

INTRODUCING OPTICAL SWITCHING INTO DATACENTER NETWORKS

George Porter (on behalf of many co-authors!)
UC San Diego

University of Washington
Feb 8, 2021

GROWTH OF “HYPERSCALE” DATACENTERS

Google

facebook

YouTube

Microsoft

YAHOO!

amazon.com

Spotify

salesforce

NETFLIX

Network problem:
connecting >100,000 servers

HYPERSCALE IMPOSED NEW REQUIREMENTS ON NETWORKS

Can't buy
sufficiently fast
switches

Petabit line card

Search

Your search - **Petabit line card** - did not match any documents.

Did you mean: [Gigabit line card](#)

$$100,000 \times 10 \text{ Gb/s} = 1 \text{ Pb/s}$$

2009: RISE OF “SCALE OUT” NETWORKS

SCALING “TRADITIONAL” FATTREES IS BECOMING EXPENSIVE

SCALING “TRADITIONAL” FATTREES IS BECOMING EXPENSIVE

PROLIFERATION OF FAT TREE LAYERS A GROWING PROBLEM

Optical links

1,000 + Gb/s –
1,000 + meters

Single mode fiber

10 Gb/s –
2,000 meters

SFP+ transceiver

1 Gb/s – 100m

CAT 5

10 Gb/s – 10 meters

10G DAC

Electrical links

Datacenter Network

For every device attached to the network, there are multiple transceivers in the network

100k nodes: $O(100kW)$ and $O($$$)$

BANDWIDTH GROWTH CONTINUES HOWEVER...

BANDWIDTH GROWTH CONTINUES HOWEVER...

SCALING LIMITATIONS OF CMOS-BASED PACKET SWITCH CHIPS

- Increasing difficulty getting data in/out of the chip
- Divergence between *link* rate and *channel* rate
 - E.g. 100G vs 4x25G
- More fabric layers = higher cost & power

“Hiding” layers

0.64 TB/s

5.12 TB/s

12.8 TB/s

Max. chip radix =

64 x 10G

Used chip radix =

16 x 40G

128 x 10G

32 x 40G

128 x 25G

32 x 100G

MOVE TO “CHASSIS” BASED FAT TREES (FACEBOOK, GOOGLE)

“Traditional” packet switch

Multistage chassis switch

Fully-provisioned network – 8,192 end hosts

Architecture	# Tiers	# Hops	# Transceivers	# Switch chips	# Switch boxes	# Fibers
Traditional	3	5	49 k	1,280	1,280	25 k
Multistage Chassis	2	9	33 k	2,304	192	16 k

Improvement:

Penalty:

1.5×
(cost)

1.8×
(latency)

1.8×
(power)

6.7×
(cost)

1.6×
(cost)

Host

TRENDS

- Conventional datacenter networks facing scaling limitations
 - Largely due to scaling limits of underlying packet switch chips
- Direction 1: Parallel network fabrics
 - Adopted thus far by Facebook and LinkedIn
 - Short-to-medium timeframe
- Direction 2: Replace packet switches with optical switches / circuit switches
 - Medium-to-longer timeframe

RESEARCH TIMELINE: DIRECTION 1: PARALLEL NETWORKS

PARALLEL NETWORK DESIGNS

Conventional architectures:

Chassis architecture still scaling the network *up*... just hiding the tiers in switch chassis.

Alternative: Scale out via separate physical data planes

- Benefits: Reduced cost, power, and latency
- Tradeoff: Give up a single “fast” network abstraction

UNDERLYING SWITCH RADIX IS INCREASING

Ex. Broadcom's Tomahawk switch:

32 ports @ 100 Gb/s

OR

128 ports @ 25 Gb/s

Conventional
FatTrees

LINK CHANNEL COUNT IS INCREASING

Ex. 100 Gb/s optical link:

PARALLEL NETWORKS IN INDUSTRY: FACEBOOK

→ from 4 x 128p multi-chip 400G fabric switches

4 x 400G = 1.6T
uplink per rack

→ to 16 x 128p **single-chip 100G** fabric switches

16 x 100G = 1.6T
uplink per rack

PARALLEL NETWORKS IN INDUSTRY: FACEBOOK

Simpler and Flatter

- Over 3X less switch ASICs and control planes in fabric
- 2.25X less tiers of chips in the topology
- Up to 2X less host-to-host network hops intra-fabric
- Up to 3X less host-to-host network hops intra-region

