
The present and future of
network verification

Ratul Mahajan
UW CSE 561, Winter 2021

“At least 41% of all calls that attempted
to use T-Mobile’s network during the
outage failed, including at least 23,621
failed calls to 911.”

“[An old woman] who has dementia,
could not reach [her son] after her car
would not start and her roadside-
assistance provider could not call her
to clarify her location; she was
stranded for seven hours”

Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

Denver
2 2

6

Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

2 2

X 6Denver

What if T-Mobile could
guarantee that no traffic
will transit Denver?

What if T-Mobile could
predict the impact of
link failure?

Network
verification

Guarantee network behavior*†

* Some aspect of behavior
† Under some assumptions

A horizontal slice of the problem

Hardware

Software (OS, protocols)

Configuration, state

Trust

Verify

Distributed routing
Protocol redistribution

Rich route filters

Complex interactionsLarge scale
O(103) devices

O(104) config lines / device
O(106) FIB entries / device

The “haystack” of network behaviors is HUGE

???

???

???

???

???

Only specific route announcements

Only specific failures

Only specific packets

Only specific announcement ordering

12

The “needles” in network behavior are tiny

The 2D space of network verification tools

states analyzed
Fe

at
ur

es

One (live)
state

Some
states

All
states

Da
ta

 p
la

ne

ve
rif

ic
at

io
n

Co
nt

ro
l p

la
ne

ve

rif
ic

at
io

nShortest-path or policy routing?
Are packet transformed?

Stateless or stateful forwarding?
…

Data plane
verification

Who can talk to whom using
which packets and paths in
one state of the network?

A

B

C

D

10.10.1.0/24 B

10.10.0.0/16 C

0.0.0.0/0 B

10.10.2.0/24 A

0.0.0.0/0 D

10.10.1.0/24 A

0.0.0.0/0 D

Can A talk to D and using
which packets?

DPV idea: Ternary simulation

A

B

C

D

10.10.1.0/24 B

10.10.0.0/16 C

0.0.0.0/0 B

10.10.2.0/24 A

0.0.0.0/0 D

10.10.1.0/24 A

0.0.0.0/0 D

10.10.1.*
∪ (*.*.*.* – 10.10.*.*)

HSA [2012]

10.10.1.*
∪ (*.*.*.* – 10.10.*.*)
– 10.10.2.*

Union packet sets along possible paths
Solve using custom data structure or BDDs*.*.*.*

More DPV

Alternative methods: Xie et al. [2005], Anteater [2011], Atomic predicates [2013]

Scalability in specific settings: Parallelism [Libra 2014], Symmetry [2016], local checks [RCDC 2019]

Incrementality: NetPlumber [2013], VeriFlow [2013], Delta-net[2017]

Stateful processing: VMN [2017], SymNet [2016], NetSMC [2020]

Programmable data planes: p4v [2018]

Stateless DPV is a “solved problem”
Stateful and programmable DPV not there yet

Control plane
verification

Who can talk to whom using
which packets and paths in
many states of the network?

Finds bugs proactively
Enables what if analysis☑

Verifying distributed control planes

ip prefix-list PL1 deny 192.168.0.0/16 le 32
ip prefix-list PL1 allow
route-map FromR2 10
match ip address prefix-list PL1
set local-preference 120

ospf interface int2_1 metric 1
ospf interface int2_1 metric 1
ospf redistributed connected metric 10

Routers generate and process
messages per low-level directives

Reason about states that
emerge when many such

programs run concurrently

Goal

CPV idea #1: Simulate the control plane

1. Simulate the control plane to generate data plane states
2. Use DPV to analyze the states

Batfish [2015]

Can analyze any data plane but not all data planes?

