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“At least 41% of all calls that attempted 
to use T-Mobile’s network during the 
outage failed, including at least 23,621 
failed calls to 911.”

“[An old woman] who has dementia, 
could not reach [her son] after her car 
would not start and her roadside-
assistance provider could not call her 
to clarify her location; she was 
stranded for seven hours”



Anatomy of the outage (illustration)
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Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

2 2

X 6Denver

What if T-Mobile could 
guarantee that no traffic 
will transit Denver?

What if T-Mobile could 
predict the impact of 
link failure?



Network 
verification

Guarantee network behavior*†

* Some aspect of behavior
† Under some assumptions



A horizontal slice of the problem

Hardware

Software (OS, protocols)

Configuration, state

Trust

Verify



Distributed routing
Protocol redistribution

Rich route filters

Complex interactionsLarge scale
O(103) devices

O(104) config lines / device
O(106) FIB entries / device

The “haystack” of network behaviors is HUGE
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???

???
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???

Only specific route announcements

Only specific failures

Only specific packets

Only specific announcement ordering
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The “needles” in network behavior are tiny



The 2D space of network verification tools
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Data plane 
verification

Who can talk to whom using 
which packets and paths in
one state of the network?



A

B

C

D

10.10.1.0/24 B

10.10.0.0/16 C

0.0.0.0/0 B

10.10.2.0/24 A

0.0.0.0/0 D

10.10.1.0/24 A

0.0.0.0/0 D

Can A talk to D and using 
which packets?



DPV idea: Ternary simulation

A

B

C

D

10.10.1.0/24 B

10.10.0.0/16 C

0.0.0.0/0 B

10.10.2.0/24 A

0.0.0.0/0 D

10.10.1.0/24 A

0.0.0.0/0 D

10.10.1.*  
∪ (*.*.*.* – 10.10.*.*)

HSA [2012]

10.10.1.*  
∪ (*.*.*.* – 10.10.*.*) 
– 10.10.2.*  

Union packet sets along possible paths 
Solve using custom data structure or BDDs*.*.*.*



More DPV 

Alternative methods: Xie et al. [2005], Anteater [2011], Atomic predicates [2013]

Scalability in specific settings: Parallelism [Libra 2014], Symmetry [2016], local checks [RCDC 2019]

Incrementality:  NetPlumber [2013], VeriFlow [2013], Delta-net[2017]

Stateful processing: VMN [2017], SymNet [2016], NetSMC [2020]

Programmable data planes:  p4v [2018]

Stateless DPV is a “solved problem”
Stateful and programmable DPV not there yet 



Control plane 
verification

Who can talk to whom using 
which packets and paths in
many states of the network?

Finds bugs proactively
Enables what if analysis☑



Verifying distributed control planes

ip prefix-list PL1 deny 192.168.0.0/16 le 32
ip prefix-list PL1 allow
route-map FromR2 10
match ip address prefix-list PL1
set local-preference 120

ospf interface int2_1 metric 1
ospf interface int2_1 metric 1
ospf redistributed connected metric 10

Routers generate and process 
messages per low-level directives

Reason about states that 
emerge when many such 

programs run concurrently

Goal



CPV idea #1: Simulate the control plane

1. Simulate the control plane to generate data plane states
2. Use DPV to analyze the states

Batfish [2015]

Can analyze any data plane but not all data planes?



CPV idea #2: Encode the fixed point

1. Valid network states are fixed points of the control plane
2. Fixed points can be formally encoded

ARC [2016] use a graph encoding (not general)
Minesweeper [2017] uses SMT encoding
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Minesweeper overview

R1S1

S3

S2

N1 N2 N3

R2

R3

Does P hold in the network?‘‘ ’’
Network encoding:  N

Property:  ¬ P
⋀

Satisfiable: Property violation
Unsatisfiable: Property holds for all states
(or the network does not converge)



