
1

Sending bits over a link
• We’ve talked about signals

representing bits. How, exactly?
– This is the topic of modulation

…1011010110…

Signal

Modulation

2

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

3

Key Channel Properties
• The bandwidth (B), signal strength

(S), and noise strength (N)
– B limits the rate of transitions
– S and N limit how many signal levels

we can distinguish

Bandwidth B Signal S,
Noise N

4

Claude Shannon (1916-2001)
• Father of information theory
– “A Mathematical Theory of

Communication”, 1948

• Fundamental contributions to
digital computers, security,
and communications

Credit: Courtesy MIT Museum

Electromechanical mouse
that “solves” mazes!

CSE 461 University of Washington 5

Shannon Capacity (2)
• Shannon limit is for capacity (C),

the maximum information carrying
rate of the channel:

C = B log2(1 + S/BN) bits/sec

Wired/Wireless Perspective
• Wires, and Fiber
– Engineer link to have requisite SNR and B
→Can fix data rate

• Wireless
– Given B, but SNR varies greatly, e.g., up to 60 dB!
→Can’t design for worst case, must adapt data rate

6

Wired/Wireless Perspective (2)
• Wires, and Fiber
– Engineer link to have requisite SNR and B
→Can fix data rate

• Wireless
– Given B, but SNR varies greatly, e.g., up to 60 dB!
→Can’t design for worst case, must adapt data rate

7

Engineer SNR for data rate

Adapt data rate to SNR

Putting it all together – DSL
• DSL (Digital Subscriber Line) is widely used for

broadband; many variants offer 10s of Mbps
– Reuses twisted pair telephone line to the home; it has up to

~2 MHz of bandwidth but uses only the lowest ~4 kHz

8

DSL (2)
• DSL uses passband modulation (called OFDM)
– Separate bands for upstream and downstream (larger)
– Modulation varies both amplitude and phase (called QAM)
– High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

9

Upstream Downstream

26 – 138
kHz

0-4
kHz 143 kHz to 1.1 MHz

Telephone

Freq.

Voice Up to 1 Mbps Up to 12 Mbps

ADSL2:

10

Error Correction and Detections
• Some bits will be received in error due

to noise. What can we do?
– Detect errors with codes »
– Correct errors with codes »
– Retransmit lost frames

• Reliability is a concern that cuts
across the layers – we’ll see it again

11

Approach – Add Redundancy
• Error detection codes

– Add check bits to the message bits to let
some errors be detected

• Error correction codes
– Add more check bits to let some errors be

corrected

• Key issue is now to structure the code
to detect many errors with few check
bits and modest computation

12

Error detection codes
• Some bits may be received in error

due to noise. How do we detect this?
– Parity »
– Checksums »
– CRCs »

• Detection will let us fix the error, for
example, by retransmission (later).

13

Simple Error Detection – Parity Bit
• Take D data bits, add 1 check bit

that is the sum of the D bits
– Sum is modulo 2 or XOR

14

Parity Bit (2)
• How well does parity work?
– What is the distance of the code?

– How many errors will it detect/correct?

• What about larger errors?

15

Checksums
• Idea: sum up data in N-bit words
– Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity

1500 bytes 16 bits

16

Internet Checksum
• Sum is defined in 1s complement

arithmetic (must add back carries)
– And it’s the negative sum

• “The checksum field is the 16 bit one's
complement of the one's complement
sum of all 16 bit words …” – RFC 791

17

Internet Checksum (2)
Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

18

Internet Checksum (3)
Sending:

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

19

Internet Checksum (4)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd
+ 2

ffff

0000

20

Internet Checksum (5)
Receiving:

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is 0

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd
+ 2

ffff

0000

21

Internet Checksum (6)
• How well does the checksum work?
– What is the distance of the code?
– How many errors will it detect/correct?

• What about larger errors?

