Sending bits over a link

* We've talked about signals
representing bits. How, exactly?
— This is the topic of modulation

Signal~
10110... ..10110




Modulation

NRZ signal of bits
Amplitude shift keying
Frequency shift keying
Phase shift keying



Key Channel Properties

* The bandwidth (B), signal strength
(S), and noise strength (N)
— B limits the rate of transitions

— S and N limit how many signal levels
we can distinguish

D Bandwidth B Signal S,
Noise N



Claude Shannon (1916-2001)

* Father of information theory

— “A Mathematical Theory of
Communication”, 1948
* Fundamental contributions to
digital computers, security,
and communications

Electromechanical mouse
that “solves” mazes!

Credit: Courtesy MIT Museum



Shannon Capacity (2)

* Shannon limit is for capacity (C),
the maximum information carrying
rate of the channel:

C =B log,(1 + S/BN) bits/sec

CSE 461 University of Washington



Wired/Wireless Perspective

* Wires, and Fiber

— Engineer link to have requisite SNR and B
—Can fix data rate

* Wireless
— Given B, but SNR varies greatly, e.g., up to 60 dB!
—Can’t design for worst case, must adapt data rate



Wired/Wireless Perspective (2)

* Wires, and Fiber Engineer SNR for data rate

— Engineer link to have requisite SNR and B
—Can fix data rate

* Wireless Adapt data rate to SNR
— Given B, but SNR varies greatly, e.g., up to 60 dB!
—Can’t design for worst case, must adapt data rate




Putting it all together — DSL

* DSL (Digital Subscriber Line) is widely used for
broadband; many variants offer 10s of Mbps

— Reuses twisted pair telephone line to the home; it has up to
~2 MHz of bandwidth but uses only the lowest ~4 kHz
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DSL (2)

* DSL uses passband modulation (called OFDM)
— Separate bands for upstream and downstream (larger)
— Modulation varies both amplitude and phase (called QAM)
— High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

Voice Up to 1 Mbps Up to 12 Mbps
ADSL2: 0-4 26 — 138
kHz| _Fred.. KMz 143 kHz to 1.1 MHz

Telephone Upstream Downstream



Error Correction and Detections

* Some bits will be received in error due
to noise. What can we do?

— Detect errors with codes »
— Correct errors with codes »
— Retransmit lost frames

* Reliability is a concern that cuts
across the layers — we’ll see it again
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Approach — Add Redundancy

Error detection codes

— Add check bits to the message bits to let
some errors be detected

Error correction codes

— Add more check bits to let some errors be
corrected

Key issue is now to structure the code
to detect many errors with few check
bits and modest computation
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Error detection codes

* Some bits may be received in error
due to noise. How do we detect this?

— Parity »
— Checksums »
— CRGCs »

* Detection will let us fix the error, for
example, by retransmission (later).
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Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit
that is the sum of the D bits
— Sum is modulo 2 or XOR
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Parity Bit (2)

* How well does parity work?
— What is the distance of the code?

— How many errors will it detect/correct?

 What about larger errors?
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Checksums

ldea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes

16 bits

Stronger protection than parity
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Internet Checksum

* Sum is defined in 1s complement
arithmetic (must add back carries)
— And it’s the negative sum

* “The checksum field is the 16 bit one's

complement of the one's complement
sum of all 16 bit words ...” — RFC 791
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Internet Checksum (2)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
£203
f4£f5
f6£7
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Internet Checksum (3)

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
£203
f4£f5
f6£7

+(0000)
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Internet Checksum (4)

Receiving:
1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O

0001
£203
f4f5
f6£7
+ 220d
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Internet Checksum (5)

T 0001
Recelving: £203

£4£f5
f6£7
+ 220d

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O 00%0

20



Internet Checksum (6)

e How well does the checksum work?

— What is the distance of the code?
— How many errors will it detect/correct?

 What about larger errors?
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Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check
bits such that the n+k bits are evenly
divisible by a generator C

* Example with numbers:

— n=302, k=one digit, C=3
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CRCs (2)

* The catch:

— It’s based on mathematics of finite
fields, in which “numbers”
represent polynomials

— e.g, 10011010 is x” +x* +x3 + x!

