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GROWTH OF “HYPERSCALE” DATACENTERS
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HYPERSCALE IMPOSED NEW REQUIREMENTS ON NETWORKS

Petabit line card Search

Your search - Petabit line card - did not match any documents.

Did you mean: Gigabitline card




2009: RISE OF “SCALE OUT” NETWORKS

Scaling
bandwidth by
SCaHng;
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SCALING “TRADITIONAL” FATTREES IS BECOMING EXPENSIVE

Merchant Silicon

64 port switch .
1 Gb/s links year ~ 2004
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SCALING “TRADITIONAL” FATTREES IS BECOMING EXPENSIVE

64 port switch @
"

x Chip L] 64 ports
Host :~——|-+-1__|_________J:
32 port switch\ @

| 32 ports
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. (128 ports
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PROLIFERATION OF FAT TREE LAYERS A GROWING PROBLEM

( )
Optical links
1,000 + Gb/s — 10 Gb/s — Datacenter Network

1,000 + meters 2,000 meters

.ﬁ/’,
2 )/u’

Sinale mode fiber SFP+ transceiver
g //{ ¢ w
~

For every device attached to the
network, there are multiple
transceivers in the network

1 Gb/s —100m 10 Gb/s — 10 meters

e Y <T>,
N

Electrical links 100k nodes: O(100kW) and O($$$)




BANDWIDTH GROWTH CONTINUES HOWEVER...
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BANDWIDTH GROWTH CONTINUES HOWEVER...
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SCALING LIMITATIONS OF CMOS-BASED PACKET SWITCH CHIPS

* Increasing difficulty getting data in/out of the chip
* Divergence between link rate and channel rate
* E.g. 100G vs 4x25G

* More fabric layers = higher cost & power

0.64 TB/s 5.12 TB/s 12.8 TB/s

Max. chip radix = 64 128 128
Used chip radix = 16 32 32



MOVE TO “CHASSIS” BASED FAT TREES (FACEBOOK, GOOGLE)

“Traditional” packet switch Multistage chassis switch

#Hops
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TRENDS

* Conventional datacenter networks facing scaling limitations

e Largely due to scaling limits of underlying packet switch chips

* Direction 1: Parallel network fabrics
* Adopted thus far by Facebook and LinkedIn

e Short-to-medium timeframe

» Direction 2: Replace packet switches with optical switches / circuit switches

* Medium-to-longer timeframe



RESEARCH TIMELINE: DIRECTION 1: PARALLEL NETWORKS

Parallel
Network
Fabrics




PARALLEL NETWORK DESIGNS

Conventional architectures:
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Host

Chassis architecture still scaling the network
up... just hiding the tiers in switch chassis.
Alternative: Scale out via separate physical data planes

» Benefits: Reduced cost, power, and latency
» Tradeoff: Give up a single “fast” network abstraction



UNDERLYING SWITCH RADIX IS INCREASING

Ex. Broadcom’s Tomahawk switch:

32 ports @ 100 Gb/s 512 -
L S w
e i =
Chip (I;LIJ 5 o
: | o
\W\Y G 256
O
=
O Z
128 ports @ 25 Gb/s 128 -
Conventional
___________ , FatTrees | | ,
chip QJ 5 1.28 32 64 128 256
| Switch chip capacity (Tb/s)




LINK CHANNEL COUNT IS INCREASING

Ex. 100 Gb/s optical link:
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PARALLEL NETWORKS IN INDUSTRY: FACEBOOK

=» from 4 x 128p multi-chip 400G fabric switches

FSW1 FSW2 FSW3 FSW4 ¥ v \

4x400G=1.6T
uplink per rack

48 FSW ASICs + Control Planes per Pod

Sample Server Pod

LITTLITIIITILL:
VIV VYAV Y

= to 16 x 128p single-chip 100G fabric switches

1 2 3 45 6 7 8 9 10 1 1213 14 15 16

16 x 100G =1.6T
CXOOJORC X IO XOXOICROXCYOICXC)