CPV idea #2: Encode the fixed point

1. Valid network states are fixed points of the control plane
2. Fixed points can be formally encoded

ARC [2016] use a graph encoding (not general)
Minesweeper [2017] uses SMT encoding

18

Minesweeper overview

R1S1

S3

S2

N1 N2 N3

R2

R3

Does P hold in the network?‘‘ ’’
Network encoding: N

Property: ¬ P
⋀

Satisfiable: Property violation
Unsatisfiable: Property holds for all states
(or the network does not converge)

1. Encode protocol interacOons

R1S1

S3

S2

N1 N2 N3

R2

R3

S1

S3

S2

N1 N2 N3

OSPFCON

BGP BGP

OSPF CON

OSPF

CON

R1 R2

R3

Protocol
View

Protocol Interactions

1

1. Encode protocol interactions

S1

S3

S2

N1 N2 N3

OSPFCON

BGP BGP

OSPF CON

OSPF

CON

R1 R2

R3

Circuit view
for R1BGP

Protocol Interactions

R1BGPR1CON

R1OSPF

R2BGP

N1BGP

e4in4

After R2
export filter

After R1
import filter

Redistribution
From CON to BGP

BGP peering
Between R1 and R2

1

2. Encode routing messages

R1BGPR1CON

R1OSPF

N1BGP

med:

}prefix:

Routing Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)
[0,232)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

2

2. Encode routing messages

R1BGP R1CON

R1OSPF

R2BGP

N1BGP

e4 in4

ip prefix-list PL1 deny 192.168.0.0/16 le 32
ip prefix-list PL1 allow
route-map FromR2 10
match ip address prefix-list PL1
set local-preference 120

Import filter on R1 from R2

if e4.valid ∧ failedR1,R2 = 0 ∧
¬ (FBM(e4.prefix, 192.168.0.0, 16) ∧

16 ≤ e4.prefixLen ≤ 32) then
in4.valid = true
in4.lp = 120
in4.prefix = e4 .prefix
in4.metric = e4.metric
in4.prefixLen = e4 .prefixLen
…

else in4.valid = false

If R2 exports a route

And it passes the import filter

Then R1 has the same route
with local preference of 120

Otherwise, R1 has no route from R2

2

3. Encode routing decisions
Decision Process

R1BGP R1CON

R1OSPF

R2BGP

N1BGP

in1

in4
in5

in7
R1BGP-BEST = Min(in1, in4, in5, in7)

R1OSPF-BEST,
R1-BEST = Min(R1BGP-BEST,

R1CON-BEST)

What is the best BGP route?

What is the best overall route?

3

3. Encode routing decisions

25

R1BGP R1CON

R1OSPF

R2BGP

N1BGP

e4 in4

RIBR1,R2 = (in4 = R1-Best)

FIBR1,R2 = RIBR1,R2 ⋀ ¬ ACL(R1,R2)

Does R1 have a RIB entry for R2?

Does R1 have a FIB entry for R2?

3

5. Encode the data packet

26

Data plane packet

}dstIp

Symbolic Packet

srcIp
dstPort
srcPort
protocol

{R1S1

S3

S2

N1 N2 N3

R2

R3
??????

0 ≤
0 ≤
0 ≤
0 ≤
0 ≤

≤ 232
≤ 232
≤ 216
≤ 216
≤ 28

4

6. Encode the property

Can R3 reach subnet S2?‘‘ ’’
R1S1

S3

S2

N1 N2 N3

R2

R3

canReachR2 ⇔ FIBR2,S2

canReachR1 ⇔
(FIBR1,R2 ⋀ canReachR2) ⋁
(FIBR1,R3 ⋀ canReachR3)

canReachR3 ⇔
(FIBR3,R1 ⋀ canReachR1)

Property: canReachR3

5

Must use domain knowledge

Optimizing the encoding

SMT solvers cannot
automagically perform
even “straightforward”

optimizations

med:

}prefix:

Routing Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)
[0,232)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

FBM(r.prefix, 192.4.0.0, 16) ⋀
16 ≤ r.prefixLen ≤ 32

FBM(dstIp, 192.4.0.0, 16) ⋀
16 ≤ r.prefixLen ≤ 32

=

(192.4.0.0 ≤ dstIp ≤ 192.4.0.0 + 232-16) ⋀
16 ≤ r.prefixLen ≤ 32

=

Integer Difference Logic!