* What this means:

— We work with binary values and
operate using modulo 2 arithmetic



CRCs (3)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

> w N e

e Receive Procedure:
1. Divide and check for zero remainder



Data bits:
1101011111

Check bits:
C(x)=x*+x1+1
C=10011
k=4

CRCs (4)

100111101011111
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CRCs (5)

1 0 =— Quotient (thrown away)

Aot D 105D 01

1 0 = Remainder

||||||||||||||||| ma—ameme O~ =[O O(0O
||||||||||||||||||| - = O~ 000000

170 0 0 0 =— Frame with four zeros appended

b kR L LLC L map— O™ O|™ O~ O~ «~
T e = Q| O~ O™ Of

T mm———— i Qe Qv Q| O] v

— =0 OO0 00000

O |+ 0 Q00|00

- |0 Ol0C OO0 O

O O00|00

-0 -

-,
—

-

00

1 0 0 1 0 =— Frame with four zeros appended

1 1

1 1

150550

Transmitted frame:

minus remainder
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CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 10000010
01100000 10001110 110110111

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors
like checksums



Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

* Checksum used in Internet
— TCP, UDP ... but it is weak

* Parity
— Is little used
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Motivating Example

* Asimple code to handle errors:

— Send two copies! Error if different.

* How good is this code?
— How many errors can it detect/correct?

— How many errors will make it fail?
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Motivating Example (2)

e We want to handle more errors
with less overhead

— Will look at better codes; they are
applied mathematics

— But, they can’t handle all errors

— And they focus on accidental errors
(will look at secure hashes later)
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Using Error Codes

* Codeword consists of D data plus R
check bits (=systematic block code)

Data bits Check bits

D

R=fn(D)

 Sender:

—>

— Compute R check bits based on the D data
bits; send the codeword of D+R bits
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Using Error Codes (2)

e Receiver:

— Receive D+R bits with unknown errors

— Recompute R check bits based on the
D data bits; error if R doesn’t match R’

Data bits Check bits
—> D R’
N

R=fn(D) I

32



Intuition for Error Codes
* For D data bits, R check bits:

All —s/ I
codewords
Correct———0O
codewords _ J

* Randomly chosen codeword is unlikely
to be correct; overhead is low



R.W. Hamming (1915-1998)

* Much early work on codes:

— “Error Detecting and Error Correcting
Codes”, BSTJ, 1950

 See also:

— “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE
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Hamming Distance

* Distance is the number of bit flips
needed to change D, to D,

* Hamming distance of a code is the
minimum distance between any
pair of codewords
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Hamming Distance (2)

* Error detection:

— For a code of distance d+1, up to d
errors will always be detected
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Hamming Distance (3)

Error correction:

— For a code of distance 2d+1, up to d
errors can always be corrected by
mapping to the closest codeword
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ARQ

 ARQ often used when errors are
common or must be corrected

— E.g., WiFi, and TCP (later)

* Rules at sender and receiver:

— Receiver automatically acknowledges
correct frames with an ACK

— Sender automatically resends after a
timeout, until an ACK is received



ARQ (2)

 Normal operation (no loss)

Sender

Timeout

A/CK

Receiver

Time

|
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ARQ (3)

* Loss and retransmission

Sender

Timeout

‘%

Receiver

Time

|
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So What's Tricky About ARQ?

e Two non-trivial issues:

— How long to set the timeout? »

— How to avoid accepting duplicate
frames as new frames »

* Want performance in the common
case and correctness always

41



Timeouts

* Timeout should be:
— Not too big (link goes idle)
— Not too small (spurious resend)

* Fairly easy on a LAN
— Clear worst case, little variation
* Fairly difficult over the Internet

— Much variation, no obvious bound
— We'll revisit this with TCP (later)



Duplicates
* What happens if an ACK is lost?

Sender Receiver

Timeout %
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Duplicates (2)
* What happens if an ACK is lost?

Sender Receiver

Timeout %

Frame
ACK




Duplicates (3)
* Orthe timeout is early?

Sender Receiver

Timeout y/
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Duplicates (4)
* Orthe timeout is early?

Sender Receiver

Timeout P{
Frameé New

/ Frame??
ACK




Sequence Numbers

* Frames and ACKs must both carry
sequence numbers for correctness

* To distinguish the current frame
from the next one, a single bit (two
numbers) is sufficient

— Called Stop-and-Wait

47



Stop-and-Wait

* |In the normal case:

Sender Receiver

Time

|
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Stop-and-Wait (2)

* |In the normal case:

Sender Receiver

Timeout ACK Time

o
%




Stop-and-Wait (3)
* With ACK loss:

Sender Receiver

Timeout %
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Stop-and-Wait (4)
* With ACK loss:

Sender Receiver

Timeout %

Frame O
\ It’s a
/ Resend!

ACKO




Stop-and-Wait (5)

* With early timeout:

Sender Receiver

Timeout

ACK
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Stop-and-Wait (6)

* With early timeout:

Sender

Timeout

OK ...

ACK

Frame

ACK O

Receiver

It’s a
Resend
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Limitation of Stop-and-Wait

* It allows only a single frame to be
outstanding from the sender:

— Good for LAN, not efficient for high BD
]

i

L]
* Ex: R=1 Mbps, D =50 ms

— How many frames/sec? If R=10 Mbps?