uplink per rack

16 FSW ASICs + Control Planes per Pod

https.//engineering.fb.com/data-center-engineering/f16-minipack/



PARALLEL NETWORKS IN INDUSTRY: FACEBOOK

Simpler and Flatter F4 3pmesemmeie | L6 §ogmmna iz e
9 348w Flat FA-DU ti
a = er
=5 Over 3X less Regional Fabric 4 @00®.® Regional Fabric
switch ASICs and Aggregator (FA) 8 LA A A Aggregator (FA)
control planes in fabric
7
- 2.25X less Edge Switch 2
tiers of chips in the
topology - 3 @@®®®aamp | Spine Switch
Spine Switch PET Y
=5 Upto2Xless -
host-to-host network
hops intra-fabric 3
Fabric Switch _ )
2 2 @®® ®4xichp | Fabric Switch
=5 Upto3Xless 100 or 16x100
host-to-host network Top of Rack T
hops intra-region Switch (TOR) 1 1

https://engineering.fb.com/data-center-engineering/f16-minipack/



RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

Removing
Transceivers

Parallel
Network
Fabrics




MOTIVATION FOR OPTICAL NETWORKING

The faster the data rate of a cable, the shorter it has to be

Electrical 1 Gbps
Switch 1 Switch 2 | 0(100m)
e Sitn 2 | e Transceivers: |
Switch 1 me— S\itch 2 | O(10m) » 0($100)
+ O(10 watts)
Switch 1

cables...

Cable requires a transceiver at eitherend ~____——7 W&t/

. E <« Optical 100+ Gbps
Switch 1 +—_+ Switch 2 1000m+




OPTICAL SWITCHES

Fixed
Mirror

Output 1
Output 2
Input 1

Glass Fiber
Bundle

v" No transceivers needed
v' Supports unlimited bandwidth
- Different service model

- Not a drop-in replacement

- Reconfiguration delay o




REMOVING TRANSCEIVERS
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Millisecond switching
Helios, Sigcomm ‘10
‘ 2019

Q Time
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2009 — USING 3D MEMS TO REMOVE TRANSCEIVERS

* Model: 15ms
switch time

\\‘i\ a I Observed: 12.1ms
‘ o ‘2 switch time

. —

. | - 05 Ww-w-»m
':L'eDciRAné)ILcjgy. telecom-grade EM&*W "

- Scalability: 100s of ports : L..,

» Target: Inter-“pod”




BOTTLENECKS IN NON-SWITCH COMPONENTS

« Telecom not designed for rapid reconfiguration

« Many non-switch bottlenecks in optical components

-

Throughput (Gk's)

2-second link flap
prevention

a o m D 40 ] 1]

Throughput (Gb/s)

Transceiver

2

=) % 10 20 30 40 50 50 ;

: o Ellectronllc

E Dispersion

- Compensation

Packet-switch baseline

Time (s)

Observed circuit-switched bw




CONTROL PLANE 100X SLOWER THAN SWITCH TIME

Source Pods Destination Pods o o o
Demand Matrix1  Circuit Switch 1

— 1 2 3 4 In Out

1011|113 1 1

Hedera demand estimator 2[701 0371 7 5
+

Edmund’s Algorithm 311 1310]%, 3 3

41312110 4 4

1. Collect counters from packet switches
One cycle = one second

Estimate “true” demand
Circuits try to “match” current

Calculate max-weighted matching network conditions

A

Reconfigure packet and optical Stateless in between assignments
switches




APPLICABILITY LIMITED BY SLOW SWITCH TIME & CONTROL PLANE

« Model: 15ms switch time Applicability of circuit switching
determined by switch time 0

« Reality: 1000ms control plane

« To “capture” more of the traffic in S Cir?ﬁ“t«:—» Packet
. u — t I
optics, need a faster switch and SN BFEie
faster control plane = >0 < 0
o :
o l
= 100% GLJ :
e o |
%D o, M g tE :
Y | T Cmmme e | S . e
= 0%100us 500ps Ims Sms 10ms 50ms 100ms SOOIms ]ls 5s l_ ¢

Traffic Stability Period, S Rank-Ordered Connection Number



RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

Removing
Transceivers

Parallel e o

Network Switch Time
Fabrics




REMOVING TRANSCEIVERS

2 Hybrid network & scheduling
% ReacToR, NSDI '14
c Solstice, CONEXT ‘15
o
E Microsecond switching
o Mordia, Sigcomm ‘13
‘ 2019
D - - Time
> 2009
C}S _____________________________________________________________________________ . L
> &
Q\



