CSE 562: Mobile Systems & Applications

Quals Course – Systems Area Shyam Gollakota

First Mobile Phone 1973

SIGMOBILE Outstanding Contribution Award

The SIGMOBILE Outstanding Contribution Award is given for significant and lasting contributions to the research on mobile computing and communications and wireless networking.

2020 Recipient

Marty Cooper

For seminal contributions to the conception, practice and adoption of portable telephony.

Goal of this course

Have an understanding of state of the art mobile systems research

• Explore applications that are capable with mobile devices

Course material

- 1. Signal processing fundamentals
- 2. Acoustic device and device-free tracking
- 3. Physiological sensing using phones and speakers
- 4. IMW tracking and GPS localization
- 5. Wi-Fi localization and sensing
- 6. Designing and building IoT device hardware

Course material

- 7. Backscatter systems
- 8. Mobile privacy and security
- 9. Robotics mobile systems

Grading

- 3 hands-on assignments (20+20+20% in all)
- One every two weeks
- Requires programming phones, microcontroller, etc.

Class presentation of one paper (10%)

Final research project (30%)

- Proposal due on May 1
- 2-3 person project

Signal processing basics

(Slides by Nirupam Roy)

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

Frequency, Amplitude, and Phase

Frequency, Amplitude, and Phase

Frequencies of an arbitrary signal

The concept of the Fourier series

Time domain

Frequency domain

FFT = Fast Fourier Transform IFFT = Inverse Fast Fourier Transform

Frequency band

A 4 kHz frequency band starting at 2 kHz

What is bandwidth? What is center frequency?

Spectrogram

Spectrogram

Spectrogram

Analog

Digital

Analog vs Digital World

Analog Digital Spectrogram plot **Physical signal** on computer (voice) FFT Time varying voltage signal A collection of numbers ?

Analog-to-Digital Converter

Sampling theorem

Sampling theorem

Sampling theorem

1-dimensional sampling

1-dimensional sampling

2-dimensional sampling

1-dimensional sampling

2-dimensional sampling

3-dimensional sampling

Sampling theorem

Sampling theorem

Aliasing

Aliasing in real life

https://www.youtube.com/watch?v=QOwzkND_ooU

How to find a good sample rate?

How to find a good sample rate?

Nyquist sampling theorem: In order to uniquely represent a signal F(t) by a set of samples, the sampling rate must be more than twice the highest frequency component present in F(t).

If sample rate is f_{s} and maximum frequency we want record is f_{max} , then

$$f_s > 2f_{max}$$

Nyquist frequency = Maximum alias-free frequency for a given sample rate.

Nyquist rate = Lower bound of sample rate for a signal

$$x(t) = \sum_{n=-\infty}^\infty x(nT) \cdot \mathrm{sinc}\left(rac{t-nT}{T}
ight),$$

1

<u> `</u>`

Nyquist

Commonly, the maximum frequency in human voice is 4 kHz, what sample rate will you use in your audio recorder?

We need a "Low-pass filter" to remove unwanted high frequency signals

How can we incorporate both Sine and Cosine in the equation?

1. $cos(\theta) + sin(\theta)$

1. $cos(\theta) + sin(\theta)$ 2. $cos(\theta), sin(\theta) >$

1. $cos(\theta) + sin(\theta)$ 2. $cos(\theta), sin(\theta) >$

3. $cos(\theta) + j sin(\theta)$

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \frac{z^{5}}{5!} + \frac{z^{6}}{6!} + \frac{z^{6}}{5!}$$

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \frac{z^{5}}{5!} + \frac{z^{6}}{6!} + \frac{z^{6}}{6!} + \frac{z^{6}}{6!} + \frac{(j\phi)^{2}}{2!} + \frac{(j\phi)^{3}}{3!} + \frac{(j\phi)^{4}}{4!} + \frac{(j\phi)^{5}}{5!}$$

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \frac{z^{5}}{5!} + \frac{z^{6}}{6!} + \frac{z^{6}}{6!} + \frac{j\phi}{2!} + \frac{(j\phi)^{2}}{2!} + \frac{(j\phi)^{3}}{3!} + \frac{(j\phi)^{4}}{4!} + \frac{(j\phi)^{5}}{5!} +$$

$$cos(\theta) + j \sin(\theta) = e^{j\theta}$$

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

$$e^{j\theta} = cos(\theta) + j sin(\theta)$$

 $e^{-j\theta} = cos(\theta) - j sin(\theta)$

How about real sinusoids?

$$cos(\theta) = ?$$

$$sin(\theta) = ?$$

Presenting real signal with the complex model

$$e^{j\theta} = cos(\theta) + j sin(\theta)$$

 $e^{-j\theta} = cos(\theta) - j sin(\theta)$

Presenting real signal with the complex model

$$\oint e^{j 2\pi ft} = cos(2\pi ft) + j sin(2\pi ft)$$

$$\oint e^{-j 2\pi ft} = cos(2\pi ft) - j sin(2\pi ft)$$

$$\oint cos(2\pi ft) = \frac{e^{j 2\pi ft} + e^{-j 2\pi ft}}{2}$$

$$\oint sin(2\pi ft) = \frac{e^{j 2\pi ft} - e^{-j 2\pi ft}}{2j}$$

Time domain

Frequency domain

Plotting the DFT spectrum

DFT (Discrete Fourier Transform)

$$egin{aligned} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ &= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\!\left(rac{2\pi}{N}kn
ight) - i \cdot \sin\!\left(rac{2\pi}{N}kn
ight)
ight] \end{aligned}$$

Plotting the DFT spectrum

Real signal's magnitude spectrum is symmetric.

Why?

Complex signal's magnitude spectrum may or may not be symmetric.

 $X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn}$

Why?

Estimating the real-world frequencies

Sampling frequency = f_s (i.e., f_s samples per second)

Slowest frequency $\left(\frac{2\pi}{N}\right)$ radians per step) = N samples per rotation

= (N/f_s) seconds per rotation

Therefore, the slowest frequency = (f_s / N) Hz

Higher frequencies are integer multiple of (f_s/N) Hz

$$0, \frac{f_s}{N}, \frac{2f_s}{N}, \frac{3f_s}{N}, \frac{4f_s}{N}, \dots$$

The resolution and the highest frequency

What if the actual frequency falls in between two frequency bins?

The resolution and the highest frequency

The resolution and the highest frequency

How can we increase the resolution?

$$\frac{f_s}{N} = \frac{\text{sample rate}}{\# \text{ of FFT points}}$$

How can we increase the range of the spectrum?

$$\left[-\frac{f_s}{2}, \frac{f_s}{2}\right]$$

Downsampling

What should be the sample rate?

Downsampling

What should be the sample rate? Generally, bandwidth of the signal determines the sample rate.