22

Cyclic Redundancy Check (CRC)
• Even stronger protection
– Given n data bits, generate k check

bits such that the n+k bits are evenly
divisible by a generator C

• Example with numbers:
– n = 302, k = one digit, C = 3

23

CRCs (2)
• The catch:
– It’s based on mathematics of finite

fields, in which “numbers”
represent polynomials

– e.g, 10011010 is x7 + x4 + x3 + x1

• What this means:
– We work with binary values and

operate using modulo 2 arithmetic

24

CRCs (3)
• Send Procedure:
1. Extend the n data bits with k zeros
2. Divide by the generator value C
3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

• Receive Procedure:
1. Divide and check for zero remainder

CRCs (4)

25

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4

1 0 0 1 1 1 1 0 1 0 1 1 1 1 1

CRCs (5)

26

27

CRCs (6)
• Protection depend on generator
– Standard CRC-32 is 10000010

01100000 10001110 110110111

• Properties:
– HD=4, detects up to triple bit errors
– Also odd number of errors
– And bursts of up to k bits in error
– Not vulnerable to systematic errors

like checksums

28

Error Detection in Practice
• CRCs are widely used on links
– Ethernet, 802.11, ADSL, Cable …

• Checksum used in Internet
– TCP, UDP … but it is weak

• Parity
– Is little used

29

Motivating Example
• A simple code to handle errors:

– Send two copies! Error if different.

• How good is this code?
– How many errors can it detect/correct?
– How many errors will make it fail?

30

Motivating Example (2)
• We want to handle more errors

with less overhead
– Will look at better codes; they are

applied mathematics
– But, they can’t handle all errors
– And they focus on accidental errors

(will look at secure hashes later)

31

Using Error Codes
• Codeword consists of D data plus R

check bits (=systematic block code)

• Sender:
– Compute R check bits based on the D data

bits; send the codeword of D+R bits

D R=fn(D)
Data bits Check bits

32

Using Error Codes (2)
• Receiver:
– Receive D+R bits with unknown errors
– Recompute R check bits based on the

D data bits; error if R doesn’t match R’

D R’
Data bits Check bits

R=fn(D)
=?

33

Intuition for Error Codes
• For D data bits, R check bits:

• Randomly chosen codeword is unlikely
to be correct; overhead is low

All
codewords

Correct
codewords

34

R.W. Hamming (1915-1998)
• Much early work on codes:
– “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

• See also:
– “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

35

Hamming Distance
• Distance is the number of bit flips

needed to change D1 to D2

• Hamming distance of a code is the
minimum distance between any
pair of codewords

36

Hamming Distance (2)
• Error detection:
– For a code of distance d+1, up to d

errors will always be detected

37

Hamming Distance (3)
• Error correction:
– For a code of distance 2d+1, up to d

errors can always be corrected by
mapping to the closest codeword

38

ARQ
• ARQ often used when errors are

common or must be corrected
– E.g., WiFi, and TCP (later)

• Rules at sender and receiver:
– Receiver automatically acknowledges

correct frames with an ACK
– Sender automatically resends after a

timeout, until an ACK is received

39

ARQ (2)
• Normal operation (no loss)

Frame

ACK
Timeout Time

Sender Receiver

40

ARQ (3)
• Loss and retransmission

Frame

Timeout Time

Sender Receiver

Frame

ACK

X

41

So What’s Tricky About ARQ?
• Two non-trivial issues:
– How long to set the timeout? »
– How to avoid accepting duplicate

frames as new frames »

• Want performance in the common
case and correctness always

42

Timeouts
• Timeout should be:
– Not too big (link goes idle)
– Not too small (spurious resend)

• Fairly easy on a LAN
– Clear worst case, little variation

• Fairly difficult over the Internet
– Much variation, no obvious bound
– We’ll revisit this with TCP (later)

43

Duplicates
• What happens if an ACK is lost?

X

Frame

ACKTimeout

Sender Receiver

44

Duplicates (2)
• What happens if an ACK is lost?

Frame

ACK

X

Frame

ACKTimeout

Sender Receiver

New
Frame??

45

Duplicates (3)
• Or the timeout is early?

ACK

Frame

Timeout

Sender Receiver

46

Duplicates (4)
• Or the timeout is early?

Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New
Frame??

47

Sequence Numbers
• Frames and ACKs must both carry

sequence numbers for correctness

• To distinguish the current frame
from the next one, a single bit (two
numbers) is sufficient
– Called Stop-and-Wait

48

Stop-and-Wait
• In the normal case:

Time

Sender Receiver

49

Stop-and-Wait (2)
• In the normal case:

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

50

Stop-and-Wait (3)
• With ACK loss:

X

Frame 0

ACK 0Timeout

Sender Receiver

51

Stop-and-Wait (4)
• With ACK loss:

Frame 0

ACK 0

X

Frame 0

ACK 0Timeout

Sender Receiver

It’s a
Resend!

