
Signals allow activities to change the state of other activities. Typically, activities can be suspended or

removed by a monitoring activity. For example, in the bump.act activity file, the activity bng is defined as:

act bng()
{
 while(1)
 {
 waitfor(sfStalledMotor(sfLEFT) || sfStalledMotor(sfRIGHT));
 remove getout; // halt this activity if it's going
 stop(); // stop the robot
 move (-BACKVAL) timeout 30; // just in case, we timeout here
 start getout(MOVEVAL, TURNDEG) noblock;
 }
}

After waiting for a motor stall, bng removes the activity getout from the activities list. getout is

an activity that turns the robot and moves forward. It is called by bng to move the robot away from an
obstacle after it has backed up. But, during the getout motion, the robot may again encounter an
obstacle, and so bng first removes any instance of getout before issuing its commands.

Table 7-2 lists the signals that can be sent, and the corresponding Colbert and functional commands to
send them.

Signals apply recursively to any sub-activities of a signaled activity. For example, if an activity is
suspended, then all its dependent activities are also suspended. This is a good way to suspend or resume a
group of activities, i.e., just start them all as dependents of a single activity.

Signal Colbert command C++ command
remove remove iname sfRemoveTask(char *iname)
suspend suspend iname [n] sfSuspendTask(char *iname, int

time)
interrupt interrupt iname sfInterruptTask(char *iname)
resume resume iname sfResumeTask(char *iname)
success succeed iname sfSucceedTask(char *iname)
failure fail iname sfFailTask(char *iname)

Table 7-2 Activity signals.

Colbert User Manual 23

Colbert User Manual 24

8 State Reflection Functions

Colbert User Manual 25

9 Extensions: Interfacing to C/C++
It is convenient to extend the Colbert base by adding interfaces to C/C++ functions, variables and

objects, as well as to new behavioral action schemas. Colbert allows such extensions, and we discuss them
in this section. Please see the tutor/movit files for an example of adding behavioral actions, and
tutor/loadable for functions and variables.

The Colbert interface is always extended by calling one of the interface functions from C/C++ code.
The four interface functions are sfAddEvalConst, sfAddEvalVar, sfAddEvalFn, and
sfAddEvalAction.

One difficulty with interfacing occurs with C++ objects. The syntactic abilities of Colbert are limited,
and the syntax and semantics of C++ objects are too difficult to deal with. Instead, objects can be passed
to Colbert cast as void* pointers. The interface functions can recast them to the correct object type, and
access their member functions and data.

Colbert has a facility for dealing with structures, but it is not used very much, and we will not describe
it here.

9.1 Identifiers
Colbert identifiers are alphanumeric strings, and stand for functions, constants, variables, behavioral

actions, and activities. There are two global namespaces: one for functions, constants and variables, and
one for behavioral actions and activities. A single identifier can be used for a variable and an activity, for
example; but it can’t be used for both a variable and a function, or an action and an activity.

9.2 Constants
Constants are data that are defined and then never change. Constant data are added using the

sfAddEvalConst function.

sfAddEvalConst(<string-id>, <type>, <value>)

Here string-id is an alphanumeric string, type is a Colbert type, and value is the value of the
constant. For example, to add a new constant named sfFIRST, with value (int)1, use:

sfAddEvalConst("sfFIRST", sfINT, 1)

9.3 Variables
Variables are data that are defined and can be set. Variables are added using the sfAddEvalVar

function.

sfAddEvalVar(<string-id>, <type>, (fvalue *)<value-ptr>)

Here string-id is an alphanumeric string, type is a Colbert type, and value-ptr is a pointer to
the variable. This pointer must be cast as an fvalue*. For example, to add a new variable named
myvar, which is tied to the global integer gvar, use:

sfAddEvalVar("myvar", sfINT, (fvalue *)&gvar) .

After evaluating this expression, the Colbert symbol myvar will be tied to the C/C++ global variable
gvar. Whenever myvar is accessed in Colbert, it will return the current value of gvar; and when
myvar is set in Colbert, it will set the value of gvar.

Both C and C++ variables can be interfaced to Colbert.

Colbert User Manual 26

9.4 Functions
C and C++ global functions are interfaced to Colbert using the sfAddEvalFn function.

sfAddEvalFn(<string-id>, (void *)<fn>, <rtype>, <numargs>,
<type1>, <type2>, …)

Here string-id is an alphanumeric string, fn is a global function, rtype is a Colbert type,
numargs is an integer, and typeN are Colbert types. The cast of the function to type void* is
mandatory. rtype is the return type of the function; numargs is the number of arguments to the
function, and typeN are the argument types, in order.

For example, to add a new function named myfn, which is tied to the global function gfn, use:

sfAddEvalFn("myfn", (void *)gfn, sfINT, 1, sfINT) .

