Waves

Slides adapted from Nirupam Roy

Sound Visible light

Physical vibrations WiFi signal

Ripples in water Infrared

•••

Mechanical Wave

Sound

Physical vibrations

Ripples in water

Acoustic Longitudinal Wave

Electromagnetic Wave

Visible light

WiFi signal

Infrared

Waves made this possible

Waves made this possible

Frequency, Amplitude, and Phase

Frequency, Amplitude, and Phase

Frequency, Amplitude, and Phase

$$Ψ(t) = A.sin(θ(t))$$
= A.sin(2πft) = A.sin($\frac{2π}{T}t$)

$$\Psi(t) = A.\sin(2\pi f t) = A.\sin(\frac{2\pi}{T}t)$$

$$Ψ(t, x) = A.sin(2πft - θ(x))$$
Why is this negative?

wavelength = λ distance from the source (x) space

$$\Psi(t, x) = A \cdot \sin(2\pi f t - \theta(x))$$

$wavelength = \lambda$

f number of cycles per second

C meters of distance per second (speed of the wave)

 $distance\ per\ cycle = \lambda = C / f$

wavelength = λ

f number of cycles per second

C meters of distance per second (speed of the wave)

 $distance\ per\ cycle = \lambda = C/f$

 2π radians of angle is covered per cycle

2π radians of angle is covered per cycle

radians of angle is covered per unit distance

wavelength = λ

$$\Psi(t, x) = A.\sin(2\pi f t - \theta(x))$$

$$= A.\sin(2\pi ft - \frac{2\pi}{\lambda}x)$$

Model for a signal (frequency, amplitude, and phase)

Presenting real signal with the complex model

$$e^{j 2\pi ft} = cos(2\pi ft) + j \sin(2\pi ft)$$

$$e^{-j 2\pi ft} = cos(2\pi ft) - j \sin(2\pi ft)$$

$$cos(2\pi ft) = \frac{e^{j 2\pi ft} + e^{-j 2\pi ft}}{2}$$

$$sin(2\pi ft) = \frac{e^{j 2\pi ft} - e^{-j 2\pi ft}}{2}$$

$wavelength = \lambda$

$$\Psi(t, x) = A.\sin(2\pi f t - \frac{2\pi}{\lambda}x)$$

wavelength = λ

$$\Psi(t, x) = A.e^{j(2\pi ft - \frac{2\pi}{\lambda}x)}$$

Cycles per sec = frequency =
$$f$$
 Hz

Distance per cycle = wavelength = λ meters

Distance per second = speed = C meters/sec

 $C = f \cdot \lambda$

Speed of sound in air: 343 m/s

Speed of sound in water: 1493 m/s

Speed of sound in iron: 5130 m/s

Speed of electromagnetic waves: 3*10⁸ m/s (~ a million times faster than sound)

Reflection of waves

Echolocation

Echolocation in nature

Bat

Echolocation in nature

Beluga whale

Waves for gesture detection [Project Soli]

LiDAR (Light Detection and Ranging)

LiDAR (Light Detection and Ranging)

Acoustic imaging

Acoustic imaging

Sonogram

Acoustic imaging

Sonogram

Multipath

Multipath

Multipath

Linear Time Invariant (LTI) System

Convolution operator

Convolution operator: Definition

Convolution operator: Properties

Convolution operator

Distributive:
$$x(i) * \{h_1(i) + h_2(i)\} = x(i) * h_1(i)$$

 $x(i) * h_2(i)$

A simple acoustic ranging technique

BeepBeep – SenSys 2007

$$d = C \cdot (t2-t1)$$

Problem: Clock synchronization

Device A Device B

$$d = C \cdot (t2-t1)$$

- three uncertainties
- Clock synchronization uncertainty

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

Sound production and recording

Sound recording with microphone

Sound recording with microphone

ADC = Analog-to-Digital Converter

Sound recording with microphone

ADC = Analog-to-Digital Converter

Sound production with speaker

Audio Sample Buffer

Sound production with speaker

DAC = Digital-to-Analog Converter

Sound production with speaker

DAC = Digital-to-Analog Converter

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

software issuing command

```
t0 = wall_clock();
write(sound_dev, signal);
...
```

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

```
software issuing command
```

```
unknown delays
(software, system,
driver, hardware, ...)
sound leaves
speaker
```

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

Receiving uncertainty

software issuing command

```
unknown delays
(software, system,
driver, hardware, ...)

sound leaves
speaker
```

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

Receiving uncertainty

software issuing command

```
t0 = wall_clock();
write(sound_dev, signal);
...
```

unknown delays (software, system, driver, hardware, ...)

sound leaves speaker

sound reaches mic

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

Receiving uncertainty

software issuing command

```
t0 = wall_clock();
write(sound_dev, signal);
...
```

unknown delays (software, system, driver, hardware, ...)

sound leaves speaker

sound reaches mic

unknown delays (hardware, interrupt, driver, scheduling, ...)

- three uncertainties
- Clock synchronization uncertainty
- Sending uncertainty

Receiving uncertainty

software issuing command

```
t0 = wall_clock();
write(sound_dev, signal);
...
```

unknown delays (software, system, driver, hardware, ...)

sound leaves speaker

software aware of arrival

```
read(sound_dev, signal);
t1 = wall_clock();
...
```

sound reaches mic

unknown delays (hardware, interrupt, driver, scheduling, ...)

Beepbeep's basic procedure

- 1. Device A emits a beep while both recording
- Device B emits another beep while both continue recording
- 3. Both devices detect TOA of the two beeps and obtain respective ETOAs
- 4. Exchange ETOAs and calculate the distance

Dx,y is distance between x's speaker to y's microphone

emitted from B

B issues a playsound command

$$D = \frac{1}{2} \cdot (d_{A,B} + d_{B,A})$$

$$= \frac{c}{2} \cdot ((t_{B1} - t_{A0}) + (t_{A3} - t_{B2}))$$

$$= \frac{c}{2} \cdot (t_{B1} - t_{B2} + t_{B3} - t_{B3} + t_{A3} - t_{A0} + t_{A1} - t_{A1})$$

$$= \frac{c}{2} \cdot ((t_{A3} - t_{A1}) - (t_{B3} - t_{B1}) + (t_{B3} - t_{B2}) + (t_{A1} - t_{A0}))$$

$$= \frac{c}{2} \cdot ((t_{A3} - t_{A1}) - (t_{B3} - t_{B1})) + d_{B,B} + d_{A,A}$$