1. Encode protocol interacOons

R1S1

S3

S2

N1 N2 N3

R2

R3

S1

S3

S2

N1 N2 N3

OSPFCON

BGP BGP

OSPF CON

OSPF

CON

R1 R2

R3

Protocol
View

Protocol Interactions
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1. Encode protocol interactions

S1

S3

S2

N1 N2 N3

OSPFCON

BGP BGP

OSPF CON

OSPF

CON

R1 R2

R3

Circuit view 
for R1BGP

Protocol Interactions

R1BGPR1CON

R1OSPF

R2BGP

N1BGP

e4in4

After R2 
export filter

After R1
import filter

Redistribution
From CON to BGP

BGP peering 
Between R1 and R2
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2. Encode routing messages

R1BGPR1CON

R1OSPF

N1BGP

med:

}prefix:

Routing Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)
[0,232)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

2



2. Encode routing messages

R1BGP   R1CON   

R1OSPF   

R2BGP   

N1BGP   

e4  in4  

ip prefix-list PL1 deny 192.168.0.0/16 le 32
ip prefix-list PL1 allow
route-map FromR2 10
match ip address prefix-list PL1
set local-preference 120

Import filter on R1 from R2

if e4.valid ∧ failedR1,R2 = 0 ∧
¬ (FBM(e4.prefix, 192.168.0.0, 16) ∧

16 ≤ e4.prefixLen ≤ 32) then
in4.valid = true
in4.lp = 120
in4.prefix = e4 .prefix
in4.metric = e4.metric
in4.prefixLen = e4 .prefixLen 
…

else in4.valid = false 

If R2 exports a route

And it passes the import filter

Then R1 has the same route 
with local preference of 120

Otherwise, R1 has no route from R2
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3. Encode routing decisions
Decision Process

R1BGP   R1CON   

R1OSPF   

R2BGP   

N1BGP   

in1  

in4  
in5  

in7  
R1BGP-BEST = Min(in1, in4, in5, in7)

R1OSPF-BEST,
R1-BEST = Min(R1BGP-BEST,

R1CON-BEST)

What is the best BGP route?

What is the best overall route?
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3. Encode routing decisions

25

R1BGP   R1CON   

R1OSPF   

R2BGP   

N1BGP   

e4  in4  

RIBR1,R2 = (in4 = R1-Best) 

FIBR1,R2 = RIBR1,R2 ⋀ ¬ ACL(R1,R2)

Does R1 have a RIB entry for R2?

Does R1 have a FIB entry for R2?
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5. Encode the data packet

26

Data plane packet

}dstIp

Symbolic Packet

srcIp
dstPort
srcPort
protocol

{R1S1

S3

S2

N1 N2 N3

R2

R3
??????

0  ≤
0  ≤
0  ≤
0  ≤
0  ≤

≤ 232
≤ 232
≤ 216
≤ 216
≤ 28
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6. Encode the property

Can R3 reach subnet S2?‘‘ ’’
R1S1

S3

S2

N1 N2 N3

R2

R3

canReachR2 ⇔ FIBR2,S2

canReachR1 ⇔
(FIBR1,R2 ⋀ canReachR2) ⋁
(FIBR1,R3 ⋀ canReachR3)

canReachR3 ⇔
(FIBR3,R1 ⋀ canReachR1)

Property: canReachR3
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Must use domain knowledge

Optimizing the encoding

SMT solvers cannot 
automagically perform 
even “straightforward” 

optimizations



med:

}prefix:

Routing Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)
[0,232)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

FBM(r.prefix, 192.4.0.0, 16) ⋀
16 ≤ r.prefixLen ≤ 32 

FBM(dstIp, 192.4.0.0, 16) ⋀
16 ≤ r.prefixLen ≤ 32 

=

(192.4.0.0 ≤ dstIp ≤ 192.4.0.0 + 232-16) ⋀
16 ≤ r.prefixLen ≤ 32 

=

Integer Difference Logic!

Prefix Hoisting



Slicing

med:
}

Symbolic Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

Statically analyze configs 
to infer irrelevant attributes

Local preference has no 
impact if never explicitly set



Does it work for real networks?