After evaluating this expression, the Colbert symbol myfn will be tied to the C/C++ global function
gfn. The function gfn can be invoked from Colbert using normal function syntax, e.g.

int a;
int b;
a = 3;
b = myfn (a);

Note that only global functions can be accessed via Colbert. In C++, this means only global and

statically-defined functions are available, not standard object member functions. For example, there is no
direct way to access the state reflection functions of an ArRobot object. Still, by using indirect methods,
it is possible to evaluate member functions of objects. Here is a simple example: we want to return the X
coordinate of the current robot (SfROBOT). First, we define a global function to do this:

float robotX()
{
 return (float)SfROBOT->getX();
}

Note that we have changed the type of the return to float rather than double, since Colbert can

only use floats. Next, we add this global function to Colbert:

sfAddEvalFn("robotX", (void *)robotX, sfFLOAT, 0) .

Now, the value of the current robot’s X position can be accessed from Colbert, using the robotX

function.
This example assumed there was a global variable or function, SfROBOT, to access the current robot.

In fact, it is easy to make robotX return the X coordinate of a robot object that is passed in as an
argument. To do this, we cast the robot object as a void* pointer.

float robotX(void *robot)
{
 return (float)((ArRobot *)robot)->getX();
}

Now we add this global function to Colbert:

sfAddEvalFn("robotX", (void *)robotX, sfFLOAT, 1, sfPTR) .

Colbert User Manual 27

The function robotX will take a pointer to a robot object, and return the X coordinate of that robot.
Of course, we still need more functions to generate these pointers in Colbert as void* pointers (sfPTR
type). The file tutor/loadable/testload.cpp has an example of access an SfPoint object
using Colbert functions.

9.5 Behavioral Actions
Behavioral actions (Aria ArAction classes) are interfaced to Colbert using the sfAddEvalAction

function.

sfAddEvalAction(<string-id>, (void *)<action>::invoke(),
<numargs>, <type1>, <type2>, …)

Here string-id is an alphanumeric string, action::invoke() is a static invocation function
of the action, numargs is an integer, and typeN are Colbert types. The case of the function to type
void* is mandatory. numargs is the number of arguments to the function, and typeN are the argument
types, in order.

For example, to add a new action named myact, which is tied to Aria action class act, use:

sfAddEvalAction("myact", (void *)act::invoke(), 1, sfINT) .

After evaluating this expression, the Colbert symbol myact will be tied to the C++ action class act. A
new instance of the action can be invoked from Colbert using the start command (see Section 5.4).

Colbert User Manual 28

10 Colbert Files
Colbert files, also called activity files, are text files containing Colbert statements. Usually the

statements define a set of Colbert activities and global variables. They can also contain arbitrary Colbert
commands, for example to load a file, or start an activity.

10.1 Special Files
Colbert files can be used to set up a Saphira system for a particular application, by loading shared

object files and other Colbert activity files, and starting up a set of activities.
When Saphira first starts, it looks for the Colbert file colbert/startup.act, and if present, loads

it. The startup file supplied with the Saphira distribution does three things:
1. Loads the FLTK windowing system, which starts up a graphical user interface.
2. Load the sonar processing functions.
3. Starts several basic actions, and leaves them in a suspended state.

You can customize Saphira by changing the startup.act file. For example, you may not want the
basic actions to be started. Or, if Saphira is running on an embedded system, you may not want to load the
FLTK window system. Finally, you can load other files that define more capabilities for Saphira.

10.2 File Structure

Colbert User Manual 29

11 Miscellaneous Commands
Tracing

	Introduction
	Interacting with Colbert
	Colbert Interaction Window
	Colbert files
	A Sample Colbert File: bump.act

	Data Types and Operators
	Basic Data Types
	Reference and Dereference Operators
	Assignment Operators
	Arrays
	Casting
	Arithmetic, Logical, and Comparison Operators
	Structures

	Standard C Commands
	Declaring Global Variables
	C Expressions
	Function Evaluation
	Assignment

	Robot Motion Commands
	Direct Action Commands
	Direct Action Options
	Behavioral Action Interface
	Invoking Behavioral Actions
	Suspending Behavioral Actions

	Activity Definition
	Activity Schemas
	Activity Statements
	Control Structures
	Activity Labels
	Wait Points
	Termination Commands
	Redefining Activities

	Invoking Activities
	Activity State
	Activity Invocation
	Activity Structure
	Signals

	State Reflection Functions
	Extensions: Interfacing to C/C++
	Identifiers
	Constants
	Variables
	Functions
	Behavioral Actions

	Colbert Files
	Special Files
	File Structure

	Miscellaneous Commands