54



Sliding Window

* Generalization of stop

-and-wait

— Allows W frames to be outstanding

— Can send W frames pe

AR

r RTT (=2D)

—

— Various options for numbering
frames/ACKs and handling loss
* Will look at along with TCP (later)
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Multiple devices?

* Multiplexing is the network word
for the sharing of a resource

* Classic scenario is sharing a link
among different users

— Time Division Multiplexing (TDM) »

— Frequency Division Multiplexing
(FDM) »

56



Time Division Multiplexing (TDM)

e Users take turns on a fixed schedule

1 e

Round-robin
2 TDMmux_>2132132_’
3 —wnn kGuardtime
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Frequency Division Multiplexing (FDM)

e Put different users on different frequency bands

Channel 1

1+ \
[ \-LLA |
|
r; | ‘
5 " Channel 2
E Cha 12 \ Channel 1 Channel 3
x| \
s S —
N/ )\ AL
£ =1 [ Y '
< f 60 64 68 72
Channel 3 '. Frequency (kHz)
“ [/
B I _/ Overall FDM channel
300 3100 60 64 68 12
Frequency (Hz) Frequency (kHz)
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TDM versus FDM

* In TDM a user sends at a high rate a
fraction of the time; in FDM, a user
sends at a low rate all the time

Rate TDM

N

A Time

FDM

A 4
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TDM versus FDM (2)

* In TDM a user sends at a high rate a
fraction of the time; in FDM, a user

Sen

ds at a low rate all the time

Rate TDM

A

N

1

\ Time

FDM

N
Cd
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TDM/FDM Usage

 Statically divide a resource

— Suited for continuous traffic, fixed
number of users

* Widely used in telecommunications

— TV and radio stations (FDM)

— GSM (2G cellular) allocates calls using
TDM within FDM

61



Multiplexing Network Traffic

e Network traffic is bursty

— ON/OFF sources
— Load varies greatly over time

>Time

s[ime
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Multiplexing Network Traffic (2)

e Network traffic is bursty

— Inefficient to always allocate user
their ON needs with TDM/FDM

63



Multiplexing Network Traffic (3)

* Multiple access schemes multiplex users according to
their demands — for gains of statistical multiplexing

Two users, each need R Together they need R’ < 2R

64



Multiple Access

* We will look at two kinds of multiple
access protocols

1. Randomized. Nodes randomize their
resource access attempts
—  Good for low load situations
2. Contention-free. Nodes order their
resource access attempts

—  Good for high load or guaranteed
quality of service situations

65



Random MAC

* We will explore random multiple
access control (MAC) protocols
— This is the basis for classic Ethernet

— Remember: data traffic is bursty

== == ==/
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ALOHA Network

* Seminal computer network @
P

connecting the Hawaiian &
islands in the late 1960s QN
©

®
— When should nodes send?

Hawaii °
— A new protocol was devised ©)
by Norm Abramson ...

67



ALOHA Protocol

* Simple idea:
— Node just sends when it has traffic.

— If there was a collision (no ACK
received) then wait a random time
and resend

e That’s it!

68



ALOHA Protocol (2)

e Some frames will  User

be lost, but many *
may get through... ° |
© o L] L
D [ Co L
* Good idea? e I
CoIIision\_E,—»! Time — L—‘Q:_Eollision
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ALOHA Protocol (3)

* Simple, decentralized protocol that
works well under low load!

* Not efficient under high load
— Analysis shows at most 18% efficiency

— Improvement: divide time into slots
and efficiency goes up to 36%

* We'll look at other improvements
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Classic Ethernet

* ALOHA inspired Bob Metcalfe to
invent Ethernet for LANs in 1973
— Nodes share 10 Mbps coaxial cable

— Hugely popular in 1980s, 1990s

N

: © 2009 IEEE
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CSMA (Carrier Sense Multiple Access)

* Improve ALOHA by listening for
activity before we send (Doh!)

— Can do easily with wires, not wireless

 So does this eliminate collisions?
— Why or why not?
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CSMA (2)

 Still possible to listen and hear
nothing when another node is
sending because of delay

73



CSMA (3)

* CSMA is a good defense against
collisions only when BD is small
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CSMA/CD (with Collision Detection)

* Can reduce the cost of collisions by
detecting them and aborting (Jam)
the rest of the frame time

— Again, we can do this with wires

XXX XX X XX ;@]
| |

==/ ==/ ==/
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CSMA/CD Complications

* Want everyone who collides to
know that it happened

— Time window in which a node may
hear of a collision is 2D seconds

> X <«
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CSMA “Persistence”

 What should a node do if another
node is sending?

|What now?l
b
I | |1J

==/ ==/

* |dea: Wait until it is done, and send
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CSMA “Persistence” (2)

* Problem is that multiple waiting
nodes will queue up then collide
— More load, more of a problem

==/ ==/ ==/
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CSMA “Persistence” (3)

* |ntuition for a better solution

— |If there are N queued senders, we

want each to send next with
probability 1/N

= == ==
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Binary Exponential Backoff (BEB)

* Cleverly estimates the probability
— 1st collision, wait 0 or 1 frame times
— 2nd collision, wait from 0 to 3 times
— 3rd collision, wait from 0 to 7 times ...