52

Stop-and-Wait (5)
• With early timeout:

ACK 0

Frame 0

Timeout

Sender Receiver

53

Stop-and-Wait (6)
• With early timeout:

Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …

54

Limitation of Stop-and-Wait
• It allows only a single frame to be

outstanding from the sender:
– Good for LAN, not efficient for high BD

• Ex: R=1 Mbps, D = 50 ms
– How many frames/sec? If R=10 Mbps?

55

Sliding Window
• Generalization of stop-and-wait
– Allows W frames to be outstanding
– Can send W frames per RTT (=2D)

– Various options for numbering
frames/ACKs and handling loss
• Will look at along with TCP (later)

Multiple devices?
• Multiplexing is the network word

for the sharing of a resource

• Classic scenario is sharing a link
among different users
– Time Division Multiplexing (TDM) »
– Frequency Division Multiplexing

(FDM) »

56

Time Division Multiplexing (TDM)

• Users take turns on a fixed schedule

57

2 2 2 2

Frequency Division Multiplexing (FDM)
• Put different users on different frequency bands

58

Overall FDM channel

59

TDM versus FDM
• In TDM a user sends at a high rate a

fraction of the time; in FDM, a user
sends at a low rate all the time

Rate

Time
FDM

TDM

60

TDM versus FDM (2)
• In TDM a user sends at a high rate a

fraction of the time; in FDM, a user
sends at a low rate all the time

Rate

Time
FDM

TDM

61

TDM/FDM Usage
• Statically divide a resource
– Suited for continuous traffic, fixed

number of users

• Widely used in telecommunications
– TV and radio stations (FDM)
– GSM (2G cellular) allocates calls using

TDM within FDM

62

Multiplexing Network Traffic
• Network traffic is bursty

– ON/OFF sources
– Load varies greatly over time

Rate

Time
Rate

Time

63

Multiplexing Network Traffic (2)
• Network traffic is bursty
– Inefficient to always allocate user

their ON needs with TDM/FDM

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (3)
• Multiple access schemes multiplex users according to

their demands – for gains of statistical multiplexing

64

Rate

Time
Rate

Time

Rate

Time

R

R

R’<2R

Two users, each need R Together they need R’ < 2R

65

Multiple Access
• We will look at two kinds of multiple

access protocols
1. Randomized. Nodes randomize their

resource access attempts
– Good for low load situations

2. Contention-free. Nodes order their
resource access attempts
– Good for high load or guaranteed

quality of service situations

66

Random MAC
• We will explore random multiple

access control (MAC) protocols
– This is the basis for classic Ethernet
– Remember: data traffic is bursty

Zzzz..Busy! Ho hum

67

ALOHA Network
• Seminal computer network

connecting the Hawaiian
islands in the late 1960s
– When should nodes send?
– A new protocol was devised

by Norm Abramson …

Hawaii

68

ALOHA Protocol
• Simple idea:
– Node just sends when it has traffic.
– If there was a collision (no ACK

received) then wait a random time
and resend

• That’s it!

69

ALOHA Protocol (2)
• Some frames will

be lost, but many
may get through…

• Good idea?

70

ALOHA Protocol (3)
• Simple, decentralized protocol that

works well under low load!

• Not efficient under high load
– Analysis shows at most 18% efficiency
– Improvement: divide time into slots

and efficiency goes up to 36%

• We’ll look at other improvements

71

Classic Ethernet
• ALOHA inspired Bob Metcalfe to

invent Ethernet for LANs in 1973
– Nodes share 10 Mbps coaxial cable
– Hugely popular in 1980s, 1990s

: © 2009 IEEE

72

CSMA (Carrier Sense Multiple Access)

• Improve ALOHA by listening for
activity before we send (Doh!)
– Can do easily with wires, not wireless

• So does this eliminate collisions?
– Why or why not?

73

CSMA (2)
• Still possible to listen and hear

nothing when another node is
sending because of delay

74

CSMA (3)
• CSMA is a good defense against

collisions only when BD is small

X

75

CSMA/CD (with Collision Detection)
• Can reduce the cost of collisions by

detecting them and aborting (Jam)
the rest of the frame time
– Again, we can do this with wires

X X X X X X X XJam! Jam!

76

CSMA/CD Complications
• Want everyone who collides to

know that it happened
– Time window in which a node may

hear of a collision is 2D seconds

X

77

CSMA “Persistence”
• What should a node do if another

node is sending?

• Idea: Wait until it is done, and send

What now?

