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Abstract

Mobile robots, if they are to perform useful tasks and become accepted in open environ-
ments, must be autonomous: capable of acquiring information and performing tasks without
programmatic intervention. Autonomy has many different aspects; here we concentrate on three
central ones: the ability to attend to another agent, to take advice about the environment, and
to carry out assigned tasks. All three involve complex sensing and planning operations on the
part of the robot, including the use of visual tracking of humans, coordination of motor controls,
and planning. We show how these capabilities are integrated in the Saphira architecture, using
the concepts of coordination of behavior, coherence of modeling, and communication with other
agents.



1 Autonomous Mobile Agents

What are the minimal capabilities for an autonomous mobile agent? Posed in this way, the question
is obviously too broad; we would like to know more about the task and the environment: What is
the agent supposed to do — will it just have a limited repertory of simple routines, or will it have
to figure out how to perform complex assignments? Will there be special engineering present in the
environment, or will the agent have to deal with an unmodified space? How will its performance be
judged? Will it have to interact with people, and in what manner?

As has become clear from the mobile robot competitions at the last three NCAT conferences [32],
the more restricted the environment and task (the less open-ended), the better mobile agents can
perform. Designers are adept at noticing regularities, and taking advantage of them in architectural
shortcuts. As a consequence, contest creators have become more subtle in how they define the rules,
striving to reward mobile agents that exhibit more autonomy. To do so, they have had to grapple
with refinements of the questions just posed. Although there may be no definitive answers, we can
try to address these questions, like the contest creators, by articulating a scenario in which the
autonomous agent must perform. To push our research, we have tried to make the environment and
task as natural and open-ended as possible, given current limitations on the robot’s abilities.

Fortunately, in designing a scenario we had outside help: in March 1994 we were approached by
the producers of the science show “Scientific American Frontiers,” who were interested in showcasing
the future of robotics. After some discussion, we decided on a scenario in which our robot, Flakey,
would be introduced to the office environment as a new employee, and then asked to perform a
delivery task. To realize the scenario, Flakey would need at least the following capabilities:

Attending and Following. A supervisor would introduce Flakey to the office by leading it around
and pointing out who inhabited each office. Flakey would have to locate and follow a human
being. It would also have to know if a human was present by speech, e.g., going to an office
door and inquiring if anyone was present.

Taking advice. Advice from the teacher would include map-making information such as office
assignments and information about potential hazards (“There’s a possible water leak in this
corridor.”). Tt would also include information about how to find people (“John usually knows
where Karen is”).

Tasking. Flakey would have to perform delivery tasks using its learned knowledge. The task was
chosen to illustrate the different types of knowledge Flakey had: maps, information about
office assignments, general knowledge of how to locate people. There was to be no engineering
of the environment to help the robot; it would have to deal with offices, corridors, and the
humans that inhabited them, without any special beacons, reflective tags, markers, and so on.
Any machine-human communication would use normal human-human modalities: speech and
gestures.

The scenario was made more difficult by three factors: there were only 6 weeks to prepare; the
supervisor would have no knowledge of robotics (it was Alan Alda, the program host); and the
scenario was to be completed in one day, so the robot hardware and software had to be very robust.
We converged on this scenario because it was the most open-ended one we could think of that would
be doable with current equipment and algorithms, and because it would hint at what future mobile
agents would be like.

We believe that any mobile agent able to perform well in an open-ended scenario such as this
one must incorporate some basic features in its architecture. Abstractly, we have labeled these the



three C’s: coordination, coherence, and communication.

Coordination. A mobile agent must coordinate its activity. At the lowest level there are effector
commands for moving wheels, camera heads, and so on. At the highest level there are goals to
achieve: getting to a destination, keeping track of location. There is a complex mapping between
these two, which changes depending on the local environment. How is the mapping to be specified?
We have found, as have others [5, 10, 8, 2], that a layered abstraction approach makes the complexity
manageable.

Coherence. A mobile agent must have a conception of its environment that is appropriate for its
tasks. Our experience has been that the more open-ended the environment and the more complex
the tasks, the more the agent will have to understand and represent its surroundings. In contrast
to the reactivists: “the environment is the model” [4], we have found that appropriate, strong
internal representations make the coordination problem easier, and are indispensable for natural
communication. Our internal model, the Local Perceptual Space (LPS), uses connected layers of
interpretation to support reactivity and deliberation.

Communication. A mobile agent will be of greater use if it can interact effectively with other
agents. This includes the ability to understand task commands, as well as integrate advice about
the environment or its behavior. Communication at this level is possible only if the agent and its
respondent internalize similar concepts, for example, about the spatial directions “left” and “right.”
We have taken only a small step here, by starting to integrate natural language input and perceptual
information. This is one of the most interesting and difficult research areas.

In the rest of this paper we describe out approach to autonomous systems. Most of the dis-
cussion is centered on a system architecture, called Saphira, that incorporates the results of over a
decade of research in autonomous mobile robots. Our emphasis is on the integration of a variety of
representations and reasoning techniques to achieve a complete mobile robotic system — one that
can follow a person around, listen and respond to humans, learn a map of the environment, and
navigate with dexterity and robustness.

2 The Robot Server

The Saphira architecture is designed to operate with a robot server, that is, a mobile robot platform
that provides a set of robotic services in a standard format. This client/server paradigm abstracts
Saphira from the particulars of any one robot, and enables us to port it readily to different robots,
as long as they adhere to the server protocol.

The robot server is responsible for controlling the low-level operation of the motors based on
commands from a client, and for operating the sensors and packaging the results to send back to the
client. Figure 1 shows a typical server operating system. On a fast interrupt cycle, the server controls
power to the motors and checks encoder readings. On a slower cycle, it manages the sonars and any
other sensors or communications devices. On top of the lowlevel controls, the server implements a
set of basic services.

e Movement control: forward/reverse velocity, angular heading. The server has selpoinis for
velocity and heading, and controls the motors on a fast servo cycle (10-50 ms) so that the
robot maintains the setpoint values. The client sends commands to change the setpoints, thus
controlling robot motion at a slower cycle (100 ms).
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Figure 1: Server Operating System. Basic services include motor control, position integration, and
sensor control. These services are derived from motor actuators and sensors on the robot.



e Position integration. The server updates the robot’s internal dead-reckoned position using
information from the encoders.

e Sonar and other sensors. The server manages the sensors, controlling the timing of the sonar
and IR firing, and any other devices such as a camera pan/tilt head. The client can send
commands to change the sensor schedules.

e Communication. The server sends an information packet to the client every 100 ms, containing
information on the position, velocity, and sensor readings. It receives commands from the client
to update its setpoint variables and sensor schedules.

By using setpoint control, the server can communicate with a client over a low-bandwidth channel
with some latency, since the high-speed servo control of motors and sensors is done locally. For
example, we have successfully controlled a robot by running Saphira on a remote host machine with
a telephone connection to the site of the robot server.

With vision sensors, the amount of information processing required means that either all visual
processing must be done on-board, or the bandwidth of the communication must be increased. We
have used the former method, producing stereo range information for obstacle avoidance and people-
tracking, and packaging the results into a small number of bytes for use by the Saphira client (see
Section 3.2.3).