Regional Fabric Aggregator (FA)

Edge Switch

Spine Switch

Fabric Switch

Top of Rack Switch (TOR)

Regional Fabric Aggregator (FA)

Spine Switch

Fabric Switch

RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

MOTIVATION FOR OPTICAL NETWORKING

The faster the data rate of a cable, the shorter it has to be

1 Gbps
O(100m)

Transceivers:
• **O(\$100)**
• **O(10 watts)**

Cable requires a transceiver at either end

OPTICAL SWITCHES

REMOVING TRANSCEIVERS

2009 – USING 3D MEMS TO REMOVE TRANSCEIVERS

- Technology: telecom-grade 3D-MEMs
- Scalability: 100s of ports
- Target: Inter-“pod”

BOTTLENECKS IN NON-SWITCH COMPONENTS

- Telecom not designed for rapid reconfiguration
- Many non-switch bottlenecks in optical components

Transceiver
Electronic
Dispersion
Compensation

CONTROL PLANE 100X SLOWER THAN SWITCH TIME

Source Pods Destination Pods

Hedera demand estimator
+
Edmund's Algorithm

Demand Matrix i

	1	2	3	4
1	0	1	1	3
2	7 ₍₄₎	0	3	1
3	1	3	0	9 ₍₄₎
4	3	2	1	0

Circuit Switch i

1. Collect counters from packet switches
2. Estimate “true” demand
3. Calculate max-weighted matching
4. Reconfigure packet and optical switches

- One cycle \approx one second
- Circuits try to “match” current network conditions
- Stateless in between assignments

APPLICABILITY LIMITED BY SLOW SWITCH TIME & CONTROL PLANE

- Model: 15ms switch time
- Reality: 1000ms control plane
- To “capture” more of the traffic in optics, need a **faster switch** and **faster control plane**

“Hardware Requirements for Optical Circuit Switched Data Center Networks”, Farrington et al., OFC 2011

Applicability of circuit switching determined by switch time δ

RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

REMOVING TRANSCEIVERS

USING 2D MEMS TO “CHASE MICE”

- Needed a faster switch
- 2D MEMS very fast...
 - 2 μs switch time + ringing
 - Approx 11.5 μs total
- ...but not scalable (~24 ports)
 - Lots of ports \rightarrow slow
 - Few ports \rightarrow fast

2011 - MORDIA – A 2D-MEMS 24-PORT MICROSECOND SWITCH

HOW MICROSECOND SWITCHING CHANGES THE CONTROL PLANE

- Microsecond switching prevents scheduling with “fresh” data
 - Collecting demand a bottleneck!
- Insight: amortize series of switch configurations across a single demand estimate:

$$TM' = \sum_i^N t_i P_i$$

- Embodied by *Solstice* and *Eclipse* algorithms
- Result: “Chasing” demand
 - Reactive and responsive

RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

NON-CROSSBAR NETWORKS

Toward 100+ Petabit/second datacenters

Challenge: deliver (very) low-cost bandwidth at scale

RotorNet → “Future-proof” bandwidth (2× today) + simple control + ...

Optical switching – benefits & barriers

Copper:
25 Gb/s

ASIC

I/O limits
bandwidth

Data plane doesn't scale to entire datacenter!

Sending
racks/hosts

Optical Circuit
Switch

Receiving
racks/hosts

Cheap,
future-proof
bandwidth

Fiber:
> 1 Tb/s

Rotor switching model simplifies control

Rotor switches have a simpler implementation

Optical Crossbar:

Optical Rotor switch:

- Cost and complexity scale with:

Ports

Ex. 2,048 ports: 4,096 mirrors
2,048 directions

Matchings (<< Ports)

2 mirrors
16 directions

RotorNet architecture overview

1-hop forwarding over Rotor switch

- Wait for direct path:

- But datacenter traffic can be sparse ...

1-hop forwarding & sparse traffic = low throughput

- Wait for direct path:

Problem: single flow → 33% throughput

- Hint at improvement: network is underutilized

2-hop forwarding better for sparse traffic

- Not new: Valiant ('82) & Chang et al. ('02)

Throughput: Single flow

33% (1-hop) \rightarrow 100% (2-hop)

Uniform traffic 100% (1-hop) \rightarrow 50% (2-hop)

- Optimization: can we adapt between **1-hop** and **2-hop** forwarding?