152 networks

OSPF, eBGP, iBGP
Static routes 

ACLs
Route redistribution

120 violations
Hijack-able internal addresses

Asymmetric paired ACLs

Proved fault tolerance



How well does it scale?

32

< 5 minutes



More CPV

Tradeoff generality for scalability
• ARC [2016], Tiramisu [2019], FastPlane [2019], Shapeshifter [2020]

Model checking
• Plankton [2019]

Exploit symmetry
• Bonsai [2018], Origami [2019]

Fully general CPV that scales to 
thousands of nodes is still an open problem



Reflections on research to practice journey



Remarkably short path from research to practice

All large cloud 
providers are 

using it

Startups are 
enabling 

broader use



Research to practice gap (1/3)

Real networks have unwritten assumptions that cause violations

Devices cannot spoof source IPs

Blocking “malicious” IPs or telnet ports is OK 
Loosing connectivity under specific failures is OK

Network verification is “too complete”
Flags uninteresting  violations



Research to practice gap (2/3)

Oddly-shaped packet header spaces and network environments

Not easy to map back to user-configured objects

Network verification answers are “too precise”
Hard to explain results to users



Research to practice gap (3/3)

Tes\ng with concrete inputs is easier than specifying invariants 

Inversion of mental model is needed

Network verification is “too different”
Hard for network engineers to use



The future of network verification



Network verification 1.0 Network verification 2.0

Identify promising slices 
of the problem

Develop core techniques

Enable effective use 
in practice

Enable rapid expansion 
to more functionality



Configuration change check invariants

untested network

Verified networks can have outages too



Route maintenance
withdraw /18

BGP routes 
look correct

Traffic carried by
untested static route 

and dropped by firewall

Verified networks can have outages too



Inspiration from software: Code coverage



How to define “network coverage”?

Unlike programs, network is not a sequence of statements

Beckett and Mahajan  [2019]

Model the network as a dependency graph of “facts”

Coverage is % of facts covered (in)directly by defined invariants



Prototype deployed at Microsoft



The future of network verification

Effective use in practice

Rapid expansion to more functionality



Physical

Data-link

Network

Transport

Session

Presentation

Application

Routing LPM NAT Load balancing ACL

ARP ATM Ethernet LLDP Spanning Tree VLAN

RPC

TLS SSH FTP IMAP Telnet

DNS NTP IRC POP DHCP SMTP

TCP UDP QUIC

SNMP

USB 802.11

GRE

Network stack is broad and deep



Header Space Analysis
Stateless forwarding

Batfish
Distributed routing

Minesweeper
Distributed routing

Custom 
model

Ternary 
simulation

Custom 
solver

Custom 
model

Concrete 
simulation

BDDs, 
custom

Custom 
model

Stable path 
constraints

SMT 
solver

Current monolithic approach does not scale



VCC Dafny Chalice …

Z3 CVC Yices

Boogie

Front-end

Intermediate Language

Back-end

Inspiration from software: Intermediate languages



Ternary 
simulation Datalog

Zen

Concrete 
simulation

BDDs, 
custom

Stable path 
constraints

SMT 
solver

Model checking …

Distributed 
routing

Middleboxes

Encapsulation

Stateless 
forwarding

Virtual 
Networks

Zen: An IL for network verification

Zen [2020] https://github.com/microsoft/zen



Modeling an Azure security group in Zen

Zen<bool> Allowed(Nsg nsg, Zen<Packet> pkt, int i) {
if (i >= nsg.Rules.Length)

return false;
var rule = nsg.Rules[i];
return If(Matches(pkt, rule), rule.Permit, Allowed(nsg, pkt, i+1)); 

}

Library-provided type Zen<T> represents a value that can be symbolic 



Zen has competitive performance



Summary

Network verification is needed to 
guarantee correctness for 

increasingly complex networks

Last few years have seen rapid 
advances in technology and industry 

adoption of network verification

The next frontier is enabling 
effective use and rapidly covering 

more network functionality