Most current mobile robot platforms can support the kind of server operations specified in the
protocol. To date, Saphira has controlled four different robotics platforms.

e Flakey (SRI International). This is a custom mobile robot platform first built in 1984 (Figure
2(a)). Tts shape is an octagonal cylinder, approximately .5 meters in diameter and one meter
high. Two driven wheels 7”7 in diameter are located on the sides, and passive casters balance it
front-to-back. Flakey’s sensors include a ring of 12 sonar sensors on the bottom, and a stereo
camera pair mounted on a pan/tilt head. Flakey also has a speaker-independent continuous
speech recognition system called CORONA, developed at SRI, and a standard text-to-speech
program for speech output. The speech interface is integrated as part of the Saphira client,
rather than the robot server.

e Erratic and Pioneer (SRI International and Real World Interface, Inc.). Erratic is a smaller
version of Flakey with the same differential drive and sonar sensors, but without the vision
capabilities (Figure 2(b)).! Pioneer is a commercial version of Erratic made by Real World
Interface, Inc.

e Khepera (Swiss Federal Institute of Technology). Khepera is a tiny robot only 2 inches wide,
with differential drive wheels and TR proximity sensors (Figure 2(c)). Tt also has add-on
modules for vision and gripping.

e B14/B21 (Real World Interface, Inc.). These are commercially-made research mobile robots
with a full range of sensing capabilities, including sonars, IR, proximity, and vision systems.
Instead of differential drive, they have a synchro-drive system in which three driven wheels
turn in unison [13, p. 144].

I As vision systems become smaller and use less power, there is a possibility of equipping small robots like Pioneer
with interesting vision capabilities. Newton Labs of Washington has developed a small color vision sensor that extracts
colored blobs from images in realtime, and we have used this system on Pioneer to find and approach soda cans. And
SRI is developing a small realtime stereo vision system for Pioneer, similar to the one on Flakey.



Tolmigy peppritt

S {1

Figure 2: Saphira servers. (a) Flakey has a camera with stereo splitter on top, and a radio ethernet
link. Sparcstation multiprocessor shown in the open compartment. Stereo sonars are the small discs
around the bottom. (b) Erratic and Pioneer are two smaller versions of Flakey have the same motion
and sonar capabilities, but no vision system. (c) Khepera is a tiny robot with differential drive, IR
sensors, and an optional gripper.



The Saphira client, which controls the high-level operation of the robot, can exist either on the
robot itself, or off-board on a host computer. The smaller robots typically have room only for the
server, and the Saphira client runs on another off-board host computer. Pioneer is an interesting
intermediate case: Saphira can run on a laptop on top of the robot, or on an off-board host connected
by a radio modem.

On Flakey and the B14/B21 robots, all systems run on-board. Flakey has a 2-processor Sparc-
station configuration, with one processor dedicated to the server and the vision system, the other to
Saphira and a speech understanding system.?

Both Flakey and Erratic performed well in past AAAT robot competitionsin 1992-1994[7, 15, 16].

2.1 Stereo Vision System

While sonars and IR proximity sensors are useful for obstacle avoidance and low-resolution surface
extraction, passive vision produces much more data and is potentially the best sensing modality for
mobile robots. On the down side, visual images must be processed to produce useful information
such as range or recognized objects, and such processing is expensive and unreliable. As processing
costs go down, we can expect many more mobile robots to use visual sensing as their primary
modality.

The vision system on Flakey consists of two cameras synchronized to capture stereo images.
These images are input to a stereo algorithm using the census method [35], which results in full-
frame dense stereo maps at a rate of about 2.5Hz. Figure 3 shows a stereo pair and the results of
the stereo algorithm on the pair. The stereo results are coded so that closer objects are whiter.

The stereo results can be interpreted directly as range information, and we use them in several
ways.

1. To identify surfaces that could be possible obstacles by matching their height against the
ground plane.

2. To find and track person-like objects.

A short description of the tracking algorithm is given in Section 3.2.3.

3 The Saphira Architecture

The Saphira architecture [30, 29, 7] is an integrated sensing and control system for robotics applica-
tions. At the center is the LPS (see Figure 4), a geometric representation of space around the robot.
Because different tasks demand different representations, the LPS is designed to accommodate var-
ious levels of interpretation of sensor information, as well as a priori information from sources such
as maps. Currently, the major representational technologies are:

e A grid-based representation similar to Moravec and Elfes’ occupancy grids [21], built from the
fusion of sensor readings.

e More analytic representations of surface features such as linear surfaces, which interpret sensor
data relative to models of the environment.

2 At the time of the demonstration, Flakey had a single on-board processor, which ran the vision algorithms and
basic motor control. The rest of the work was done by an off-board Sparcstation connected through a radio Ethernet.



Figure 3: The top picture is a stereo pair from Flakey’s cameras. The images are 640x240 pixels.
The bottom pair shows the results of the census stereo algorithm: closer areas are coded white,
farther areas black. Census algorithms are from John Woodfill of Interval Research Corporation.



e Semantic descriptions of the world, using structures such as corridors or doorways (artifacts).
Artifacts are the product of bottom-up interpretation of sensor readings, or top-down refine-
ment of map information.

The LPS gives the robot an awareness of its immediate environment, and is critical in the tasks of
fusing sensor information, planning local movement, and integrating map information. The percep-
tual and control architecture make constant reference to the local perceptual space. The LPS gives
the Saphira architecture its representational coherence. As we will show in Section 3.2, the interplay
of sensor readings and interpretations that takes place here lets Saphira constantly coordinate its
internal notions of the world with its sensory impressions. One can think of the internal artifacts as
Saphira’s beliefs about the world, and most actions are planned and executed with respect to these
beliefs.

In Brooks’ terms [3], the organization is partly vertical and partly horizontal. The vertical
organization occurs in both perception (left side) and action (right side). Various perceptual routines
are responsible for both adding sensor information to the LPS and processing it to produce surface
information that can be used by object recognition and navigation routines. On the action side, the
lowest level behaviors look mostly at occupancy information to do obstacle avoidance. The basic
building blocks of behaviors are fuzzy rules, which give the robot the ability to react gracefully to
the environment by grading the strength of the reaction (e.g., turn left) according to the strength
of the stimulus (e.g., distance of an obstacle on the right).

More complex behaviors that perform goal-directed actions are used to guide the reactive behav-
iors, and utilize surface information and artifacts; they may also add artifacts to the LPS as control
points for motion. At this level, fuzzy rules blend possibly conflicting aims into one smooth action
sequence. Finally, at the task level complex behaviors are sequenced and their progress is monitored
through events in the LPS. The horizontal organization comes about because behaviors can choose
appropriate information from the LPS. Behaviors that are time-critical, such as obstacle avoidance,
rely more on very simple processing of the sensors because it is available quickly. However, these
routines may also make use of other information when it is available, e.g., prior information from
the map about expected obstacles.

