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Waves made this possible
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Equation of waves in time and space




Temporal variation of the wave’s amplitude



Equation of waves in time and space




Frequency, Amplitude, and Phase




Frequency, Amplitude, and Phase

f cycles per second

21 angles per cycle Time



Frequency, Amplitude, and Phase

2w angles per cycle
f cycles per second One full cycle in T seconds

i.e.,f =%

time =t second

Y(t) = A.sin(6(t))

2T
= A.sin(2rft) = A.sin(? t)












Equation of waves in time and space




Equation of waves in time and space

Amplitude here \/

is a delayed version of
the amplitude here.
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Equation of waves in time and space
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Y(t) = A.sin(2nft) = A.sin(T t)



Equation of waves in time and space

Amplitude here \/

[\ [
The delay depends

ﬁ on the distance.

is a delayed version of
the amplitude here.

Y(t, x) = A.sin(2rft — 0(x))

Why is this negative?



Equation of waves in time and space
wavelength = A

Y(t, x) = A.sin(2rft — 0(x))



Equation of waves in time and space

wavelength = A

f number of cycles per second

C meters of distance per second
(speed of the wave)

distance per cycle =A=C/ f
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Equation of waves in time and space

f number of cycles per second

C meters of distance per second
(speed of the wave)

distance per cycle =A=C/ f

2t radians of angle is covered per cycle

2T

Tradians of angle is covered per unit distance




Equation of waves in time and space
wavelength = A

P(t, x) = A.sin(2nft — 6(x))

2T
= A.sin(2nft — Tx)
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Presenting real signal with the complex model

7‘( eJ 2t = cos(2mft) +j sin(2mft)
7‘( e’ 2mit = cos(2mtft) — j sin(2tft)

\ o) 2t o oj 2mft
T cos(2mft) =

2

\ o) 2mft _ o 2mt
7 sin(2nft) =

2



Equation of waves in time and space
wavelength = A

distance from the source (x)

2T
Y(t, X)= A.sin(2nft — Tx)



Equation of waves in time and space
wavelength = A

2
Wit x) = A e Crft=50)



Cycles per sec = frequency = f Hz
Distance per cycle = wavelength = A meters

Distance per second = speed = C meters/sec

C=f.2A

Speed of sound in air: 343 m/s
Speed of sound in water: 1493 m/s
Speed of sound in iron: 5130 m/s

Speed of electromagnetic waves: 3108 m/s
(~ a million times faster than sound)
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Time and space
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Reflection of waves
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C.(t2-t1) = 2d LJP{L*J
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Echolocation in nature

Echolocation

Bat



Echolocation in nature

Beluga whale



Waves for gesture detection [Project Soli]




LiDAR (Light Detection and Ranging)




m e Bt TS s " e oa it
|l‘ E o' —_— o8 - - F'-""-“F"'F'r . b
‘ .:’..-‘ ‘.E-:::ilhl--:“:—::. g -u:_f-'r " o |:: .¢ = s




Acoustic Imaging



Acoustic imaging

Sonogram



Acoustic imaging

Sonogram



Multipath
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Multipath: Convolution
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Multipath: Convolution
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Multipath: Convolution
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Multipath: Convolution
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Multipath: Convolution
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Impulse response
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Linear Time Invariant (LTI) System
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Impulse response

------- SYSTEM TEID Al  Impulse Response



Impulse response
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Convolution operator: Definition

30’) = 2K()XL(D



Convolution operator: Properties

Commutative ?CC“)* 4(‘.) = 4(".)’* XG’)



Convolution operator
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A simple acoustic ranging technique

BeepBeep — SenSys 2007/




Device A Device B



Device A Device B



Time =t1 Time =t2

Device A Device B



Bluetooth/WiFi

Device B



Bluetooth/WiFi

Device B

d=C. (t2-t1)
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Problem: Clock synchronizatidn

Device A Device B

d=C. (t2-t1)



The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty

time



The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty
* Sending uncertainty

time



Sound production and recording




Sound recording with microphone




Sound recording with microphone

Analog signal (voltage)

—> [Nle

ADC = Analog-to-Digital Converter



Sound recording with microphone

Analog signal (voltage)

S6 S5 |S4 |S3 |S2 | S1 /S0

Audio Sample Buffer

ADC = Analog-to-Digital Converter



Sound production with speaker

S6 S5 (5S4 |S3 |S2|S1 /S0

Audio Sample Buffer



Sound production with speaker

S6 S5 (5S4 |S3 |S2|S1 /S0

Analog signal (voltage)

Audio Sample Buffer

DAC = Digital-to-Analog Converter



Sound production with speaker

S6 S5 (5S4 |S3 |S2|S1 /S0

Analog signal (voltage)

Audio Sample Buffer

DAC = Digital-to-Analog Converter



The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty
* Sending uncertainty

software issuing command

t0 = wall clock();
write (sound dev, signal);

4

time



The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty
* Sending uncertainty
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t0 = wall clock();
write (sound dev, signal);
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The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty

* Sending uncertainty * Receiving uncertainty

software issuing command

t0 = wall clock();
write (sound dev, signal);
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The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty

* Sending uncertainty * Receiving uncertainty

software issuing command

t0 = wall clock();
write (sound dev, signal);
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The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty

* Sending uncertainty

software issuing command

t0 = wall clock();
write (sound dev, signal);
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The root cause of inaccuracy
—three uncertainties

* Clock synchronization uncertainty

* Sending uncertainty * Receiving uncertainty

software issuing command software aware of arrival
tO .= wall clock(); J.fécltd(sound_dev, signal) ;
write (sound dev, signal); tl = wall clock();

unknown delays
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Beepbeep’s basic procedure

: . Device A Device B
. Device A emits a beep

while both recording

=

. Device B emits another
beep while both continue

. A’s recording B’s recording
recording o o
. Both devices detect TOA >
ETOA, ETOAg

of the two beeps and
obtain respective ETOAs

. Exchange ETOAs and
calculate the distance



Dx,y is distance between x’s
speaker to y’s microphone

A issues a play-

sound command Sound is physically

. emitted from A
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