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PwdHash Password Multiplier

@@ in front of passwords 
to protect; or F2

sitePwd = Hash(pwd,domain)

Activate with Alt-P or 
double-click

sitePwd = Hash(username,
pwd, domain)

pwd@@

Prevent phishing attacks



Task Completion Results
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Problem: Transparency

• Unclear to users whether actions successful or not.
– Should be obvious when plugin activated.
– Should be obvious when password protected.

• Users feel that they should be able to know their 
own password.
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Problem: Mental Model

• Users seemed to have misaligned mental models
– Not understand that one needs to put “@@” before 

each password to be protected.

– Think different passwords generated for each session.

– Think successful when were not.

– Not know to click in field before Alt-P.

– Don’t understand what’s happening: “Really, I don’t see 
how my password is safer because of two @’s in front”
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When “Nothing Works”

• Tendency to try all passwords
– A poor security choice – phishing site could collect many 

passwords!
– May make the use of PwdHash or Password Multiplier 

worse than not using any password manager.

• Usability problem leads to security vulnerabilities.
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Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside 
computer memory (stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-

allocated buffer.
– The developer forgets to check that the size of the input 

isn’t larger than the size of the buffer.
– Uh oh.

• “Normal” bad input: crash
• “Adversarial” bad input : take control of execution
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Stack Buffers
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• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• No bounds checking on strcpy()
• If str is longer than 126 bytes
– Program may crash
– Attacker may change program behavior

buf uh oh!



Example: Changing Flags
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• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• Authenticated variable non-zero when user has 
extra privileges

buf authenticated11 ( :-) ! )



Memory Layout

• Text region: Executable code of the program
• Heap: Dynamically allocated data
• Stack: Local variables, function return addresses; 

grows and shrinks as functions are called and 
return
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Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



Stack Buffers

• Suppose	Web	server	contains	this	function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• When	this	function	is	invoked,	a	new	frame	
(activation	record)	is	pushed	onto	the	stack.

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args
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What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations.

strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args
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Executing Attack Code

• Suppose	buffer	contains	attacker-created	string
– For	example,	str points	to	a	string	received	from	the	
network	as	the	URL

• When	function	exits,	code	in	the	buffer	will	be	
executed,	giving	attacker	a	shell	(“shellcode”)
– Root	shell if	the	victim	program	is	setuid root

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the 
buffer appears in the location where the 
system expects to find return address

Caller’s framestr
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