3.1 Behaviors

At the control level, the Saphira architecture is behavior-based: the control problem is decomposed
into small units of control called basic behaviors, like obstacle avoidance or corridor following. One
of the distinctive features of Saphira is that behaviors are written and combined using techniques
based on fuzzy logic (see [30] and [28] for a more detailed presentation). Figure 5 shows the main
components of behavior processing in Saphira.

Each behavior consists of an update function and a set of fuzzy rules. The purpose of the update
function is to extract information from the LPS and turn it into a set of fuzzy variables appropriate
for the behavior. For example, an obstacle-avoidance behavior might have the following variables,
indicating where the robot’s path is blocked:

front-left-blocked
front-right-blocked
side-left-blocked
side-right-blocked

Each fuzzy variable takes a value from the interval [0..1], indicating the degree to which its condition
holds. Fuzzy variables are computed using a transfer function from the state of the LPS to the
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variable. Suppose we consider the left front of the robot to be completely blocked if there is an
obstacle 10 cm away, and unblocked if there is nothing within 100 cm. In between we would like the
value of front-left-blocked to be intermediate between 0 and 1. Its transfer function looks like this:

1.0
front-
| eft-
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0.0 ! |

1 1 I
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0 cm 50 cm 100 cm
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The fuzzy variables are the inputs to a set of fuzzy control rules of the form
A—C,

where A is a fuzzy formula composed by fuzzy predicates and the fuzzy connectives AND, OR and
NOT, and C' is a control action. For example, the rules for obstacle avoidance could be written as:

front-left-blocked AND (NOT front-right-blocked) AND (NOT side-right-blocked) —  turn right
front-right-blocked AND (NOT front-left-blocked) AND (NOT side-left-blocked) —  turn left
front-right-blocked OR, front-left-blocked —  slow down

Note that these rules refer to both the heading and velocity of the robot. In general, the robot may
have many control channels, each with the ability to perform some motion function. Flakey and
all robot servers for Saphira have at least the ability to turn to a heading and maintain a velocity;
other functions may include grippers or manipulators, pan/tilt heads for a camera, and so on. A
behavior can affect as many of these control channels as it needs to, while leaving the others alone.

The results of a rule application is a desirability function, which states how much the behavior
would like to see a particular control value. For each control channel, the results of all the behavior
rules for that channel are averaged to give the final control value. The averaging includes a weighting
function based on two properties: priority of a behavior and its activation context. Behaviors that
are more important are given higher priorities, e.g., avoiding obstacles has a higher priority than wall-
following, since we don’t want the robot to bump into anything. But letting the collision-avoidance
behavior have complete control over the robot, even when there are no obstacles, is not reasonable,
since in this context it is wall-following that should take precedence. So while priorities are fixed,
the context of activation changes, and the controls of the behaviors are blended according to the
priority of the behavior and how active it is. We call this weighting context-dependent blending,
since it takes into account how much a behavior should respond in a particular context.® Figure 6
shows an example of context-dependent blending in operation as the robot follows a wall and avoids
an obstacle.

Context-dependent blending has proven to be an effective technique for coordinating reactive
and goal-oriented behaviors. Behaviors are not just switched on and off: rather, their preferences

3For averaging to make sense, the rules in a behavior should not suggest dramatically opposite actions in the same
state. Our coding heuristic has been to make sure that rules with conflicting consequents have disjoint antecedents.
Other authors have preferred to use more involved choice functions (e.g., [34]).
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Figure 6: Context-dependent blending of following and avoiding behaviors. After point (a), the
Keep-Off behavior starts to become active, and its higher priority dominates the Follow behavior.
At point (b), the obstacle is passed, and Follow resumes.

are combined into a tradeoff desirability. An important consequence is that the preferences of the
goal-seeking behaviors are still considered during reactive maneuvers, thus biasing the control choices
toward the achievement of the goals. In the example above, suppose that the obstacle is right in
front of the robot (e.g., the robot ended up facing the wall) and can thus be avoided by either turning
right or left; then, the combined behavior prefers the side that better promotes corridor following.

It is interesting to compare context-dependent blending with the artificial potential field tech-
nique, first introduced by Khatib [14] and now extensively used in the robotic domain [17], [2]. In
the potential field approach, a goal is represented by a potential measuring the desirability of each
state from that goal’s viewpoint. For example, the goal of avoiding obstacles is represented by a
potential field having maximum value around the obstacles; and the goal of reaching a given location
is represented by a field having minimum value at that location. At each point, the robot responds
to a pseudo-force proportional to the vector gradient of the field. Although there are some technical
differences, in general the fuzzy rule approach can also be seen as generating a desirability gradient
showing the best direction for the robot to move at each point in the field. The main difference,
however, is in how the complex control problem is decomposed. The fuzzy control approach allows
one to partition control actions according to desired behaviors of the robot, and then combine the
behaviors via context-dependent blending. By contrast, the potential-field method forces one to
think about how to change a global potential field to achieve a particular result, conceptually a
much harder task. Interestingly, the motor schema approach [2] brings a behavior orientation to
potential fields, by decomposing the global field into a set of sub-fields, each designed to accomplish
a particular goal.

3.2 Coherence

Reactive behaviors such as obstacle avoidance often can take their input directly from sensor read-
ings, perhaps with some transformation and filtering. More goal-directed behaviors can often benefit
from using artifacts, internal representations of objects or object configurations. This is especially
true when sensors give only sporadic and uncertain information about the environment. For exam-
ple, in following a corridor, a robot will not be able to sense the corridor with its side sonars when
traversing open doorways or junctions. It would be foolish to suspend the behavior at this point,
since over a small distance the robot’s dead-reckoning is good enough to follow a “virtual corridor”
until the opening is passed.

In other situations, an artifact may represent an artificial geometric entity that guides the be-
havior. Such situations occur frequently in human navigation, e.g., in crossing a street one tends to
stay within a lane defined by the sidewalks on either side, even when there is no painted crosswalk.
Similarly, in the follow-corridor behavior, the robot is guided by a lane artifact that is positioned a
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foot or so in from the corridor walls.
In accordance with these behavioral strategies, artifacts in Saphira come from three sources:

e From a priori information. Typically, the robot will start with a map of the corridors and
offices in its environment.

e From perceptual features. When a perceptual process recognizes a new object, it may add
that object to the list of artifacts.

o Indirectly, from other artifacts or goal information. For example, if the user gives the command,
“Move 3 feet forward,” a goal artifact is created at a position three feet in front of the robot.

Artifacts always have a class (WALL, CORRIDOR, POSITION, etc), geometric information about
their position and extent, and a unique identity, so that no two artifacts in the same class are the
same. They may also have information about geometrical dependencies with other artifacts.
Normally, artifacts in the LPS are updated based on the robot’s dead-reckoning mechanism,
which is reliable only over short distances. Coherence is the property of updating artifact positions
in the LPS based on perception, so that the robot’s model of the environment stays registered with
the robot’s position as it moves. To understand how this works, we refer to the following diagram:

feature <= object hypothesis <+= artifact

Features are constructs based on sensor information, usually representing surface information. A
typical feature would be a linear surface, represented by a straight segment in the LPS.