RotorLB: adapting between 1 & 2-hop forwarding

RotorLB (Load Balancing) overview:

- Default to 1-hop forwarding
- Send traffic over 2 hops only when there is extra capacity
- Discover capacity using in-band pairwise protocol:

→ **RotorLB is fully distributed**

Throughput of forwarding approaches (256 ports)

[1] Ghobadi et al.
Sigcomm '16
[2] Roy et al.
Sigcomm '15

Throughput of forwarding approaches (256 ports)

RotorNet architecture overview

How should we build a network from Rotor switches?

Rotor switch

At large scale:

- **High latency:**
Sequentially step through many matchings
- **Fabrication challenge:**
Monolithic Rotor switch with many matchings
- **Single point of failure**

Distributing Rotor matchings = lower latency

Fault tolerant

Reduced latency:

- Access matchings in parallel

Simplifies Rotor switches:

- Matchings \ll ports
- More scalable, less expensive

Rotor switching is feasible today

Validated feasibility of entire architecture:
(8 endpoints)

100× faster switching than crossbar

Prototype Rotor switch

SEQUENTIAL SWITCHING ENABLES NEW APPROACH TO BEAMSTEERING

"Pinwheel" sequential beam deflector

High-speed spindle
(e.g. commercial 3.5" 7200 RPM drive)

=

+
Faceted disk
(custom patterned with diffraction gratings)

GRATING FABRICATION USING GREYSCALE LASER WRITING

Laser-written photoresist test grating
(with gold coating)

Surface profile of laser-written grating

SEM image
Pitch $\approx 6.67 \mu\text{m}$, 150 lines / mm

Initial results indicated that laser writing can produce the features needed.

PROTOTYPE PINWHEEL IN 3.5" HGST DESKSTAR NAS DRIVE

With encoder, encoder tracks, and clear cover

ROTOR SWITCH PROTOTYPE

Optical layout:

(WD) HGST Deskstar NAS drive

Crosstalk: < 30 dB

Operating spectrum: > 120 nm

2-pass insertion loss: 5 – 8 dB*

(*can be improved with better grating)

THE PINWHEEL ENABLES MICROSECOND-SCALE SWITCHING

**15 μ s reconfiguration @ 7200 RPM
(1,000 x faster than commercial MEMS OXC)**

IMPROVED PERFORMANCE WITH NEW PROTOTYPE

1st Prototype: MEMS selector switch

- Higher loss optics on enclosed $\frac{1}{2}$ " breadboard
- 150 μ s switching
- I/O to external connection patch panels

2nd Prototype: "rotor" switch with pinwheel

- Lower loss optics mounted on vibration-isolated rail
- 15 μ s switching (@ 7200 RPM)
- I/O with 4x internal connection patch panels

RACK MOUNTED TESTING OF NEW ROTOR SWITCH PROTOTYPE

RotorNet scales to 1,000s of racks

- Rotor switch design point: 2,048 ports, 1,000× faster switching than crossbar

Details in: W. Mellette et al., *Journal of Lightwave Technology* '16
W. Mellette et al., *OFC* '16

- 2,048-rack data center:
→ **Latency (cycle time)**
= **3.2 ms**
- Faster than 10 ms crossbar reconfiguration time
- Hybrid network for low-latency applications

RotorNet component comparison

Network	# Packet switches	# Transceivers	# Rotor switches
3:1 Fat Tree	2.6 k	103 k	0

RotorNet delivers:

- Today: Bandwidth 2× less expensive
- Future: Cost advantage grows with bandwidth
- **Benefits of optical switching without control complexity**

RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

REMOVING TRANSCEIVERS

Expander graph networks – an alternative to Fat Tree topologies

- ✓ Similar hardware, cost, and power savings to an oversubscribed Fat Tree
- ✓ Improved throughput vs oversubscribed Fat Tree at low load

“Bandwidth tax” – Reduction in throughput at high traffic loads
– Proportional to average path length

Bandwidth tax limits throughput in expander networks

Bandwidth tax = 2 → Throughput = 50% at high load

→ *Is it possible to support high loads while reducing cost and power?*

Reconfigurable networks enable higher throughput

✓ Reconfiguration permits high throughput at high load

Added complexity: how do we decide which links to reconfigure and when?

