The present and future of
network verification

Ratul Mahajan
UW CSE 561, Winter 2021 e L

June 15, 2020 T-Mobile
Network Outage Report

PS Docket No. 20-183

A Report of the Public Safety and Homeland Security Bureau
Federal Communications Commission
October 22, 2020

‘At least 41% of all calls that attempted
to use T-Mobile’s network during the

outage failed, including at least 23,621
failed calls to 911.”

“[An old woman] who has dementia,
could not reach [her son] after her car
would not start and her roadside-
assistance provider could not call her
to clarify her location; she was
stranded for seven hours”

Anatomy of the outage (illustration)

Seattle 2 New York
-
- -
1 6
3 _

Los Angeles Miami

Anatomy of the outage (illustration)

Seattle New York

1 Denver\

Los Angeles Miami

Anatomy of the outage (illustration)

New York
8 5
What if T-Mobile could \ What if T-Mobile could
guarantee that no traffic I /A\) predict the impact of
will transit Denver? 1 - 6 link failure?
Denver

Los Angeles Miami

Network Guarantee network behavior™

Ver | fl cat | on » & | *Some aspect of behavior

"Under some assumptions

Verify

o+
(0p)
>
r
T

|

Configuration, state

|

A horizontal slice of the problem

The “haystack” of network behaviors is HUGE

Large scale Complex interactions
0(10°) devices Distributed routing
0(10%) config lines / device Protocol redistribution

O(10°) FIB entries / device Rich route filters

The “needles” in network behavior are tiny

Only specific packets

Only specific route ann o .
ecific announcement ordering

Only specific failur

The 2D space of network verification tools

A
. Shortest-path or policy routing? ! ol 2§ % S
. Are packet transformed? | 5|25 =
' Stateless or stateful forwarding? | | © & S 2
| > S 2

>
states analyzed
One (live) Some Al

state states states

Data o lane Who can talk to whom using
which packets and paths in
one state of the network?

verification

v

10.10.2.0/24 A

0.0.0.0/0 D
B

10.10.1.0/24 B
10.10.0.0/16 C
0.0.0.0/0 B

Can A talk to D and using
which packets?

J

C

10.10.1.0/24 A
0.0.0.0/0 D

® DPV idea: Ternary simulation

10.10.2.0/24 A

0.0.0.0/0 D
B 10.10.1.%*

U (*.*.*.* - 10.10.*.*)

\—10.10.2.*
/D

10.10.1.*
U (*.*.*.* - 10.10.*.*)
10.10.1.0/24 B
10.10.0.0/16 C

0.0.0.0/0 B A

Union packet sets along possible paths

Solve using custom data structure or BDDs
10.10.1.0/24 A

0.0.0.0/0 D

HSA [2012]

More DPV

Alternative methods: Xie et al. [2005], Anteater [2011], Atomic predicates [2013]

Scalability in specific settings: Parallelism [Libra 2014], Symmetry [2016], local checks [RCDC 2019]
Incrementality: NetPlumber [2013], VeriFlow [2013], Delta-net[2017]

Stateful processing: VMN [2017], SymNet [2016], NetSMC [2020]

Programmable data planes: p4v[2018]

Stateless DPV is a “solved problem”

Stateful and programmable DPV not there yet

CQ ntrQ‘ p‘a ne Who can talk to whom using
which packets and paths in

many states of the network?

verification

/

Finds bugs proactively

Enables what if analysis

Verifying distributed control planes

Routers generate and process

messages per low-level directives

ospfinterface int2_1 metric 1

ospfinterface int2_1 metric 1

ospf redistributed connected metric 10 Reason a b out states t h at

emerge when many such
| . programs run concurrently
ip prefix-list PL1 allow

route-map FromR2 10

ip prefix-list PL1 deny 192.168.0.0/16 le 32

match ip address prefix-list PL1
set local-preference 120

® CPV idea #1: Simulate the control plane

1. Simulate the control plane to generate data plane states
2. Use DPV to analyze the states

Configuration ‘ ’ Topology CP model || Environment | DP model 1 ey DP model k |
Data plane - Safety Safety
generator prop. analyzer

DP model

Control plane

generator

| CP model |

Counter example

Can analyze any data plane but not all data planes?

Batfish [2015]

@ CPV idea #2: Encode the fixed point

1. Valid network states are fixed points of the control plane
2. Fixed points can be formally encoded

ARC [2016] use a graph encoding (not general)
Minesweeper [2017] uses SMT encoding

Minesweeper overview

€ poes P hold in the network? ? ?

