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Goal of this course

• Have an understanding of state of the art mobile systems 
research

• Explore applications that are capable with mobile devices
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Course material
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1. Signal processing fundamentals

2. Acoustic device and device-free tracking

3. Physiological sensing using phones and 
speakers

4. IMW tracking and GPS localization

5. Wi-Fi localization and sensing

6. Designing and building IoT device hardware



Course material
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7. Backscatter systems

8. Mobile privacy and security

9. Robotics mobile systems



Grading

8

3 hands-on assignments (20+20+20% in all)
• One every two weeks
• Requires programming phones, microcontroller, etc.

Class presentation of one paper (10%)

Final research project (30%)
• Proposal due on May 1
• 2-3 person project



Signal processing basics

(Slides by Nirupam Roy)



Model for a signal (frequency, amplitude, and phase)
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Model for a signal (frequency, amplitude, and phase)
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time = t second

Frequency, Amplitude, and Phase
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Phas
e

A . sin(2𝜋𝑓𝑡 + 𝜙) -- with initial/additional phase ϕ
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Frequency, Amplitude, and Phase
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Frequencies of an arbitrary signal
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The concept of the Fourier series



Time Domain and Frequency Domain
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Approx. square wave



Time Domain and Frequency Domain

Time domain view
Frequency domain view



Analogy: Food coloring chart
Basis for food colors
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Analogy: Food coloring chart
Basis for food colors



= A1 . sin 2𝜋𝑓1𝑡 + B1 . 𝑐𝑜𝑠(2𝜋𝑓1𝑡)
+ A2 . sin 2𝜋𝑓2𝑡 + B2 . 𝑐𝑜𝑠(2𝜋𝑓2𝑡)

+ A3 . sin 2𝜋𝑓3𝑡 + B3 . 𝑐𝑜𝑠(2𝜋𝑓3𝑡)
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Time Domain and Frequency Domain
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Fourier Transform

Time domain Frequency domain

FFT = Fast Fourier Transform
IFFT = Inverse Fast Fourier Transform



Frequency band
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A 4 kHz frequency band starting at 2 kHz

What is bandwidth?
What is center frequency?



Spectrogram



Spectrogram
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Physical signal
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Time varying voltage
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Spectrogram plot
on computer
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A collection of 
numbers

Analog Digital
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Spectrogram plot
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A collection of 
numbers

Analog Digital

?



Physical signal
(voice)

Time varying voltage
signal

Spectrogram plot
on computer

FFT

A collection of 
numbers

Analog Digital

ADC

Analog-to-Digital Converter
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Sampling theorem
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T = Sampling interval fs= 1/T = Sample rate (or sampling 
frequency)

Sampling theorem



1-dimensional sampling



1-dimensional sampling

2-dimensional sampling



1-dimensional sampling

2-dimensional sampling

3-dimensional sampling



Am
pl

itu
d

e

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

Time 
(sec)

0.0
0

Am
pl

itu
d

e

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

Time 
(sec)

0.0
0

Sampling theorem



Am
pl

itu
d

e

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

Time 
(sec)

0.0
0

Am
pl

itu
d

e

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

Time 
(sec)

0.0
0

Aliasing: Two signals become indistinguishable
after sampling

Sampling theorem
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Aliasing



Aliasing in real life

https://www.youtube.com/watch?v=QOwzkND_ooU



How to find a good sample rate?



How to find a good sample rate?

Nyquist sampling theorem:
In order to uniquely represent a signal F(t) by a set of 
samples, the sampling rate must be more than twice 
the highest frequency component present in F(t).

If sample rate is fs and maximum frequency we want 
record is fmax , then 

fs > 2fmax



Nyquist frequency = Maximum alias-free frequency 
for a given sample rate.

Nyquist rate = Lower bound of sample rate for a 
signal
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Commonly, the maximum frequency in human voice is 4 kHz, 
what sample rate will you use in your audio recorder?
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Aliasing: A real life scenario
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Frequency spectrum

Nyquist frequency
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We need a “Low-pass filter”
to remove unwanted high frequency signals

Aliasing: A real life scenario
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Anti-aliasing
filter
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A . sin(𝜃)

A . 𝑐𝑜𝑠(𝜃)

Model for a signal (frequency, amplitude, and phase)
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Model for a signal (frequency, amplitude, and phase)

How can we incorporate both Sine and 
Cosine in the equation?
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Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + sin(𝜃)1.
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Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + sin(𝜃) < 𝑐𝑜𝑠 𝜃 , sin 𝜃 >1. 2.
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Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + sin(𝜃) < 𝑐𝑜𝑠 𝜃 , sin 𝜃 >

𝑐𝑜𝑠 𝜃 + 𝑗 sin 𝜃

1. 2.

3.