78

CSMA “Persistence” (2)
• Problem is that multiple waiting

nodes will queue up then collide
– More load, more of a problem

Now! Now!Uh oh

79

CSMA “Persistence” (3)
• Intuition for a better solution
– If there are N queued senders, we

want each to send next with
probability 1/N

Send p=½WhewSend p=½

80

Binary Exponential Backoff (BEB)
• Cleverly estimates the probability

– 1st collision, wait 0 or 1 frame times
– 2nd collision, wait from 0 to 3 times
– 3rd collision, wait from 0 to 7 times …

• BEB doubles interval for each
successive collision
– Quickly gets large enough to work
– Very efficient in practice

Classic Ethernet, or IEEE 802.3
• Most popular LAN of the 1980s, 1990s
– 10 Mbps over shared coaxial cable, with baseband signals
– Multiple access with “1-persistent CSMA/CD with BEB”

81

82

Modern Ethernet
• Based on switches, not multiple

access, but still called Ethernet
– We’ll get to it in a later segment

Switch

Twisted pair
Switch ports

83

Wireless Complications
• Wireless is more complicated than

the wired case (Surprise!)
1. Nodes may have different areas of

coverage – doesn’t fit Carrier Sense »
2. Nodes can’t hear while sending –

can’t Collision Detect »

≠ CSMA/CD

84

Different Coverage Areas
• Wireless signal is broadcast and

received nearby, where there is
sufficient SNR

Hidden Terminals
• Nodes A and C are hidden terminals when sending to B
– Can’t hear each other (to coordinate) yet collide at B
– We want to avoid the inefficiency of collisions

85

Exposed Terminals
• B and C are exposed terminals when sending to A and D
– Can hear each other yet don’t collide at receivers A and D
– We want to send concurrently to increase performance

86

87

Nodes Can’t Hear While Sending
• With wires, detecting collisions

(and aborting) lowers their cost
• More wasted time with wireless

Time XXXXXXXXX

XXXXXXXXX

Wireless
Collision

ResendX

X

Wired
Collision

Resend

Possible Solution: MACA
• MACA uses a short handshake instead of CSMA (Karn, 1990)

– 802.11 uses a refinement of MACA (later)

• Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)
2. The receiver replies with a CTS (Clear-To-Send, with frame length)
3. Sender transmits the frame while nodes hearing the CTS stay silent
– Collisions on the RTS/CTS are still possible, but less likely

88

89

MACA – Hidden Terminals

• AàB with hidden terminal C
1. A sends RTS, to B

DCBA

90

MACA – Hidden Terminals (2)

• AàB with hidden terminal C
2. B sends CTS, to A, and C too

DCBA
RTS

91

MACA – Hidden Terminals (3)

• AàB with hidden terminal C
2. B sends CTS, to A, and C too

DCBA
RTS

CTSCTS

Alert!

92

MACA – Hidden Terminals (4)

• AàB with hidden terminal C
3. A sends frame while C defers

Frame
Quiet...

93

MACA – Exposed Terminals
• BàA, CàD as exposed terminals
– B and C send RTS to A and D

DCBA

94

MACA – Exposed Terminals (2)
• BàA, CàD as exposed terminals
– A and D send CTS to B and C

DCBA
RTSRTS

95

MACA – Exposed Terminals (3)
• BàA, CàD as exposed terminals
– A and D send CTS to B and C

DCBA
RTSRTS

CTSCTS

All OKAll OK

96

MACA – Exposed Terminals (4)
• BàA, CàD as exposed terminals
– A and D send CTS to B and C

DCBA
FrameFrame

97

802.11, or WiFi
• Very popular wireless LAN

started in the 1990s
• Clients get connectivity from a

(wired) AP (Access Point)
• It’s a multi-access problem J
• Various flavors have been

developed over time
– Faster, more features

Access
Point

Client

To Network

98

802.11 Physical Layer
• Uses 20/40 MHz channels on ISM bands

– 802.11b/g/n on 2.4 GHz
– 802.11 a/n on 5 GHz

• OFDM modulation (except legacy 802.11b)
– Different amplitudes/phases for varying SNRs
– Rates from 6 to 54 Mbps plus error correction
– 802.11n uses multiple antennas; see “802.11

with Multiple Antennas for Dummies”

802.11 CSMA/CA for Multiple Access
• Sender avoids collisions by inserting small random gaps
– E.g., when both B and C send, C picks a smaller gap, goes first

CSE 461 University of Washington 99

Time

Send?

Send?