Network encoding: N

A

Property: = P

Satisfiable: Property violation

Unsatisfiable: Property holds for all states
(or the network does not converge)

G Encode protocol interactions

Protocol
View

)

G Encode protocol interactions

Redistribution
From CON to BGP

BGP peering
Between R1 and R2

Circuit view
for R1g¢p

After R2
export filter

After R1
R1 oser import filter

Q Encode routing messages

Routing Record

: . valid: 1 bit
° prefix: 0,2%2)
prefixLen: [0,2°)
Qo ® Q’ adminDist: [0,28)
PS localPref: [0,2°9)
e metric: 0,2%2)
e med: 0,232)
¢ ospfType [0,22)

Q Encode routing messages

o

Import filter on R1 from R2

ip prefix-list PL1 deny 192.168.0.0/16 le 32

ip prefix-list PL1 allow
route-map FromR2 10
match ip address prefix-list PL1
set local-preference 120

e~ Q..@

Q

in4

e4

-

if es.valid A failedr1,r2=0 A
- (FBM(es.prefix, 192.168.0.0, 16) A

16 < es.prefixLen < 32) then

in4.valid = true
in4.lp =120
in4.prefix = es .prefix

in4d.metric = e4.metric
in4.prefixLen = es .prefixLen

else ins.valid = false

a Encode routing decisions

What is the best BGP route?
R1g5p-BEST = Min(in1, in4, in5, in7)

What is the best overall route?

R1-BEST = Min(R1g4p-BEST,
R10gpe-BEST,
R1.on-BEST)

a Encode routing decisions

Does R1 have a RIB entry for R2?
RIBR1,R2 - (|n4 - R1'BeSt)

Does R1 have a FIB entry for R2?
FIBRiro = RIBgriroa A 7 ACL(R1,R2)

25

© Etncode the data packet

0 B0
ol e
DBO

O O O0OO0o

A IN AN IA

Symbolic Packet

dstlp <2%
srclp <2%
dstPort =<2'°

srcPort =2'°
protocol <28

26

a Encode the property

t €Can R3 reach subnet S27 77

canReachg, © FIBgs 5o

canReachy, ©
(FIBgry g2 A canReachg,) V
(FIBr1 r3z A canReachgg)

canReachg; ©
(FIBrsr1 /A canReachg;)

Property: canReachg;

Optimizing the encoding

Must use domain knowledge

SMT solvers cannot
automagically perform
even “straightforward”
optimizations

Prefix Hoisting

Routing Record FBM(r.prefix, 192.4.0.0, 16) A
valid: 1 bit 16 <r.prefixLen < 32
e — —

prefixLen: [0,2%)
adminDist: [0,28)
localPref: [0,2%)

FBM(dstlp, 192.4.0.0, 16) A
16 < r.prefixLen = 32

metric: 0,232) —
med: 0,232) (192.4.0.0 < dstlp < 192.4.0.0 + 232:16) A
ospfType [0,22) 16 <r.prefixLen < 32

Integer Difference Logic!

Slicing

Symbolic Record Statically analyze configs
valid: 1 bit to infer irrelevant attributes
prefixLen: [0,2%)
i Dokl Ou2E
meeallaete 0032 Local preference has no

metric: [0,23?) impact if never explicitly set

S —

Does it work for real networks?

Verification Time (ms)

T

T T e T S B =
o O
N W

[
o O
o -

How well does it scale?

jAI:Ll.DI_lHID all

No Blackholes

Multipath Consistency
Local Consistency
Single-ToR Reachability
All-Tor Reachability
Single-Tor Bounded Length
All-Tor Bounded Length
Equal Length Pod

< 5 minutes

|

5(2)

45 (6)

125 (10)
Number of Routers (Pods)

245 (14)

405 (18)

32

More CPV

Tradeoff generality for scalability
 ARC[2016], Tiramisu [2019], FastPlane [2019], Shapeshifter [2020]

Model checking
* Plankton [2019]

Exploit symmetry
* Bonsai [2018], Origami [2019]

Fully general CPV that scales to
thousands of nodes is still an open problem

ey
B

LT Yo ‘mm:&wg‘\',‘ryﬂ‘ﬁ;ﬂﬁ

hto p

Remarkably short path from research to practice

All Ia.rge cloud :AH!!?S@%G"OUPG | dMazon.com
providers are oodle
using it B Microsoft J Tencent i

Startubr)|§ are @ INTENTIONET
enabling FORWARD VERIFLOW

L

broader use

-@- Research to practice gap (1/3)

Network verification is “too complete”

Flags uninteresting violations

Real networks have unwritten assumptions that cause violations

Devices cannot spoof source IPs
Blocking “malicious” IPs or telnet ports is OK

Loosing connectivity under specific failures is OK

-@- Research to practice gap (2/3)

Network verification answers are “too precise”