An object hypothesis is a set of features that could correspond to a real-world object. For example,
two breaks in a linear surface could be a doorway, and these two features might be grouped together
to form a doorway hypothesis. Object hypotheses do not have any particular identity, i.e., a doorway
hypothesis does not have information that it is the doorway to a particular office.

All three types of representations — features, object hypotheses, and artifacts — coexist in the
LPS. As the diagram implies, there is no strict relationship in how one is created or manipulated by
another. Depending on the task, it is possible to go in several different directions. In map-building,
for example, features are grouped into object hypotheses, which are then recognized as artifacts.
Although this process is mostly bottom-up, there is also an important top-down component, in which
previously-recognized artifacts are matched against current hypotheses, and only those hypotheses
which refer to possible new objects are given the status of artifacts.

In practice, we have found that the introduction of artifacts greatly simplifies the design of
behaviors, by allowing us to decouple the problem of control from the problems of interpreting noisy
sensor data. Our behavior-writing methodology has been to first write small rulesets for elementary
types of movements based on simple artifacts, like follow a line, or reach a location; and then focus
on the strategies to keep these artifacts anchored to the right features in the environment. The
resulting behaviors often proved to be more robust than purely reactive controllers.

In this paper, we cannot describe all of the ways in which the feature to artifact connection is
made. We will concentrate on two areas: feature extraction from perceptual information, and the
process of anchoring, in which current artifacts are kept coherent with the environment by matching
against features or object hypotheses.

3.2.1 Extracting Features

To navigate through extended regions, Saphira uses a global map that contains imprecise spatial
knowledge of objects in the domain, especially walls, doorways, and junctions of corridors. Using
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a map depends on reliable extraction of object information from perceptual clues, and we (as well
as others) have spent many frustrating years trying to produce object interpretations from highly
uncertain sonar and stereo signatures (see, for example, [6, 18, 21]). The best method we have found
is to use extended aperture sonars readings, perhaps augmented with depth information from the
stereo system. As Flakey moves along, readings from the side sonars are accumulated as a series
of points representing possible surfaces on the side of the robot. This gives some of the resolution
of a sensor with a large aperture along the direction of motion. By running a robust linear feature
algorithm over the data, we can find walls segments and doorways with some degree of confidence.

The utility of this technique is that it yields reliable linear features with almost no false positives.
False positives are difficult to deal with, because using them for localization puts the robot at the
wrong position in its internal map, and subsequent matches against features will fail. In general
it’s better to miss a few features and err on the conservative side in accepting features, since dead-
reckoning works reliably for short periods.

Extracting wall and doorway features makes it easy to build a global map automatically, by
having Flakey explore an area. The map is imprecise because there is error in the dead-reckoning
system, and because the models for spatial objects are linear, e.g. corridors are represented as two
parallel, straight lines. As features are constructed they can be combined into object hypotheses,
matched against current artifacts, and promoted to new artifacts when they are not matched. In
practice, we have been able to reliably construct a map of the corridors in the Artificial Intelligence
Center, along with most of the doorways and junctions. Some hand editing of the map is necessary to
add in doorways that were not found (because they were closed, or the robot was turning and missed
them), and also to delete some doorway artifacts that were recognized because of odd combinations
of obstacles.

3.2.2 Anchoring

Artifacts exist as internal representations of the environment. When the physical object that an
artifact refers to is perceived by the sensors, we can use this information to update the position of
the artifact with respect to the robot. This is necessary to guarantee that behavior using the artifact
operate with respect to the actual object, rather than with respect to an a priori assumption. We
call anchoring the process of (1) matching a feature or object hypothesis to an artifact, and (2)
updating the artifact using this perceptual information (see [27] for more on anchoring).

In Saphira, the structure of decision-making for the anchoring problem takes the following form:

feature —= hypothesis —~-~-> new artifact
l'i ne segnent wal | [ 38, 106] g nal | - 32[ 38, 106]
\ ~'no
MATCH
// - yes
artifact —~~> updated artifact

wal | - 31[ 34, 106] wal I - 31[ 38, 106]

As features are perceived, Saphira attempts to convert them to object hypotheses, since these are
more reliably matched than individual features. These hypotheses are matched against artifacts
existing in the LPS. If they match against an artifact, the match produces information for updating
(anchoring) the artifact’s position. If not, they are candidates for inclusion as new artifacts in the
map.
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Figure 7: Anchoring a corridor artifact to sensor readings for corridor-following.

If an artifact that is in view of the perceptual apparatus cannot be matched against an object
hypothesis, then Saphira tries to match it against individual perceptual features. This is useful,
for example, when the robot is going down a hallway and trying to turn into a doorway. Only
one end of the doorway is initially found because the other end is not in view of the side sonars.
This information is enough to anchor the doorway artifact, and allow the robot to proceed with the
door-traversing behavior.

Artifacts that have no perceptual support when they should (i.e., when they are in the range
of the cameras or sonars), are candidates for reaping from the LPS. In general the reaping process
must take into account the environment of the robot. For example, walls and corridors are fixed
structures that are always present, while doors can be closed (and therefore not show up as features).
The most obvious candidates for reaping are transient objects such as obstacles. At present we do
not have any general theory of how to represent the dynamic aspect of objects and its relation to
artifact recognition, but rely on special-purpose algorithms for each type of object.

Figure 7 shows an example of anchoring in Saphira. The picture shows the LPS in two consecutive
moments during corridor following. The corridor-following behavior acts with respect to a corridor
artifact, represented by the two double lines. This artifact is initially placed by the planning and
executive levels based on map information (a). Note that the position of the artifact does not
correspond to that of the actual wall, visible from the clusters of sonar readings (small dots): this may
be because the map is incorrect or, more commonly, because of the inaccuracy of self-localization. As
enough sonar readings are gathered, Saphira’s perceptual routines infer the existence of two parallel
walls (marked by “W”) and hence form a corridor hypothesis (“C”). The artifact is then anchored to
this hypothesis (b), and the movement now proceeds with respect to the actual corridor. If one wall
is obscured by obstacles or a doorway, then the other will be used to anchor the corridor. Anchoring
provides a closed-loop response whenever the relevant sensor data are available. When data are not
available, e.g., if the walls become obscured, artifacts act as assumptions for movement.

Currently, anchoring is successfully used by individual behaviors or activity schemas that control
behavior. For example, it is used by the doorway-traversing behavior to track the location of the
doorway as it moves into or out of a room. It is also used to keep the robot globally registered
with respect to a map. The registration process is sufficiently robust that the original map the
robot makes does not have to be very precise (and it can’t be, if dead-reckoning is poor). The
anchoring process will keep the robot’s position updated with respect to the relevant objects in the
environment. This assumes, of course, that the robot can find and match objects of the right sort.
For instance, going down a long corridor with no features, the robot will stay correctly registered
in the center of the hallway, but the error in its longitudinal position will grow. So it’s important
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to find doorways or breaks in the corridor at reasonable intervals. Using the anchoring strategy on
corridors, doorways, and junctions, we have been able to keep the robot localized for arbitrarily long
periods (i.e., until the batteries run low) as it navigates the corridors of the Artificial Intelligence
Center.