USING 2D MEMS TO “CHASE MICE”

9 Sep 2011 2:16 PM

* Needed a faster switch
« 2D MEMS very fast...
« 2 Js switch time + ringing

* Approx 11.5 ys total

SUROmSERAEE — ange gn R - ...but not scalable (~24 ports)

il  Lots of ports - slow

Pulse

 Few ports - fast




2011 - MORDIA - A 2D-MEMS 24-PORT MICROSECOND SWITCH

Passive
coupler

(OCS Connections

(EPS Connections)

Porter et al., “Integrating Microsecond Circuit Switching into the Data Center”, Sigcomm’13.



HOW MICROSECOND SWITCHING CHANGES THE CONTROL PLANE

* Microsecond switching prevents Step 1. Gather traffic matrix TM Step 2. Scale TM into TM"
scheduling with “fresh” data A ,
™ ™
* Collecting demand a bottleneck! [:::] > [: : :]
* Insight: amortize series of switch
configurations across a single demand Step 3. Decompose TM’ into schedule
estimate: A
N PN
i
* Embodied by Solstice and Eclipse Step 4. Execute schedule in hardware J,
algorithms
-1
* Result: “Chasing” demand N
* Reactive and responsive . I:I




RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

Removing Non
Transceivers Crossbar
Switching

Parallel e o

Network Switch Time
Fabrics




NON-CROSSBAR NETWORKS

)
(&)
C
@ Simple control
£ RotorNet, Sigcomm ‘17
O
T
[0}
o
‘ 2019
) Time
> 2009
I
>
Q\




Toward 100+ Petabit/second datacenters UCSD@E@

Challenge: deliver (very) low-cost bandwidth at scale

* New protocols
/\ Load balancing, congestion control, ...

Co-design:
Protocol \ / *  New .topologies .
Topology Jellyfish, Longhop, Slimfly, ...
Hardware * New hardware
Optical circuit switching, RF/optical wireless, ...

. _— "

New “Rotor” switching model

RotorNet — “Future-proof” bandwidth (2x today) + simple control + ...

34



Optical switching — benefits & barriers

UCSDCSE Sl
o e et e e e e N Data plane doesn’t scale to entire datacenter!

[ 4
|
I :_E Queue occupancy ? Queue occupancy
|

- X L L

|
|
|
. |
I| 5 I\Schesulmg/ ——> (W Scheduling
|
LT Crossbar —1 > Ly = )
g I 1D Crossbar
|
—>
|
|
1

= YX"

_____________________ Sending Receiving
Electronic Packet racks/hosts Optical Circuit racks/hosts
Switch

i Cheap,
Copper: I/0 limits future-proof
25 Gb/s bandwidth bandwidth

35



Queue occupancy

ﬁﬁlﬁuu

v

Scheduling

f-J;-\

Crossbar

X

UCSDCSE =

36



Crossbar
model:

N input
ports

Rotor switch
model:

1

1

1

1

i
Ninput —j
ports  __}
i

_l

1

I

N — 1 matchings,

Fixed schedule
152 153 1—->4

ERR

N output
ports

— N output
L ports

? Queue occupancy

]
Scheduling
Crossbar I/.r

N
>

— Bounded reduction in throughput

37
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Rotor switches have a simpler implementation

UCSDCSE Nl

Optical Crossbar: Optical Rotor switch:

1
1
1
—1
1
1
i /
\J
4%
1
1
— error error :—
1
|

Ports Matchings (<< Ports)

N input
ports

e Cost and complexity scale with:

Ex. 2,048 ports: 4,096 mirrors 2 mirrors

2,048 directions 16 directions
39



RotorNet architecture overview

v \
UCSDCSE

{ \ / *  Forwarding? }
\ /  Topology?

v e  Optical Rotor switch > More scalable

v * Rotor switching model — Simpler control

40



1-hop forwarding over Rotor switch UCSDCSE@

* Wait for direct path:
Matching cycle 1 Matching cycle 2

Nodel1l—>2,3,4 °

i 2 B 5; Z > 5:

Node4 —> 1, 2, 3

i
T|me
Uniform traffic > 100% throughput

* But datacenter traffic can be sparse ...