Complex numbers

𝑗 = −1

Imaginary



Complex numbers



Complex numbers
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shown in Figure 4. 
 

–8 8 

Imaginary 
axis

0 

j8

-j8 

Real  
axis

= multiply by "j"

 
 

Figure 4.  What happens to the real number 8 when you start multiplying  
           it by j. 

 
Multiplying any number on the real axis by j results in an imaginary product 
that lies on the imaginary axis. The example in Figure 4 shows that if +8 is 
represented by the dot lying on the positive real axis, multiplying +8 by j 
results in an imaginary number, +j8, whose position has been rotated 90o 
counterclockwise (from +8) putting it on the positive imaginary axis. 
Similarly, multiplying +j8 by j results in another 90o rotation yielding the -
8 lying on the negative real axis because j2 = -1. Multiplying -8 by j results 
in a further 90o rotation giving the -j8 lying on the negative imaginary axis. 
Whenever any number represented by a dot is multiplied by j, the result is a 
counterclockwise rotation of 90o. (Conversely, multiplication by -j results in 
a clockwise rotation of -90o on the complex plane.) 
 
If we let I = S/2 in Eq. 7, we can say that  
 

    ejS/2 = cos(S/2) + jsin(S/2) = 0 + j1 , or 

    ejS/2 = j                                           (9)  
 
Here's the point to remember. If you have a single complex number, represented 

by a point on the complex plane, multiplying that number by j or by ej
S/2 will 

result in a new complex number that's rotated 90o counterclockwise (CCW) on 
the complex plane. Don't forget this, as it will be useful as you begin 
reading the literature of quadrature processing systems!  
 
Let's pause for a moment here to catch our breath. Don't worry if the ideas of 
imaginary numbers and the complex plane seem a little mysterious. It's that 
way for everyone at first—you'll get comfortable with them the more you use 
them. (Remember, the j-operator puzzled Europe's heavyweight mathematicians 
for hundreds of years.) Granted, not only is the mathematics of complex 
numbers a bit strange at first, but the terminology is almost bizarre. While 
the term imaginary is an unfortunate one to use, the term complex is downright 
weird. When first encountered, the phrase complex numbers makes us think 
'complicated numbers'. This is regrettable because the concept of complex 
numbers is not really all that complicated. Just know that the purpose of the 
above mathematical rigmarole was to validate Eqs. (2), (3), (7), and (8). Now, 
let's (finally!) talk about time-domain signals. 
 
Representing Real Signals Using Complex Phasors 
OK, we now turn our attention to a complex number that is a function time. 
Consider a number whose magnitude is one, and whose phase angle increases with 

time. That complex number is the ej2
Sfot point shown in Figure 5(a). (Here the 

Complex numbers



Complex numbers and Natural exponential
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Eqs. (3) and (4) remind us that c can also be considered the tip of a phasor 

on the complex plane, with magnitude M, oriented in the direction of I radians 
relative to the positive real axis as shown in Figure 2. Keep in mind that c 

is a complex number and the variables a, b, M, and I are all real numbers. The 
magnitude of c, sometimes called the modulus of c, is 
 

    M = |c| = a2 + b2                                   (5)  

 
[Trivia question: In what 1939 movie, considered by many to be the greatest 
movie ever made, did a main character attempt to quote Eq. (5)?] 
 

 
 
 

OK, back to business. The phase angle I, or argument, is the arctangent of the 

ratio 
imaginary part

real part , or 

 

    I = tan -1 ©§ ¹·
 b 
 a                                  (6)  

 

If we set Eq. (3) equal to Eq. (2), Me
jI
 = M[cos(I) + jsin(I)] , we can state 

what's named in his honor and now called one of Euler's identities as: 
 

    ejI =  cos(I) + jsin(I)                          (7)  
 
The suspicious reader should now be asking, "Why is it valid to represent a 
complex number using that strange expression of the base of the natural 
logarithms, e, raised to an imaginary power?" We can validate Eq. (7) as did the 

world's greatest expert on infinite series, Herr Leonard Euler, by plugging jI in 
for z in the series expansion definition of e

z
 in the top line of Figure 3. That 

substitution is shown on the second line.  
 

   e
z
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2!  + 

 z3 
3!  + 

 z4 
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6!   + ...  

 

                        e
jI
 =   cos(I) + jsin(I) 

 
Figure 3  One derivation of Euler's equation using series expansions for ez, cos(I), 

and sin(I). 
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Figure 3  One derivation of Euler's equation using series expansions for ez, cos(I), 

and sin(I). 
 