Anchoring thus helps to correct uncertain prior information by using perception, and keep the
robot localized on a map as it navigates. But there are still several problems we have not addressed
with this scheme. One is that sonar percepts are, in general, not adequate to keep the robot localized
in complex environments. For example, in crowded rooms, the robot quickly becomes confused
because it cannot find a sufficient set of long linear segments to match. To solve this problem, we
are considering correlation-based algorithms using the stereo vision system. By keeping track of a
number of small surface patches that are sufficiently distinctive as features, we hope to be able to
use the same registration algorithms to reliably localize the robot in complex indoor and outdoor
environments.

A second problem is that of place recognition: localization when the robot has no knowledge of
its current position. Alessandro Saffiotti, who worked with the authors on Flakey’s fuzzy behaviors,
has ideas for solving this task based on the use of fuzzy sets to represent locational uncertainty

31, 28].

3.2.3 Tracking people

Saphira incorporates a simple people-tracker based on stereo information. The tracking algorithm
does not perform correlations on successive temporal frames to keep track of the object. Rather, it
looks for person-like objects in each successive frame without reference to previous ones, formulates
a hypothesis, and then passes it to the LPS registration routines. “Person-like objects” are detected
by a matching process running on the stereo data. Three bands of range information at torso height
are examined for a shape profile the width of an adult. If two of the three bands agree, then a person
is detected at the center of the shape. Because we are only using a portion of the stereo information,
we can run the person-tracker at a 10 Hz rate.

The registration algorithm makes a decision about whether the hypothesized person is the same
as one represented by an artifact, and either updates the artifact position or creates a new one. We
keep a simple velocity model of person artifacts, which helps the registration process to make better
matching decisions. It is also used by a centering process which can keep the camera center locked
on the person being tracked. If a person artifact does not receive support for a period of time, it is
removed from the LPS.

Interestingly, the registration process makes it possible to follow people around corners and
through doorways, where they may be temporarily lost from sight. The artifact represents their
most likely position, and the vision routines keep searching this area until the person is re-acquired,
or cannot be found.

One limitation of the current system is its inability to distinguish different people. The range
resolution of the system is coarse enough so that distinguishing people by shape is not possible, even
without the complication of motion, arm position, and so on.

3.3 Controlling Executive: PRS-lite

Behaviors provide low-level situated control for the physical actions effected by the system. Above
that level, there is a need to relate behaviors to specific goals and objectives that the robot should
undertake. This management process involves determining when to activate/deactivate behaviors
as part of the execution of a task, as well as coordinating them with other activities in the system.
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PRS-Lite [24], a reactive controller based loosely on the Procedural Reasoning System (PRS-CL)
[11, 23] fills this role within Saphira.

Many of the core capabilities provided by PRS-Lite are shared by most current-generation task-
controllers. These include the smooth integration of goal-driven and event-driven activity, timely
response to unexpected changes in the world, and the hierarchical decomposition of tasks. Several
additional capabilities, however, distinguish PRS-Lite from other reactive control systems (including
PRS-CL). These include the management of interacting continuous processes, a rich set of declarative
control mechanisms, and a generalized goal semantics that replaces concepts of success or failure
with levels of goal satisfaction.

3.3.1 Overview

The representational basis of PRS-Lite is the activity schema, a parameterized specification of proce-
dural knowledge for attaining a declared objective. This procedural knowledge is represented as an
ordered list of goal-sets, whose successive satisfaction will yield the overall objective of the schema.
A goal-set is composed of one or more goal statements (or goals), each consisting of a goal opera-
tor applied to a list of arguments. A goal-set can be optionally identified by a label unique to its
schema. Intuitively, a goal-set corresponds to an ordered sequence of goals that are to be achieved
as an atomic unit. A compiler transforms the schema specifications into parameterized finite-state
machines (performing optimizations where appropriate), whose arcs are labeled with individual goal-
sets to be achieved. Activity schemas are launched by instantiating their parameters and intending
them into the system. Such instantiated schemas are referred to as intentions. Multiple intentions
can be active simultaneously, providing a multitasking capability.

Different modalities of goals are supported, as summarized in Figure 8. Broadly speaking, goal
types can be categorized as action or sequencing. Action goals ground out in either executable
functions (called primitive actions), tests on the state of the environment (as represented in the
internal world model), or the activation/deactivation of intentions and behaviors. This last ability
enables the hierarchical decomposition of goals. Sequencing goals provide conditional goal execution
and sophisticated goal ordering beyond the default of linear processing, as well as various forms of
parallelism.

Overall, PRS-Lite can be used to generate and manage a forest of directed graphs whose nodes
each represent a goal-set from some activity schema. The root node of each graph represents a
top-level goal, with its successors generated by hierarchical goal refinement. We refer to the set
of active graphs at a given point in time as the current intention structures for the system. The
leaf nodes of the intention structures are called the current nodes, and their associated goal-sets the
current goal-sets. Note that an intention structure can have multiple current nodes because of the
inclusion of parallel sequencing goals in the schema definition language.

An ezecutor manages intentions at runtime. It repeatedly operates a short processing cycle in
which it considers the current goal-sets in each intention structure, performs any actions required to
achieve their constituent goals, and updates the set of current nodes (as appropriate). The decision
to limit processing to a single goal-set for each leaf node in an intention structure ensures overall
responsiveness to new events. Given the granularity of processing, responsiveness is dependent on
the number of active intentions, the degree of parallelism in those intentions, the size of goal-sets,
and the underlying primitive actions that are executed. The design has proven adequate for the
tasks considered to date (as discussed later).
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Action Goals:
Test check a condition
Execute execute a primitive action
= assignment of local variables
Wait-for wait for a condition
Intend dispatch intentions (block/nonblock)
Unintend terminate intentions

Sequencing Goals:

If conditional goals

And parallel goals (with join)
Split parallel goals (without join)
Goto branching to labeled goals

Figure 8: PRS-Lite Goal Modalities

3.4 Goal Modalities

Action goals supply the most basic operations in the system. Test goals provide the ability to test
beliefs about the current state of the external world. Within Saphira, beliefs are characterized by
a combination of the Local Perceptual Space and a set of environment variables. Execute goals
provide for the execution of primitive actions, which may perform internal bookkeeping, the setting
of environment variables, or the triggering of specific external actions by the system. External
actions for Flakey include the generation of an utterance by the speech synthesis module, and the
invocation of a route planner. = goals enable the binding of local variables within an intention.

Intend goals lead to the activation of both intentions and behaviors. As such, they enable the
hierarchical expansion of intentions through repeated goal refinement. Unintend goals provide the
complementary ability to explicitly terminate active intentions before they run their full course.
This ability is critical when operating in dynamic, unpredictable domains, where rapid switching
among activities is essential. Intentions can be assigned priorities that determine the order in which
they are processed by the executor. Intentions can also be named when activated, allowing them to
be referenced by other intentions (in particular, Unintend goals).