41



1-hop forwarding & sparse traffic = low throughput

* Wait for direct path:
Matching cycle 1 Matching cycle 2
A A

4 L 4 \

Node 1 —> 4 \ \

Problem: single flow — 33% throughput

Time

* Hint at improvement: network is underutilized

42



2-hop forwarding better for sparse traffic

 Not new: Valiant ("82) & Chang et al. ('02)

Matching cycle 1 Matching cycle 2
A A

Node1l —> 4,3, 2
Node2 — 3,4,1

Node3 —>4,1,2
Node4 —>1,2,3 | i i i i i

Throughput: Single flow 33% (1-hop) — 100% (2-hop)

Uniform traffic 100% (1-hop) — 50% (2-hop)

* Optimization: can we adapt between 1-hop and 2-hop forwarding?

43



RotorLB: adapting between 1 & 2-hop forwarding @

RotorLB (Load Balancing) overview:

 Default to 1-hop forwarding Endpoint1  Endpoint 2 h
<——— New matching

 Send traffic over 2 hops only Offer

when there is extra capacity Accept

N

* Discover capacity using

in-band pairwise protocol: ><
v

<€<——— New matching

> Send traffic

Time

— RotorlB is fully distributed



Throughput of forwarding approaches (256 ports)

UCSDCSE Nl

‘|tf- <— |deal packet
[ switch
RotorlLB
+« 0.8
-
O
L
S
S 0.6
N Y N - S N S ————
0 04l . 2-hop forwarding |
R s Pl ————————— | <— 3:1 packet
) L7 )
T e | switch
' .” 1-hop forwarding
0 g ‘ ' ' '
0 0.2 0.4 0.6 0.8 1
A Traffic density A

One connection Uniform traffic .



Throughput of forwarding approaches (2s6ports) | @

'] T 1 | | < Ideal packet
Price of simple switch
= 087 control
e v
-g.) A
5 0.6 .
S 2x bandwidth
204} (similar cost) |
s 0 1<— 3:1 packet
Y switch
®o2!
0 ' ' . |
0 0.2 0.4 0.6 0.8 1

Traffic density

46



RotorNet architecture overview

UCSDCSE Nl

v \ / * RotorLB — Distributed, bounded throughput
\ /  Topology?
\ /
v e  Optical Rotor switch > More scalable
v * Rotor switching model — Simpler control

47



How should we build a network from Rotor switches?UCSD

At large scale:

High latency:
Sequentially step through
many matchings

Fabrication challenge:

Monolithic Rotor switch
with many matchings

Single point of failure

Rotor switch

ToR

Rack

&

48



ToR

Rack

e
UCSDCSE @

49



Distributing Rotor matchings = lower latency chm\%@

Rotor switches

Fault tolerant . A
4 L L 1

Reduced latency: % %%

* Access matchings in v, M. - M. M, -

Simplifies Rotor switches:

* Matchings << ports (111 111 [TTT
Rack

* More scalable, less
expensive

50



Rotor switching is feasible today </

UCSDCSE Nl

Validated feasibility of Prototype Rotor switch

entire architecture:
(8 endpoints)

\ / RotorlLB

RotorNet topology

Optical Rotor switch

Rotor switch model

100x faster switching than
crossbar

51
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SEQUENTIAL SWITCHING ENABLES NEW APPROACH TO BEAMSTEERING

High-speed spindle
(e.g. commercial 3.5” 7200 RPM drive)

"Pinwheel" sequential beam deflector

Faceted disk

Diffracted . . . :
(custom patterned with diffraction gratings)

beam




GRATING FABRICATION USING GREYSCALE LASER WRITING

Laser-written photoresist test grating

(with gold coating) SEM image

Surface profile of laser-written grating Pitch ~ 6.67 um, 150 lines / mm

-0.1

-0.2
-0.3

-0.4

Initial results indicated that laser o
writing can produce the features

-0.7

needed.

