CSE 562: Mobile Systems \& Applications

Quals Course - Systems Area
 Shyam Gollakota

First Mobile Phone 1973

SIGMOBILE Outstanding Contribution Award

The SIGMOBILE Outstanding Contribution Award is given for significant and lasting contributions to the research on mobile computing and communications and wireless networking

2020 Recipient

Marty Cooper

For seminal contributions to the conception, practice and adoption of portable telephony.

Goal of this course

- Have an understanding of state of the art mobile systems research
- Explore applications that are capable with mobile devices

Course material

1. Signal processing fundamentals
2. Acoustic device and device-free tracking
3. Physiological sensing using phones and speakers
4. IMW tracking and GPS localization
5. Wi-Fi localization and sensing
6. Designing and building loT device hardware

Course material

7. Backscatter systems
8. Mobile privacy and security
9. Robotics mobile systems

Grading

3 hands-on assignments ($20+20+20 \%$ in all)

- One every two weeks
- Requires programming phones, microcontroller, etc.

Class presentation of one paper (10\%)

Final research project (30\%)

- Proposal due on May 1
- 2-3 person project

Signal processing basics

(Slides by Nirupam Roy)

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

2π angles per cycle

$$
\theta=2 \pi f t
$$

Frequency, Amplitude, and Phase

$$
=\mathrm{A} \cdot \sin (\theta)=\mathrm{A} \cdot \sin (2 \pi f t)
$$

A. $\sin (2 \pi f t+\phi)-$ with initial/additional phase φ

Frequency, Amplitude, and Phase

Frequencies of an arbitrary signal

The concept of the Fourier series

Time Domain and Frequency Domain

Time Domain and Frequency Domain

Analogy: Food coloring chart

Basis for food colors

Analogy: Food coloring chart

Basis for food colors

Analogy: Food coloring chart

Basis for food colors

Analogy: Food coloring chart

Basis for food colors

	Red	Yelow	Green	blue
orange	1	2		
PUuPLE	3			1
(tark $\begin{gathered}\text { dar } \\ \text { GREN }\end{gathered}$	1	1		4
LME		3	1	
aqua			2	4
FILSH	2	5		
brown	6	6		4

Time Domain and Frequency Domain

Time Domain and Frequency Domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Frequency band

A 4 kHz frequency band starting at 2 kHz

What is bandwidth?
What is center frequency?

Spectrogram

Spectrogram

FFT of overlapping windows of samples (Spectrogram)

Spectrogram

Analog

Digital

Spectrogram plot
on computer

A collection of numbers

Analog vs Digital World

Analog

Digital

Spectrogram plot on computer

A collection of numbers

Analog

ADC

Digital

Analog-to-Digital Converter

Sampling theorem

Sampling theorem

Sampling theorem

1-dimensional sampling

1-dimensional sampling

2-dimensional sampling

1-dimensional sampling

2-dimensional sampling

3-dimensional sampling

Sampling theorem

Sampling theorem

Aliasing

Aliasing

Aliasing in real life

How to find a good sample rate?

How to find a good sample rate?

Nyquist sampling theorem:
In order to uniquely represent a signal $F(t)$ by a set of samples, the sampling rate must be more than twice the highest frequency component present in $F(\mathrm{t})$.

If sample rate is f_{s} and maximum frequency we want record is $f_{\text {max }}$, then

$$
\mathrm{f}_{\mathrm{s}}>2 \mathrm{f}_{\max }
$$

Nyquist frequency = Maximum alias-free frequency for a given sample rate.

Nyquist rate = Lower bound of sample rate for a signal

$$
x(t)=\sum_{n=\infty}^{\infty} x(n T) \cdot \operatorname{sinc}\left(\frac{t-n T}{T}\right),
$$

Nyquist

A 4 kHz frequency band starting at 2 kHz

Commonly, the maximum frequency in human voice is 4 kHz , what sample rate will you use in your audio recorder?

Aliasing: A real life scenario

Aliasing: A real life scenario

Aliasing: A real life scenario

We need a "Low-pass filter"
to remove unwanted high frequency signals

Anti-aliasing filter

Anti-aliasing filter

Anti-aliasing filter

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

How can we incorporate both Sine and Cosine in the equation?

Model for a signal (frequency, amplitude, and phase)

1. $\cos (\theta)+\sin (\theta)$

Model for a signal (frequency, amplitude, and phase)

1. $\cos (\theta)+\sin (\theta)$
2. $\langle\cos (\theta), \sin (\theta)\rangle$

Model for a signal (frequency, amplitude, and phase)

1. $\cos (\theta)+\sin (\theta)$
2. $\langle\cos (\theta), \sin (\theta)\rangle$
3. $\cos (\theta)+j \sin (\theta)$

Complex numbers

Complex numbers

This point represents the real number $\mathrm{a}=-2.2$

Complex numbers and Natural exponential

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\frac{z^{6}}{6!}+
$$

Complex numbers and Natural exponential

$$
\begin{gathered}
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\frac{z^{6}}{6!}+ \\
e^{j \phi}=1+j \phi+\frac{(j \phi)^{2}}{2!}+\frac{(j \phi)^{3}}{3!}+\frac{(j \phi)^{4}}{4!}+\frac{(j \phi)^{5}}{5!}
\end{gathered}
$$

Complex numbers and Natural exponential

$$
\begin{aligned}
e^{z} & =1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\frac{z^{6}}{6!}+ \\
e^{j \phi} & =1+j \phi+\frac{(j \phi)^{2}}{2!}+\frac{(j \phi)^{3}}{3!}+\frac{(j \phi)^{4}}{4!}+\frac{(j \phi)^{5}}{5!} \\
& =1+j \phi-\frac{\phi^{2}}{2!}-j \frac{\phi^{3}}{3!}+\frac{\phi^{4}}{4!}+j \frac{\phi^{5}}{5!}-\frac{\phi^{6}}{6!}
\end{aligned}
$$