A critical feature of Intend is that it supports the invocation of intentions in either nonblocking
or blocking mode. In nonblocking mode, the intention is activated and control proceeds to the
next goal. In essence, the nonblocking intention is spawned as an independent process within the
context of the parent intention; the nonblocking intention will persist either until it completes or
its parent intention terminates. In contrast, blocking mode disables updating of the current goal
within the parent intention until the child completes. Any intentions activated earlier by the parent
intention will continue to be processed. Degrees of blocking are also supported: an intention can
be blocked until a designated success criteria is satisfied. This capability is valuable for controlling
behaviors implemented as fuzzy rules, which provide a natural metric for defining degrees of success
(namely, the fuzzy predicates that model the world state). As a simple illustration, Flakey has a
face-direction behavior that orients the robot toward a designated heading. This behavior is
invoked with different thresholds of blocking in different contexts, depending on how critical it is to
be precisely oriented to that heading.

Wait-for goals enable limited suspension of an intention until a certain condition or event occurs.
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The Wait-for goal modality is critical in the framework in that it enables synchronization among
concurrent intentions through the use of shared variables. An illustration is provided in the next
section.

The sequencing goals enable more sophisticated goal-ordering and selection mechanisms than
does the default of linear processing of goal-sets. Sequencing goals can be nested to arbitrary depths,
yielding a rich framework for specifying control strategies. If goals support conditional activation
of a goal. Goto goals support non-linear flow of control within an activity schema, by allowing a
current goal-set to be mapped to any other labeled goal-set in the schema. Iteration can be specified
through appropriate combinations of If and Goto goals. Two forms of parallelism are provided via
the Split and And goal modalities. Split parallelism spawns sets of independent concurrent goals,
with control in the parent intention proceeding to the successor goal-set. Each thread of activity for
the spawned goals continues until it completes, or the parent intention terminates (similar in spirit
to the nonblocking mode of intending). In contrast, And parallelism treats the parallel goals as a
unit; processing of the parent intention suspends until each of the threads occasioned by the And
subgoals terminates.

3.5 Methodology and Use

Goal-directed behavior is produced by intending schemas for satisfying individual tasks. Reactive,
event-directed behavior is produced by launching intentions that employ Wait-for goals to suspend
until some condition or event transpires.

A common idiom for the design of activity schemas is to define an umbrella intention for a specific
objective, which in turn invokes both a lower-level intention for achieving the objective, and one or
more ‘monitor’ intentions (thus combining goal- and event-driven activities). Monitors use Wait-for
goals to detect changes in the world that could influence the actions required to achieve the overall
objective of the top-level schema. Certain monitors identify failure conditions that would invalidate
the approach being taken for the current task. Others provide reactivity to unexpected events that
require immediate attention. Monitors can also check for serendipitous effects that eliminate the
need for certain goals in active intentions, and modify the intention structures accordingly.

To illustrate the use of the various goal modalities and idioms, Figure 9 presents simplified ver-
sions of activity schemas used by Flakey to perform basic navigation tasks. The schema :plan-and-execute
encodes a procedure for generating and robustly executing a plan to navigate to a designated desti-
nation. The destination is specified as a parameter to the schema, and is represented as an artifact
in the LPS, thus linking abstract notions of place to the robot’s beliefs about its environment.

The initial goal-set in the schema (with the label :plan) employs an And goal applied to three
subgoals to perform certain initializations. The first Execute subgoal invokes a function say that
performs a speech generation command. The second Execute goal initializes the environment vari-
able *failed-execution*, which is used to encode information about the status of plan execution.
This variable is an example of state information within PRS-Lite that provides coordination among
intentions (as described further below). The final subgoal invokes a function find-path that pro-
duces a topological plan for navigating from the current locale to the destination. Navigation within
Saphira is at the level of regions (doors, junctions, hallways); the route planner produces a sequence
of such regions that should be traversed to reach the target destination.

After performing the necessary initializations, the schema intends a nonblocking monitor inten-
tion :monitor-planex, followed by a blocking intention :follow-path, in the spirit of the umbrella
idiom described above. This latter intention (not shown here) cycles through the computed path,
launching various lower-level intentions as required to navigate between successive regions in the gen-
erated path. The lower-level intentions may encounter difficulties, which they signal by setting the
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(defintention :plan-and-execute
:params (dest)
:goals
‘((:plan
(AND
(EXECUTE (say "Planning path to ~a" dest))
(EXECUTE (setq *failed-execution* nil))
(= plan (find-path *cur-region* dest))) )
(IF (null plan) (GOTO :finale))
(INTEND :monitor-planex () :blocking nil)
(INTEND :follow-path ((path . plan))
:blocking t :name follow-it)
(IF *failed-execution* (GOTO :plan))
(:finale
(IF (null plan)
(EXECUTE (say "No passable routes"))) ) ) )

(defintention :monitor-planex
:params ()
:goals
“((:monitor (WAIT-FOR *failed-execution#))
(:cleanup (UNINTEND ’follow-it)) ))

Figure 9: Activity Schemas for Directed Navigation

environment variable *failed-execution*. The Wait-for goal in the :monitor-planex intention
would detect such an event, and then process the goal (Unintend ’follow-it). Satisfying this goal
would deactivate the :follow-path intention, with the monitor intention then terminating. If no
lower-level intention signals a failure, the blocking intention :follow-path will eventually complete,
enabling processing of the remainder of the :plan-and-execute intention. The :monitor-planex
intention is terminated automatically when its parent intention :plan-and-execute terminates.
Figure 10 displays a snapshot of the intention structures at a point during a run in which Flakey
uses the above schemas to execute a delivery task.? Each line in the display consists of: an initial
marker, indicating whether the intention is blocking (*) or nonblocking (o), the name of the activity
schema (e.g., Deliver-Object), a unique identifier for the particular instantiation of the schema
(e.g., alabel such as Follow-It if one was specified in the Intend goal, else an assigned name such as
13674), and either the next state of execution (for an intention) or B (for a behavior). At the instant
captured by this display, PRS-Lite has two intentions active at the highest-level (corresponding to
two distinct user-specified objectives): Deliver-Object and Avoid. The Avoid intention has only
one active thread at this point, namely the behavior for avoiding collisions (Avoid-Collision). Note
though that in the past or future, this intention may trigger many other activities. Of more interest is
the state of execution for the Deliver-0Object intention. At its topmost level, this parent intention

4To improve the understandability of the robot’s actions, PRS-Lite maintains an intention display that summarizes
the intention structures at the end of each execution cycle. The intention display provides a concise overview of the
motivation for the actions being undertaken by the system at any point in time, thus conveying to an observer why
the robot is behaving in a certain manner.
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* Avoid (Avoidl) END
* Avoid-Collision (Collide) B

* Deliver-Object (I3674) S171
* Plan-And-Execute (I3675) S146
o Monitor-Planex (I13676) CLEANUP
* Follow-Path (Follow-It) S138
* Corridor-To-Junction (I3677) END
* Follow-To-Target (I3678) END
o Follow (Follow-To-Target) B
o Orient (Orient-To-Target) B
o Keep-Off-With-Target (Keep-Off) B

Figure 10: Snapshot of the Intention Structures during Execution of a Delivery Task

has the single child intention Plan-and-Execute, which in turn is executing the :follow-path
schema while simultaneously monitoring for execution failures (via Monitor-Planex). As part of
the path-following schema, the robot is currently moving from a corridor to a junction, which in
turn has activated an intention to move toward a specific target. At the lowest level, three behaviors
are activate simultaneously, namely Follow, Orient, and Keep-Off-With-Target.