-0.9

Z [um]

Y [um]

— Target —— Measurement



PROTOTYPE PINWHEEL IN 3.5” HGST DESKSTAR NAS DRIVE

With encoder, encoder tracks, and clear cover




ROTOR SWITCH PROTOTYPE

Optical layout:
(WD) HGST Deskstar NAS drive

Outl "=

Input 75 ﬂ
out2 = }
Grating
pinwheel

Crosstalk: <30dB

. Operating spectrum: >120 nm
, Diffracted ] ]
Laser-written 2-pass insertion loss: 5-8dB*

beam

grating pinwheel (*can be improved with better grating)



THE PINWHEEL ENABLES MICROSECOND-SCALE SWITCHING

Image of
fiber I/O array

Disk (/\L

Sector 1

Pinwheel rotation

Disk
Sector 2

Switching transitions

1+ o e F ST WV’MWM
= 0.8 (
o)
= 06+
2 €——t-x > ltf,-us <____91595
=04 Rising Falling |
8
502t \ \‘ ]
0 Lﬁ’m&LrL_AAMJ ” ’»’:LA&:.‘.J&

0 10 20 30 40 0 10 20 30 40
Time (us) Time (us)

15 us reconfiguration @ 7200 RPM
(1,000 x faster than commercial MEMS OXC)



IMPROVED PERFORMANCE WITH NEW PROTOTYPE

15t Prototype: MEMS selector switch 2"d Prototype: “rotor” switch with pinwheel
- Higher loss optics on enclosed %” breadboard - Lower loss optics mounted on vibration-isolated rail
- 150 us switching - 15 us switching (@ 7200 RPM)

- I/0O to external connection patch panels - I/O with 4x internal connection patch panels



RACK MOUNTED TESTING OF NEW ROTOR SWITCH PROTOTYPE

Rotor
. Switch

4 ‘= I

9 Servers

“ 4 y N J
nnections back




RotorNet scales to 1,000s of racks

i
UCSDCSE @

Rotor switch design point: 2,048 ports, 1,000x faster switching than crossbar

Details in: W. Mellette et al., Journal of Lightwave Technology ’16

W. Mellette et al., OFC '16

2,048-rack data center:
— Latency (cycle time)
= 3.2 ms

Faster than 10 ms crossbar
reconfiguration time

Hybrid network for low-
latency applications

128 Rotor switches

Packet
switches

59



RotorNet component comparison

UCSDCSE Nl

Network # Packet switches | # Transceivers | # Rotor switches

3:1 Fat Tree 2.6 k 103 k 0

RotorNet delivers: ¢ Today: Bandwidth 2x less expensive
e Future: Cost advantage grows with bandwidth

» Benefits of optical switching without control complexity

60



RESEARCH TIMELINE: DIRECTION 2: OPTICAL NETWORKS

Removing Non-
Transceivers Crossbar
Switching

Parallel

Focus on All-optical

Network Switch Time Network
Fabrics




REMOVING TRANSCEIVERS

2 Low-latency for RotorNet

= Opera, NSDI'20

©

=

)

‘c

)

o
‘ 2019

Q Time
> 2009
S
>
Q\




Expander graph networks — an alternative to Fat Tree topologies

] 1] 1]
v’ Similar hardware, cost, and power savings to an oversubscribed Fat Tree

v Improved throughput vs oversubscribed Fat Tree at low load

“Bandwidth tax” — Reduction in throughput at high traffic loads
— Proportional to average path length

63



Bandwidth tax limits throughput in expander networks

Contention

Flow 1: 4669 38% Flow 2: 38%

Bandwidth tax=2 — Throughput = 50% at high load

— Is it possible to support high loads while reducing cost and power?

64



Reconfigurable networks enable higher throughput

Reconfigured direct links: bandwidth tax =1

Multi-hop links
bandwidth tax = 2

Flow 1: 100% Flow 2: 100%

v’ Reconfiguration permits high throughput at high load

Added complexity: how do we decide which links to reconfigure and when?