Complex numbers and Natural exponential

$$
\begin{aligned}
& e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& e^{j \phi}=1+j \phi+\frac{(j \phi)^{2}}{2!}+\frac{(j \phi)^{3}}{3!}+\cdots \\
& =1+\frac{6}{j+\frac{\phi^{2}}{2!}-j \frac{\phi^{3}}{3!} \cdots}
\end{aligned}
$$

Complex numbers and Natural exponential

Model for a signal (frequency, amplitude, and phase)

$$
\cos (\theta)+j \sin (\theta)=e^{j \theta}
$$

Model for a signal (frequency, amplitude, and phase)

$$
\cos (\theta)+j \sin (\theta)=e^{j \theta}=e^{j 2 \pi \mathrm{ft}}
$$

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

Model for a signal (frequency, amplitude, and phase)

$$
\begin{aligned}
& e^{j \theta}=\cos (\theta)+j \sin (\theta) \\
& e^{-j \theta}=\cos (\theta)-j \sin (\theta)
\end{aligned}
$$

How about real sinusoids?

$$
\begin{aligned}
& \cos (\theta)=? \\
& \sin (\theta)=?
\end{aligned}
$$

$$
\begin{aligned}
& e^{j \theta}=\cos (\theta)+j \sin (\theta) \\
& e^{-j \theta}=\cos (\theta)-j \sin (\theta) \\
& \cos (\theta)=\frac{e^{j \theta}+e^{-j \theta}}{2} \\
& \sin (\theta)=\frac{e^{j \theta}-e^{-j \theta}}{2 j}
\end{aligned}
$$

Presenting real signal with the complex model

$$
\begin{aligned}
& e^{j 2 \pi \mathrm{ft}}=\cos (2 \pi \mathrm{ft})+j \sin (2 \pi \mathrm{ft}) \\
& e^{-j 2 \pi \mathrm{ft}}=\cos (2 \pi \mathrm{ft})-j \sin (2 \pi \mathrm{ft})
\end{aligned}
$$

$$
e^{j 2 \pi \mathrm{ft}}+e^{-j 2 \pi \mathrm{ft}}
$$

$$
\cos (2 \pi \mathrm{ft})=\frac{}{2}
$$

$$
e^{j 2 \pi \mathrm{ft}}-e^{-j 2 \pi \mathrm{ft}}
$$

$\sin (2 \pi f t)=$

$2 j$

Time Domain and Frequency Domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Time Domain and Frequency Domain

Fourier Transform

$e^{j 2 \pi 4 t}$

Time domain
Frequency domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Time Domain and Frequency Domain

Fourier Transform

Time domain
Frequency domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Time Domain and Frequency Domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Time Domain and Frequency Domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Time Domain and Frequency Domain

$$
\begin{aligned}
\text { FFT } & =\text { Fast Fourier Transform } \\
\text { IFFT } & =\text { Inverse Fast Fourier Transform }
\end{aligned}
$$

Plotting the DFT spectrum

$$
\begin{aligned}
X_{k} & =\sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{i 2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1} x_{n} \cdot\left[\cos \left(\frac{2 \pi}{N} k n\right)-i \cdot \sin \left(\frac{2 \pi}{N} k n\right)\right]
\end{aligned}
$$

Plotting the DFT spectrum

The Curious Case of "Negative frequency"

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{2 \pi}{N} k n}
$$

Positive rotation with $\frac{2 \pi}{N}$ radian angle per step

Negative rotation with $\frac{2 \pi}{N}$ radian angle per step

The Curious Case of "Negative frequency"

The Curious Case of "Negative frequency"

The Curious Case of "Negative frequency"

Real signal's magnitude spectrum is symmetric.

Why?

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{i 2 \pi}{N} k n}
$$

The Curious Case of "Negative frequency"

Complex signal's magnitude spectrum may or may not be symmetric.

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{i 2 \pi}{N} k n}
$$

Why?

Estimating the real-world frequencies

Sampling frequency $=f_{s}$ (i.e., f_{s} samples per second)
Slowest frequency $\left(\frac{2 \pi}{N}\right.$ radians per step $)=\mathrm{N}$ samples per rotation

$$
=\left(\mathrm{N} / \mathrm{f}_{\mathrm{s}}\right) \text { seconds per rotation }
$$

Therefore, the slowest frequency $=\left(\mathrm{f}_{\mathrm{s}} / \mathrm{N}\right) \mathrm{Hz}$
Higher frequencies are integer multiple of $\left(\mathrm{f}_{\mathrm{s}} / \mathrm{N}\right) \mathrm{Hz}$

$$
0, \frac{\mathrm{f}_{\mathrm{s}}}{N}, \frac{2 \mathrm{f}_{\mathrm{s}}}{N}, \frac{3 \mathrm{f}_{\mathrm{s}}}{N}, \frac{4 \mathrm{f}_{\mathrm{s}}}{N}, \ldots,
$$

The resolution and the highest frequency

[^0]
The resolution and the highest frequency

The resolution and the highest frequency

How can we increase the resolution?

$$
\frac{\mathrm{f}_{\mathrm{s}}}{N}=\frac{\text { sample rate }}{\# \text { of FFT points }}
$$

How can we increase the range of the spectrum?

$$
\left[-\frac{\mathrm{f}_{\mathrm{s}}}{2}, \frac{\mathrm{f}_{\mathrm{s}}}{2}\right]
$$

Downsampling

What should be the sample rate?

Downsampling

What should be the sample rate?
Generally, bandwidth of the signal determines the sample rate.

[^0]: What if the actual frequency falls in between two frequency bins?