Prefix Hoisting

Slicing

med:
}

Symbolic Record

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

Statically analyze configs
to infer irrelevant attributes

Local preference has no
impact if never explicitly set

Does it work for real networks?

152 networks

OSPF, eBGP, iBGP
Static routes

ACLs
Route redistribution

120 violations
Hijack-able internal addresses

Asymmetric paired ACLs

Proved fault tolerance

How well does it scale?

32

< 5 minutes

More CPV

Tradeoff generality for scalability
• ARC [2016], Tiramisu [2019], FastPlane [2019], Shapeshifter [2020]

Model checking
• Plankton [2019]

Exploit symmetry
• Bonsai [2018], Origami [2019]

Fully general CPV that scales to
thousands of nodes is still an open problem

Reflections on research to practice journey

Remarkably short path from research to practice

All large cloud
providers are

using it

Startups are
enabling

broader use

Research to practice gap (1/3)

Real networks have unwritten assumptions that cause violations

Devices cannot spoof source IPs

Blocking “malicious” IPs or telnet ports is OK
Loosing connectivity under specific failures is OK

Network verification is “too complete”
Flags uninteresting violations

Research to practice gap (2/3)

Oddly-shaped packet header spaces and network environments

Not easy to map back to user-configured objects

Network verification answers are “too precise”
Hard to explain results to users

Research to practice gap (3/3)

Tes\ng with concrete inputs is easier than specifying invariants

Inversion of mental model is needed

Network verification is “too different”
Hard for network engineers to use

The future of network verification

Network verification 1.0 Network verification 2.0

Identify promising slices
of the problem

Develop core techniques

Enable effective use
in practice

Enable rapid expansion
to more functionality

Configuration change check invariants

untested network

Verified networks can have outages too

Route maintenance
withdraw /18

BGP routes
look correct

Traffic carried by
untested static route

and dropped by firewall

Verified networks can have outages too

Inspiration from software: Code coverage

How to define “network coverage”?

Unlike programs, network is not a sequence of statements

Beckett and Mahajan [2019]

Model the network as a dependency graph of “facts”

Coverage is % of facts covered (in)directly by defined invariants

Prototype deployed at Microsoft

The future of network verification

Effective use in practice

Rapid expansion to more functionality

Physical

Data-link

Network

Transport

Session

Presentation

Application

Routing LPM NAT Load balancing ACL

ARP ATM Ethernet LLDP Spanning Tree VLAN

RPC

TLS SSH FTP IMAP Telnet

DNS NTP IRC POP DHCP SMTP

TCP UDP QUIC

SNMP

USB 802.11

GRE

Network stack is broad and deep

Header Space Analysis
Stateless forwarding

Batfish
Distributed routing

Minesweeper
Distributed routing

Custom
model

Ternary
simulation

Custom
solver

Custom
model

Concrete
simulation

BDDs,
custom

Custom
model

Stable path
constraints

SMT
solver

Current monolithic approach does not scale

VCC Dafny Chalice …

Z3 CVC Yices

Boogie

Front-end

Intermediate Language

Back-end

Inspiration from software: Intermediate languages

Ternary
simulation Datalog

Zen

Concrete
simulation

BDDs,
custom

Stable path
constraints

SMT
solver

Model checking …

Distributed
routing

Middleboxes

Encapsulation

Stateless
forwarding

Virtual
Networks

Zen: An IL for network verification

Zen [2020] https://github.com/microsoft/zen

Modeling an Azure security group in Zen

Zen<bool> Allowed(Nsg nsg, Zen<Packet> pkt, int i) {
if (i >= nsg.Rules.Length)

return false;
var rule = nsg.Rules[i];
return If(Matches(pkt, rule), rule.Permit, Allowed(nsg, pkt, i+1));

}

Library-provided type Zen<T> represents a value that can be symbolic

Zen has competitive performance

Summary

Network verification is needed to
guarantee correctness for

increasingly complex networks

Last few years have seen rapid
advances in technology and industry

adoption of network verification

The next frontier is enabling
effective use and rapidly covering

more network functionality