…

…

…
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Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + 𝑗 sin 𝜃 𝑒𝑗𝜃=



Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + 𝑗 sin 𝜃 𝑒𝑗𝜃= = 𝑒𝑗 2πft



Model for a signal (frequency, amplitude, and phase)

𝑒𝑗 2πft



Model for a signal (frequency, amplitude, and phase)
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Figure 6.  The motion of the ej2Sfot phasor (a), and phasor 's tip (b). 
 
Return to Figure 5(b) and ask yourself: "Self, what's the vector sum of those 
two phasors as they rotate in opposite directions?" Think about this for a 
moment...  That's right, the phasors' real parts will always add 
constructively, and their imaginary parts will always cancel. This means that 

the summation of these ej2Sfot and e-j2Sfot phasors will always be a purely real 
number. Implementations of modern-day digital communications systems are based 
on this property! 
 
To emphasize the importance of the real sum of these two complex sinusoids 
we'll draw yet another picture. Consider the waveform in the three-dimensional 

Figure 7 generated by the sum of two half-magnitude complex phasors, ej2Sfot/2 

and e-j2Sfot/2, rotating in opposite directions around, and moving down along, 
the time axis.  
 

Time

t = 0 

Real  
axis

Imaginary 
axis ( j )

1

e

e
2

2

j2Sfot

cos(2Sfot)

–j2Sfot

 
 

Figure 7.  A cosine represented by the sum of two rotating complex phasors. 
 
Thinking about these phasors, it's clear now why the cosine wave can be 
equated to the sum of two complex exponentials by 
 

  cos(2Sfot) = 
 ej�Sfot + e-j�Sfot  

2  = 
 ej�Sfot  

2  + 
 e-j�Sfot  

2  .    (10)  

 
Eq. (10), a well-known and important expression, is also called one of Euler's 
identities. We could have derived this identity by solving Eqs. (7) and (8) 

𝑒𝑗 2πft

𝑒_𝑗 2πft



Model for a signal (frequency, amplitude, and phase)

𝑐𝑜𝑠 𝜃 + 𝑗 sin 𝜃=𝑒𝑗𝜃

How about real sinusoids?

𝑐𝑜𝑠 𝜃 = ?

= ?𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝜃 − 𝑗 sin 𝜃=𝑒_𝑗𝜃



Presenting real signal with the complex model

𝑐𝑜𝑠 𝜃 =
𝑒𝑗𝜃 𝑒_𝑗𝜃+

2

𝑠𝑖𝑛 𝜃 =
𝑒𝑗𝜃 𝑒_𝑗𝜃−

2j

𝑐𝑜𝑠 𝜃 + 𝑗 sin 𝜃=𝑒𝑗𝜃
𝑐𝑜𝑠 𝜃 − 𝑗 sin 𝜃=𝑒_𝑗𝜃



Presenting real signal with the complex model

𝑐𝑜𝑠 2πft =
𝑒𝑗 2πft 𝑒_𝑗 2πft+

2

𝑠𝑖𝑛 2πft =
𝑒𝑗 2πft 𝑒_𝑗 2πft−

2j

𝑐𝑜𝑠 2πft + 𝑗 sin 2πft=𝑒𝑗 2πft

𝑐𝑜𝑠 2πft − 𝑗 sin 2πft=𝑒_𝑗 2πft
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Plotting the DFT spectrum
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DFT (Discrete Fourier Transform)



Plotting the DFT spectrum
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The Curious Case of “Negative frequency”

Real signal’s magnitude 
spectrum is symmetric. 

Why?
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2m = 0 3 41-3 -2 -1-4 Frequency

The Curious Case of “Negative frequency”

Complex signal’s 
magnitude spectrum 
may or may not be 

symmetric. 

Why?
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Estimating the real-world frequencies

Sampling frequency  =  fs  (i.e., fs samples per second)

Slowest frequency (
!"
#

radians per step) = N samples per rotation

= (N/ fs) seconds per rotation

Therefore, the slowest frequency = (fs /N) Hz

Higher frequencies are integer multiple of (fs /N) Hz

0, 
fs
#

,
2fs
#

, 
3fs
#

, 
4fs
#

, … , 



The resolution and the highest frequency

fs
$

Resolution
= minimum observable frequency difference = 

2m = 0 3 41-3 -2 -1-4 Frequency

Magnitude/
Phase of zm

What if the actual frequency falls in between two 
frequency bins?



The resolution and the highest frequency

2m = 0 3 41-3 -2 -1-4 Frequency

Magnitude/
Phase of zm

fs
C

Highest frequency = 

− fs
!



The resolution and the highest frequency

How can we increase the resolution?

How can we increase the range of the spectrum?

[− fs
C , 

fs
C ]

fs
𝑁

= sample rate
# &' (() *&+,-.
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Downsampling
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What should be the sample rate?
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Frequency
down-conversion

Generally, bandwidth of the signal 
determines the sample rate.

X 𝑒IECFG$H