3.5.1 Discussion

PRS-Lite provides a powerful and natural framework in which to specify and manage the purposeful
activities of a robot. The system itself is compact (<500 lines of LISP code, including executor,
compiler, and display manager), especially in comparison to PRS-CL. It has proven to be sufficiently
fast over a broad range of tasks, with the intention execution loop easily fitting into Saphira’s overall
cycle time of 100 ms. Precise figures for the cycle time of the PRS-Lite executor are not available,
but the combination of behavior and task control lies somewhere in the range of 5 to 30 ms (on a
Sparc-2 processor). This is very fast, considering that on average there are 10 to 15 intentions in
operation, monitoring various conditions and coordinating behaviors.

One novel capability of PRS-Lite within Saphira is its ability to manage behaviors implemented
as fuzzy rules. A key feature of such behaviors is the smoothness of activity that results from rule
blending. However, sequencing languages (including activity schemas) model task-level events as
discrete actions connected by explicit transitions, even when the tasks themselves ground out in
continuous processes. This separation of task and behavior levels leads to discontinuities in the
resultant activities of the system. As an illustration, consider the task of navigating to an office
in a given corridor, and then entering it. Flakey has activity schemas defined for the navigation
and doorway-crossing, each of which employs an appropriate set of behaviors. A straightforward
approach to the overall task would be to execute a navigation intention to reach the office, and
then a doorway-crossing intention to enter the office. But the termination of the corridor navigation
intention prior to the activation of the doorway-crossing intention leads to jerky, unnatural motion
by the robot. For smoother operation, the doorway-crossing behaviors must be activated before the
robot reaches the office (i.e., while the corridor behaviors are still active). The corridor navigation
behaviors should terminate once the robot is sufficiently far down the corridor to enable successful
completion of the doorway-crossing intention. Such intention-level blending can be specified in the
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PRS-Lite goal language, using a combination of monitors and thresholded blocking of intentions.

4 Communication

At this point, our ideas about communicating have been strongly influenced by the Natural Language
Understanding community, especially the plan-based theory of speech acts [1]. Eventually, we would
like to have a complete understanding system that would perform intention recognition on the
speaker’s utterance, and form appropriate plans. For the scenario, we concentrated on the area of
referent identification, matching the speaker’s terms to objects in the immediate environment of
the robot. In this section we describe the speech input system, and the schemas that carry out
advice-taking and tasking commands.

4.1 Speech input

We were fortunate to have an excellent speech-recognition system, developed at SRI, called CORONA.
CORONA has speaker-independent recognition models that need no training, although it will have
better accuracy with individually-tuned models. CORONA accepts a BNF grammar of phrases, and
produces strings of the words spoken. On a Sparc 10-51, it operates at about twice realtime on the
simple grammar we used, i.e., a 5-second sentence would take about 10 seconds to recognize.

One of the hardest problems in voice communication is letting the supervisor know when Flakey
has heard an utterance, and what the state of its understanding is. We employed several techniques:

Keying. There can be a lot of extraneous chatter during interactions. The grammar was created
with a keyword initiation, so that only phrases beginning with the word “Flakey” were rec-
ognized. This worked extremely well; it was natural to address commands and statements to
the robot in this fashion. A nice additional feature would be to use directional interpretation
of sound sources for getting Flakey’s attention; we currently do not have this capability.

2

Process status. CORONA employs an “endpointer,” a period of low speech energy, to signal the
end of a speaker phrase. From this point there is a delay until the speech is processed; the
speaker can be confused about whether his input was received, and whether it was recognized.
We implemented a simple end-of-speech flag: Flakey says “um” when the endpoint is reached.
Thus the speaker can tell that his input was received and is being processed.

Results. It is important to give feedback to the speaker about the interpretation of his input.
For example, if the speaker says “turn left,” and it is interpreted as “go forward” (a not
altogether unknown occurrence), the speaker will be mystified by the robot’s behavior. So
Flakey would acknowledge each spoken command, either by paraphrasing it, or nodding its
cameras in recognition. If the phrase was not recognized, Flakey said “duh?” or “what?”
Crude, but effective.

4.2 Gestures

We were ambitious enough to want gesture recognition as part of the attention process. The idea
was to use a mixture of speech and gesture for reference, e.g., “This office (point to the right or left)
is Karen’s.” We did manage to extract enough information from the stereo system to recognize left
or right-pointing arms, but did not have enough time to integrate it correctly with the speech input,
even for simple reference. This would be a good project for future work, with a more elaborate
natural-language understanding system.
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We implemented a simple but surprisingly sufficient set of activity schemas to perform the sce-
nario. They fall into several categories: direct motion commands (“turn around”), sensor-based
movement (“follow me”, “follow the corridor”), tasks (“get the file from Karen”), and information

(“this is John’s office”).

4.3 Direct Motion

These are direct commands to move forward or turn, or to look (move the cameras) in certain
directions, e.g., “look behind you.” Direct motion commands are implemented as simple sequential
behaviors with well-defined ending conditions and short timeouts. For example, if Flakey is told to
move forward while facing a wall, it will turn away from the wall and move forward about 1 meter,
since collision avoidance is active at all times. It would be smarter, of course, to recognize that it is
not possible to move forward, and state this fact. But in our current implementation Flakey does
not check for possibility of carrying out commands; it only tries to do the best it can.

4.4 Attending and Following

These commands involve coordination of sensing and acting, mediated by artifacts in the LPS.
Even very simple activity schemas, when coordinated with sensing, can give the appearance of a
well-trained robot with human-like capabilities.

The Attending schema finds the closest person-like object and brings Flakey to face the person
at a distance of about 1 meter. The command “look at me” or “find me” triggers this schema.
Flakey performs a scan from the current camera position to the extreme left and right position of
the pan/tilt head, giving a full 360 degree field of view. The first person-like object detected by the
stereo tracking algorithm (Section 3.2.3) is placed in the LPS, and an activity schema positions the
robot to face the object and keep the cameras centered on it. Success of the Attending schema is
indicated by saying “here I am;” failure, after a full scan, by “I can’t find you!”.

The Following schema uses the same kind of movement/sensor control to track a person. If there
is no person currently in view, the Attending schema is invoked. Once found, the person is kept
centered in the cameras, using the spatial information returned from the tracking algorithm. The
activity schema keeps Flakey about 1 - 1.5 meters from the person as much as possible (top speed
of 300mm /sec), while avoiding obstacles. If the person is lost, Flakey looks in the most likely area
for awhile, but does not attempt to re-attend, since if there are other people around, it may acquire
the wrong one. Flakey’s vision system cannot distinguish individuals.

Both these behaviors worked well in practice. Mr. Alda was able to lead Flakey through several
corridors and doorways at SRI, with only minor problems in re-acquisition.