— “RotorNet” (Sigcomm ‘17) — fixed schedule of direct circuits

Today’s circuit switching technologies reconfigure too slowly — high latency
65



Our contribution: we can have the best of static and reconfigurable

Reconfigurable networks: high latency high throughput
Expander networks: w low thr{ hghput

L

Workload = Short flows  + Long flows

Latency-bound Throughput-bound

“Opera” — combining expanders and reconfiguration in a single, unified network

66



Opera’s design — part 1: providing low-bandwidth-tax connectivity

Full, direct inter-rack connectivity with N matchings:

Circait.sw

A\

Time

67



Opera’s design — part 1:

providing low-bandwidth-tax connectivity

Full, direct inter-rack connectivity with N matchings:

Time

A\

68



Opera’s design — part 2: providing low-latency connectivity

M,

Circuit sw 1 Circuit sw 2

Circuit sw 3

Full, direct inter-rack connectivity with N matchings:

Circuit sw 1: |/ _“ M,

Ml . e MN—Z MN-l MN
Circuit sw 3: \\ J
Expander Expander Time
1 k

e Short, latency-bound flows can be sent immediately over multi-hop paths (high BW tax)

* Long, throughput-bound flows can wait for direct paths (low BW tax)

Key property: Opera only pays a bandwidth tax for short flows — lower average tax

69



Choosing matchings

i. Expansion

ii. Direct connectivity between all racks over time

Union of 3 or more randomly-structured matchings is an expander (1]

[11 N Alon, “Eigen values and expanders,” Combinatorica, 6(2), 1986.

Factor complete graph into N randomly-structured & disjoint matchings:

Source Rack

Destination Rack

Complete graph

Factored
complete graph

70



—

Offsetting reconfigurations for continuous connectivity

0
Reconfig. i~ 10 us Dwell ~ 100 pus
—> | < — i
Circuit sw 1: M, % M /é My.; /é M, %
CIFCUIt SwW 2: % M6 Z LA MN—Z % % se e
Circuit sw 3: VI, /// My /// :é
Circuit sw 4: M, ;j 7, M, /// M, g

Time

\

N
A

Cycle: ~ 1-10 ms

Time to wait for direct path — cutoff between “short” & “long” flows



Opera is well-suited for many published data center workloads

Quantifying the cutoff

For 10 Gb/s — 100 Gb/s links:

* Long flows > 15-30 MB
can afford to wait for direct paths

* Short flows < 15-30 MB
cannot wait for direct paths

Published data center flow distributions:

CDF of flows

CDF of bytes

“Short” <«

I E llLongIl

0.5¢
15-30 MB

Microsoft websearch
Facebook Hadoop
Microsoft datamining

102 10° 10* 10° 10%° 10

[ —— ~ .-

o F
[e=]

10°
Flow size (bytes) :
1
Most flows must pay < i_> v’ Most bytes can
bandwidth tax 11 avoid bandwidth tax
1 i
I
I > 90% of
05F : :
] bytes
A1
0 T

102 10° 10* 10° 10% 107
Flow size (bytes)

—_
(=]
-
o
[{]
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Packet simulations: throughput and latency for 100-rack network

Workload 1: All-to-all shuffle Workload 2: Shuffle + MSFT websearch workload
(favorable) (challenging)
1
3075
1 T 5
= Opera g
50'75- Exp ander graph _ =0 Opera
S 05¢ P erap ] — 0 Expander graph
3 © 30—
c = 45 kB fl
'-E 0.25¢ — _,__.__,_____..________._....\\ ] ‘E 200 ( ows)
0 ' ) ' ' = 100
0 50 100 150 200 250 =
Time (ms) S 0 ﬂgL
Websearch traffic load
— 4x higher throughput & faster completion — 2-4x higher throughput &

equivalent completion times for short flows

Workload 3: MSFT datamining (100 B — 1 GB flows)

— 60% higher admissible load with equivalent FCTs
73



Practical considerations

Fault tolerance: * Full connectivity maintained with 4% of links, 7% of ToRs, or 40% of
circuit switches failed
(Better than oversubscribed Fat Tree, not as good as static expander)

* Failures detected and disseminated within O(10 ms)

Prototype implementation:

e Time-synchronized routing implemented on programmable Barefoot
Tofino switch with P4

* Opera scales to 1,000’s of racks, 10,000’s of servers with commodity
switch table sizes
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Reaching the limits of CMOS-based packet switching
* Interms of cost, power, performance...

Direction 1: scale bandwidth by adding parallel dataplanes

n
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* Unique opportunity to incorporate novel optical devices such as spinning
pinwheel/hard drive based switches 1P| >
o -

Direction 2: scale bandwidth by replacing packet switches with optical ones [

Thank you for your time and attention!
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