→ “RotorNet” (Sigcomm ‘17) – fixed schedule of direct circuits

Today’s circuit switching technologies reconfigure too slowly → high latency

Our contribution: we can have the best of static *and* reconfigurable

“Opera” – combining expanders and reconfiguration in a single, unified network

Opera's design – part 1: providing low-bandwidth-tax connectivity

Full, direct inter-rack connectivity with N matchings:

Opera's design – part 1: providing low-bandwidth-tax connectivity

Opera's design – part 2: providing low-latency connectivity

Full, direct inter-rack connectivity with N matchings:

- Short, latency-bound flows can be sent immediately over multi-hop paths **(high BW tax)**
- Long, throughput-bound flows can wait for direct paths **(low BW tax)**

Key property: Opera only pays a bandwidth tax for short flows → **lower average tax**

Choosing matchings

i. Expansion Union of 3 or more randomly-structured matchings is an expander^[1]

^[1] N Alon, "Eigen values and expanders," Combinatorica, 6(2), 1986.

ii. Direct connectivity between all racks over time

Factor complete graph into N randomly-structured & disjoint matchings:

Offsetting reconfigurations for continuous connectivity

Time to wait for direct path \rightarrow cutoff between “short” & “long” flows

Opera is well-suited for many published data center workloads

Quantifying the cutoff

For 10 Gb/s – 100 Gb/s links:

- Long flows $\geq 15\text{-}30 \text{ MB}$
can afford to wait for direct paths
- Short flows $< 15\text{-}30 \text{ MB}$
cannot wait for direct paths

Published data center flow distributions:

Packet simulations: throughput and latency for 100-rack network

Workload 1: All-to-all shuffle
(favorable)

→ 4x higher throughput & faster completion

Workload 2: Shuffle + MSFT websearch workload
(challenging)

→ 2-4x higher throughput & equivalent completion times for short flows

Workload 3: MSFT datamining (100 B – 1 GB flows)

→ 60% higher admissible load with equivalent FCTs

Practical considerations

Fault tolerance:

- Full connectivity maintained with 4% of links, 7% of ToRs, or 40% of circuit switches failed
(Better than oversubscribed Fat Tree, not as good as static expander)
- Failures detected and disseminated within $O(10 \text{ ms})$

Prototype implementation:

- Time-synchronized routing implemented on programmable Barefoot Tofino switch with P4
- Opera scales to 1,000's of racks, 10,000's of servers with commodity switch table sizes

CREDITS AND THANKS TO MY COLLEAGUES/STUDENTS

- Alex C. Snoeren
- Alex Forencich
- Amin Vahdat
- Andrew Grieco
- Anthony Lentine
- Arjun Roy
- Chang-Heng Wang
- Christopher DeRose
- Chunming Qiao
- Conglong Li
- David G. Andersen
- Douglas C. Trotter
- Feng Lu
- Geoffrey M. Voelker
- George C. Papen
- George Papen
- Glenn M. Schuster
- Guohui Wang
- Hamid Bazzaz
- He Liu
- Jordan Davis
- Joseph Ford
- Joshua Zhu
- Kai Chen
- Li Chen
- Malveeka Tewari
- Matthew K. Mukerjee
- Michael A. Kozuch
- Michael Kaminsky
- Minlan Yu
- Nathan Farrington
- Nicolas Feltman
- Pang-Chen Sun
- Rajdeep Das
- Richard Strong
- Rishi Kapoor
- Rob McGuinness
- Ryan Aguinaldo
- Shan Zhong
- Shaya Fainman
- Shayan Mookherjea
- Sivasankar Radhakrishnan
- Srinivasan Seshan
- Stefan Savage
- T. S. Eugene Ng
- Tajana Rosing
- Tara Javidi
- Vikram Subramanya
- William M. Mellette
- Yeshaiahu Fainman
- Yibo Guo

THE FUTURE OF OPTICAL SWITCHING FOR DATACENTERS/HPC

- Reaching the limits of CMOS-based packet switching
 - In terms of cost, power, performance...
- Direction 1: scale bandwidth by adding *parallel* dataplanes
- Direction 2: scale bandwidth by replacing packet switches with optical ones
 - Unique opportunity to incorporate novel optical devices such as spinning pinwheel/hard drive based switches
- Thank you for your time and attention!

UC San Diego