* BEB doubles interval for each
successive collision
— Quickly gets large enough to work
— Very efficient in practice

80



Classic Ethernet, or IEEE 802.3

* Most popular LAN of the 1980s, 1990s

— 10 Mbps over shared coaxial cable, with baseband signals
— Multiple access with “1-persistent CSMA/CD with BEB”

—/— =
Transceiver

— W

Interface
cable

= =
= = = = =
er E E E E E
= b= = = =
= = = b =
= b b b =
= & & = &
7 < < < < < o
\




Modern Ethernet

* Based on switches, not multiple
access, but still called Ethernet
— We'll get to it in a later segment

Switch —

g;/ i
/ HHH.\ Switch ports

Twisted pair




Wireless Complications

* Wireless is more complicated than
the wired case (Surprise!)

1. Nodes may have different areas of
coverage — doesn’t fit Carrier Sense »

2. Nodes can’t hear while sending —
can’t Collision Detect »

7 N\

# CSMA/CD




Different Coverage Areas

* Wireless signal is broadcast and
received nearby, where there is

sufficient SNR
M; M/
— | B |— D
/ t;“\ y4 1;

-

Radio range
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Hidden Terminals

* Nodes A and C are hidden terminals when sending to B

— Can’t hear each other (to coordinate) yet collide at B
— We want to avoid the inefficiency of collisions

w M;
/1;\ /p\
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Exposed Terminals

* Band C are exposed terminals when sending to Aand D

— Can hear each other yet don’t collide at receivers A and D
— We want to send concurrently to increase performance

M; w
/@ /g\
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Nodes Can’t Hear While Sending

* With wires, detecting collisions
(and aborting) lowers their cost

* More wasted time with wireless

Wired
Collision

X
X

Resend

Time

Wireless
Collision

XXXXXXXXX

Resend

XXXXXXXXX
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Possible Solution: MACA

 MACA uses a short handshake instead of CSMA (Karn, 1990)
— 802.11 uses a refinement of MACA (later)

* Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)
3. Sender transmits the frame while nodes hearing the CTS stay silent
— Collisions on the RTS/CTS are still possible, but less likely
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MACA — Hidden Terminals

« A—>B with hidden terminal C
1. AsendsRTS, toB
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MACA — Hidden Terminals (2)

 A—2>B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS
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MACA — Hidden Terminals (3)

 A—2>B with hidden terminal C
2. Bsends CTS, to A, and C too

RTS l‘ulull

A B C D
CTS CTS




MACA — Hidden Terminals (4)

 A->B with hidden terminal C

3. A sends frame while C defers

w Quet.

|:
rame B [c D

/g\




MACA — Exposed Terminals

« B2>A, C=>D as exposed terminals
—Band Csend RTSto Aand D
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MACA — Exposed Terminals (2)

« B2>A, C=>D as exposed terminals
— Aand Dsend CTSto Band C

RTS RTS




MACA — Exposed Terminals (3)

« B2>A, C=>D as exposed terminals
— Aand Dsend CTSto Band C

RTS s

A B
CTS

S



MACA — Exposed Terminals (4)

« B2>A, C=>D as exposed terminals
— Aand Dsend CTSto Band C

Frame Frame
D




802.11, or WiFi

Very popular wireless LAN To Network
started in the 1990s

Clients get connectivity from a
(wired) AP (Access Point)

It’s a multi-access problem ©

Various flavors have been
developed over time
— Faster, more features

97



802.11 Physical Layer

e Uses 20/40 MHz channels on ISM bands

— 802.11b/g/n on 2.4 GHz
— 802.11 a/non 5 GHz

* OFDM modulation (except legacy 802.11b)
— Different amplitudes/phases for varying SNRs
— Rates from 6 to 54 Mbps plus error correction

— 802.11n uses multiple antennas; see “802.11
with Multiple Antennas for Dummies”
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802.11 CSMA/CA for Multiple Access

e Sender avoids collisions by inserting small random gaps
— E.g., when both B and C send, C picks a smaller gap, goes first

Station (A sends to D i D acks A

A | Data || Ack
:
a B ready to send | B sends to D D acks B
' | ¥ ¥
B ' ! | Data || Ack |
A g\ Y ™Y
Wait for idle :Backoff Wait for idle I Rest of backoff
C ready to Send : (C SendS to D '/‘| D aCkS C
|
c { | [ Data |[ Ack Time
S —>

Wait for idle Backoff

CSE 461 University of Washington 99