4.5 Information

This is one of the most interesting areas for robot/human interaction. The hard problem is relating
robot-centered representations of the world with human-centered ones. For example, when the
supervisor says “..this office...”, the robot must understand that there is an object in the current
focus of dialogue that is being referred to. The point of contact, for the robot, is in the artifacts
of the LPS. Flakey has enough background knowledge to infer that doors can lead to offices, even
though it cannot recognize an office per se. So the phrase “this office” is linked to the nearest
doorway in the robot’s perceptual space.

In general the problem of reference resolution can be phrased in terms of abductive inference:
find an object that, if assumed as the referent, would make the speaker’s phrase carry reasonable
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information [12]. For the scenario demonstration, we did not use a general inference method to
determine reference, since we decided beforehand that we would only refer to offices, people, and
certain other objects. But in general the problem of reference for robots will require some of the same
tools that have been used in computational linguistics. However, robots do enjoy one advantage:
since they also perceive the world, they can draw on a repertoire of perceived objects as referents (in
philosophical terms, they are situated in the word). Instead, the problem becomes one of matching
the artifacts of the robot’s representation with the linguistic expressions of the speaker. We have
formulated a theoretical foundation for this interchange [22]; but it was not applied in the scenario.
Other more complex theories of knowledge and action have been developed in a logical framework
[20, 19]; we expect to see more application of these theories as robots become more sophisticated in
their interactions.

Another type of information used by the robot is knowledge of how to locate people, since delivery
tasks often involve finding someone. In general this is a planning problem, with reasoning about
where someone is, or who might have information about where that person is. For the scenario, we
implemented a simple routine that would first check the person’s office (using speech output and
waiting for a reply), and then start looking for people who might know where the person is. More
sophisticated routines might check a personal calendar, or compile a list of likely places, or perform
inference about knowledge prerequisites for action, and so on. Here again the problem of reference
emerges. Phrases such as “Karen is around the corner” would be hard to interpret, so we settled
on a set of place-names that could be used: offices, corridors, and open areas such as the library.
These were all places that Flakey could learn from the supervisor, since there were artifacts (doors,
corridors, junctions) that could be identified with the area.

One lesson we learned from attempting to give Flakey advice of this sort is that the closer a
match between the robot’s perceptual categories and the human’s, the easier and more foolproof the
exchange of information. For example, if Flakey had no concept of a corridor, it would be almost
impossible to tell it the name of the corridor (e.g., “J-wing”) and have it internalized in an effective
way. Suppose Flakey were to store its current position in association with the corridor name. Then
the command “Go to J-wing” would cause Flakey to go back to the same location, even if another
location in the corridor were much closer. Commands such as “follow the corridor” wouldn’t make
any sense at all.

4.6 Tasking

A robot is supposed to perform useful tasks. For the scenario, Flakey was a delivery robot, whose
main task was to deliver messages and manuscripts. While performing these tasks, Flakey maintained
the goals of obstacle avoidance and localization. These required no overt planning; PRS-Lite invoked
the requisite behaviors automatically. In more complicated situations, for example where the robot
must explore to find a new route, there might be explicit planning for localization.

Navigation plans were computed by graph search on the learned topological map, and then
executed by PRS-Lite. More complicated procedures were constructed as conditional navigation
plans: find person X, ask him/her where person Y is, and then go to that location. These plans
were simple enough that we just created PRS-Lite schemata for them. A major failure in the
plan (e.g., person X not found) caused PRS-Lite to instantiate an alternative schema. The most
complicated plan Flakey executed was going to Karen’s office and finding out she wasn’t there; then
going to John’s office, asking him where Karen was, finding and getting a report from her, and
returning to deliver it.
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5 Discussion

There are two basic areas where our work on Saphira has differed in design and emphasis from
others. The first is in the area of coherence: by mediating interacts between perception and action
through the LPS, we have been able to abstract away some of the difficulties found in interpreting
goal-directed behavior relative to the perceptual state of the robot. This is especially true of tasks
that cannot rely on current perceptions to formulate correct action sequences. Typical here is the
task of following a person around a corner. As the person turns the corner, the perceptual system can
no longer track him: there is nothing in the perceptual space on which to base a “follow” behavior.
By providing an artifact that represents the best estimate of the person’s position, Saphira can still
perform the follow behavior on the expectation of re-acquiring perceptual information after a short
while.

The second distinctive aspect of our work in in the area of coordination, both in coordination
of basic behaviors, and scheduling of behaviors to perform high-level tasks. Context-dependent
blending is a general methodology to form complex controllers by composing basic behaviors. Basic
behaviors are simple functions on a local state written to satisfy a single goal over a small range of
environments (the context). As such, they are relatively easy to write and to debug — they should
also be easier to learn in the future. Complex behaviors to achieve multiple goals or operate over
wider environmental conditions are composed out of simpler ones by using fuzzy context rules. This
is in general an easy operation if the preconditions of the basic behaviors have been clearly stated.
Interestingly, this compositional methodology can be formally analyzed using the tools of multivalued
logics. In a related work [29], we have shown several properties that link behavior composition to
goal decomposition: for example, we can prove, under certain assumptions, that if two behaviors
individually promote two goals, then their conjunctive blending promotes the conjoint goal in the
conjoint context. Formal groundedness is an important feature of our compositional methodology
to form complex behaviors.

Obviously, our approach also has its problems. Fuzzy behaviors implement a local “greedy”
method, gradient descent, that is highly reactive and simple to compute. Like any local technique,
however, fuzzy behaviors can be trapped in local minima. It is the responsibility of higher-level
intentions to only instantiate behaviors for which gradient descent is appropriate based on some
global analysis, or to monitor execution to detect local minima and failures. In practice, it is not
always easy to find the right contextual condition for a behavior.

A related difficulty in our experience has been that tuning the parameters of the fuzzy rules
may be difficult. Although the decomposition of complex behaviors into simpler ones makes them
simpler to write, some behaviors required many days of experimental debugging. We are currently
exploring the possibility to automatically synthesize basic behaviors from specifications; and the use
of learning techniques to improve a behavior’s performance.

Numerous task-level controllers for managing the activities of mobile robots have been built in
recent years [9, 10, 25, 26, 33], many of which provide services similar to those in Saphira. However,
two aspects of the PRS-Lite controller within Saphira set it apart from other systems. One is that
PRS-Lite builds many key control constructs into the schema language itself, rather than leaving
them implicit in the procedural workings of the controller. The second is its thresholded goal
semantics, which enables task-level blending of fuzzy behaviors.

In our experiences of writing over 50 schemas for a variety of different tasks, the expressiveness
of PRS-Lite has proven to be mostly adequate. However, certain extensions would simplify the
task-control effort. One would be to add a database to provide explicit, declarative representations
of beliefs about the world, thus enabling more general reasoning capabilities. Currently, this state
information is stored in a combination of the Local Perceptual Space and a set of environment
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variables. A more significant change would be to add some limited deliberation to enable selection
among multiple candidate schemas, rather than direct dispatch of a single designated schema. The
database and deliberation capabilities were explicitly excluded from the original system for fear that
their computational overhead might eclipse the limited processing time available for each perceive-
act cycle. Given that there is available cycle time, it would be interesting to modify the system to
be more declarative in this manner.
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