Hard to explain results to users

Oddly-shaped packet header spaces and network environments

Not easy to map back to user-configured objects

-@- Research to practice gap (3/3)

Network verification is “too different”

Hard for network engineers to use

Testing with concrete inputs is easier than specifying invariants

Inversion of mental model is needed

LT Yo fmm:eﬁw;?\,,qyﬂ(ﬁ)ﬂ%

The future of network verification

Network verification 1.0 Network verification 2.0

ldentify promising slices Enable effective use
of the problem in practice

Develop core techniques Enable rapid expansion
to more functionality

Verified networks can have outages too

Configuration change check invariants

Verified networks can have outages too

Route maintenance BGP routes
, W|thdraw /1 8 look correct

Inspiration from software: Code coverage

f Merged E progwriter

Overview Diff

projects

Files

mm allinone/src/main/java/org/batfish/allinone

mm batfish-client/src/main/java/org/batfish/client

@ batfish-common-protocol/src/main/java/org/batfish
@ batfish/src/main/java/org/batfish

@ coordinator/src/main/java/org/batfish/coordinator

B minesweeper/src/main/java/org/batfish/minesweeper

e auestion/src/main/iava/ore/bhatfich/atiection

+17

+6

73.03% 81.81%

@ Coverage Changes n B Files

+8

+3

+12

+2

o Complexity
52.38%
61.10%
-3 +12.00% 70.02%
+1 +400% 62 26%
63.00%
61.71%

71 06%

-0.01% 64.88% -0.02%

-0 Commits

Coverage

62.91%

64.57%

R e T

~0.01%70 3%

65.27%

72.96%

Q1 47%

How to define “network coverage™?

Unlike programs, network is not a sequence of statements

Model the network as a dependency graph of “facts”

Coverage is % of facts covered (in)directly by defined invariants

Beckett and Mahajan [2019]

Prototype deployed at Microsoft

v & <element #0>
MethodName

v & CoverageSummary
DevicelevelCoverage
FibRuleLevelCoverage
FibRuleLevelMatchFieldCoverage
FibRuleLevelActionFieldCoverage
InterfacelLevelCoverage
PathCoverage

TOReachability

100.00% (14/14)
39.39% (52/132)
39.39% (52/132)
39.39% (52/132)
80.00% (64/80)
73.58% (39/53)

—

- R - o~ >
R Sy et e i o
RS M TS gt o o TS SO 'ﬁ-gx 5% T b i

The future of network verification

Effective use in practice

Rapid expansion to more functionality

Network stack is broad and deep

Ve

Application DNS NTP IRC POP] DHCP][SMTP][SNMP]

.

Presentation TLS SSH FTP IMAP [Telnet]

| J/ . J/ . J/ | J/

Session E

- (ree | [Toop) ["aure |
Network Routing] [LPM] [NAT] [Load balancing] [ACL] [GRE]
Data-link ARP ATM] [Ethernet] [LLDP] [Spanning Tree] [VLAN]

() e

Physical USB 802.11]

_ J _

Current monolithic approach does not scale

Header Space Analysis
Stateless forwarding

Batfish
Distributed routing

Minesweeper
Distributed routing

Custom “ Ternary Custom

[model J [simulation]“[solver]
Custom “ Concrete BDDs,

[model] [simulation J“[custom]
Custom “ Stable path SMT

[model J [constraints]“[solver]

Inspiration from software: Intermediate languages

Front-end {VCCJ [Dafny] [Chalice J

Back-end

/en: An IL for network verification

)\ 4) 4)\
Stateless Ternary |
forwarding simulation Datalog
_ Y, / \ _ J _ Y,
(.) 4) 4
Encapsulation Concrete BDDs,
) g simulation) | custom |
Middleboxes Zen
~ / 4 ™ 4 A
S w Stable path SMT
DISt”b.Uted constraints . solver
. routing _ Y S d
e . ~ é D e N
virtual Model checking
. Networks | L) .)

Zen [2020] https://github.com/microsoft/zen

Modeling an Azure security group In Zen

Library-provided type ~ -1 <T> represents a value that can be symbolic

]

<bool> Allowed(Nsg nsg, <Packet> pkt, int i) {
if (1 >= nsg.Rules.Length)
return false;
var rule = nsg.Rules[i];
return If(Matches(pkt, rule), rule.Permit, Allowed(nsg, pkt, i+1));

/en has competitive performance

25001{ —* Zen BDD

Zen SMT
% 20007 —— Batfish

— 1500+

)
€ 1000 /a,.//'/
|_

500 M

0 5000 10000 15000
Number of ACL lines

Network verification is needed to
guarantee correctness for
increasingly complex networks

