
CSE 564 – Winter 2019

Addendum: Password Manager
User Studies

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

1/17/19 CSE 564 - Winter 2019 2

PwdHash Password Multiplier

@@ in front of passwords
to protect; or F2

sitePwd = Hash(pwd,domain)

Activate with Alt-P or
double-click

sitePwd = Hash(username,
pwd, domain)

pwd@@

Prevent phishing attacks

Task Completion Results

1/17/19 CSE 564 - Winter 2019 3

[Chiasson, van Oorschot, Biddle]

Problem: Transparency

• Unclear to users whether actions successful or not.
– Should be obvious when plugin activated.
– Should be obvious when password protected.

• Users feel that they should be able to know their
own password.

1/17/19 CSE 564 - Winter 2019 4

[Chiasson, van Oorschot, Biddle]

Problem: Mental Model

• Users seemed to have misaligned mental models
– Not understand that one needs to put “@@” before

each password to be protected.

– Think different passwords generated for each session.

– Think successful when were not.

– Not know to click in field before Alt-P.

– Don’t understand what’s happening: “Really, I don’t see
how my password is safer because of two @’s in front”

1/17/19 CSE 564 - Winter 2019 5

[Chiasson, van Oorschot, Biddle]

When “Nothing Works”

• Tendency to try all passwords
– A poor security choice – phishing site could collect many

passwords!
– May make the use of PwdHash or Password Multiplier

worse than not using any password manager.

• Usability problem leads to security vulnerabilities.

1/17/19 CSE 564 - Winter 2019 6

[Chiasson, van Oorschot, Biddle]

CSE 564 – Winter 2019

Buffer Overflows 101

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside
computer memory (stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-

allocated buffer.
– The developer forgets to check that the size of the input

isn’t larger than the size of the buffer.
– Uh oh.

• “Normal” bad input: crash
• “Adversarial” bad input : take control of execution

1/17/19 CSE 564 - Winter 2019 8

Stack Buffers

1/17/19 CSE 564 - Winter 2019 9

• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• No bounds checking on strcpy()
• If str is longer than 126 bytes
– Program may crash
– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

1/17/19 CSE 564 - Winter 2019 10

• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• Authenticated variable non-zero when user has
extra privileges

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program
• Heap: Dynamically allocated data
• Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

1/17/19 CSE 564 - Winter 2019 11

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose	Web	server	contains	this	function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• When	this	function	is	invoked,	a	new	frame	
(activation	record)	is	pushed	onto	the	stack.

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

1/17/19 CSE 564 - Winter 2019 12

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations.

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

1/17/19 CSE 564 - Winter 2019 13

Executing Attack Code

• Suppose	buffer	contains	attacker-created	string
– For	example,	str points	to	a	string	received	from	the	
network	as	the	URL

• When	function	exits,	code	in	the	buffer	will	be	
executed,	giving	attacker	a	shell	(“shellcode”)
– Root	shell if	the	victim	program	is	setuid root

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the
buffer appears in the location where the
system expects to find return address

Caller’s framestr

1/17/19 CSE 564 - Winter 2019 14

