

New Challenges in Network Diagnosis

Minlan Yu
Harvard University

Joint Work with Yuliang Li, Jiaqi Gao, Rui Miao, Mohammad Alizadeh, Nofel Yaseen,
Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu, Ricardo Bianchini,
Ramaswamy Aditya, Xiaohang Wang, Henry Lee, David Maltz, Behnaz Arzani

Diagnosing Network Applications

- Many networked applications in large production networks

- Require high Availability and SLO (Service-level Objectives)
- Need to quickly locate problems when things go wrong

New Challenges for Diagnosis

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many components and layers in cloud-scale services)

At Scale
(~100K servers/VMs/processes)

Challenge 1: Ultra Low Latency

- The killer microseconds

Ultra low latency Applications
(real-time reinforcement learning, large-scale distributed systems, packet-level traffic analysis)

GPU, TPU
O(10us)

flash O(10us),
NVM O(1us)

RDMA O(1us)

Many Fine-time scale Events

Performance is sensitive to many fine-time scale events

- More intermittent events
- Many events happen at the same time
- Small events have cascading impact across components and over time

How to collect these fine-grained events at scale?
How to correlate them with performance problems?

Challenge 1: Ultra Low Latency at Scale

- Overall latency \geq latency of slowest component (Tail latency!!!)
 - small blips on individual flows cause delays
 - touching more machines increases likelihood of delays

Challenge 2: Growing Complexity

- Developers have to master growing complexity

Packet losses
Long delay
Burst
Throughput drops
Transient stalls
Connectivity issues

Networking
Storage
Databases
Load balancing
Security
ISPs

Optical links
Switches
Servers
NICs
Accelerators

Topology
Routing
Device configs
OS stack
Transport
...

Find needles in the haystack

Challenge 2: Growing Complexity

- Developers have to master growing complexity
- The blame game
 - “There must be something wrong on the component that I don’t control or understand”
 - “Things work fine at my component before and nothing changed”
- Network is often the target for blames
 - Interconnected with many components
 - Less visible to other upper layer applications

Automatically identify the right team/component

Challenge 2: Growing Complexity

- Developers have to master growing complexity
- The blame game
 - “There must be something wrong on the component that I don’t control or understand”
 - “Things work fine at my component before and nothing changed”
- Network is often the target for blames
 - Interconnected with many components
 - Less visible to other upper layer applications

Automatically identify the right team/component

New Challenges for Diagnosis

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many teams and layers in cloud-scale services)

At Scale
(~100K servers/VMs/processes)

Fine-grained data collection
at scale

Automatic analysis to identify
the responsible components

This talk

- **DETER: Record-and-Replay for TCP**
 - Collect detailed yet lightweight packet information at scale
- **Scouts: Domain-customized incident routing**
 - Automatically direct incident tickets to the right team

Detailed packet-level information
for TCP diagnosis

TCP performance diagnosis is important

- Highly distributed applications in large production networks
 - These apps rely on high throughput, low latency of all the TCP connections
- Yet, TCP problems happen all the time
 - Tail latency matters
 - A single flow with long latency can slow down the entire job

Why is diagnosing TCP hard?

- TCP in the text book:

TCP is complex!

- Reality...

TCP is complex!

- Unexpected interactions between diff components

TCP is complex!

- Unexpected interactions between diff components

TCP is complex!

- Unexpected interactions between diff components
- 63 parameters in Linux 4.4 TCP that tune the behaviors of diff components
- **Continuous error-prone development:**
 - 18 bugs found in July & Aug of 2018 in Linux TCP

How do we diagnose TCP today?

Tcpdump

Detailed diagnosis is not scalable

- Bandwidth: 10Mbps to 100Gbps
- #hosts: 10s to 100,000s
- Too much overhead!

Tension between more details and low overhead

- Existing tools cannot achieve both Runtime record $=$ Data for diagnosis
- DETERministic Record and Replay Runtime record $<$ Data for diagnosis

DETER overview

Lightweight record

Run continuously
On all hosts

Deterministic replay

Capture packets/counters
Trace executions
Iterative diagnosis

Lightweight record

Deterministic replay

Intuition for being lightweight

Lightweight record

Record socket calls

Deterministic replay

Automatically generate packets

Non-deterministic interactions w/ many parties

Non-deterministic interactions w/ many parties

Key contribution:

- Identifying the minimum set of data that enables deterministic replay

Two challenges:

- Network wide: non-deterministic interactions across switches and TCP
- On host: non-determinisms within the kernel

Butterfly effect

Challenge 1: butterfly effect

- The **closed loop** between TCP and switches amplifies small noises

Challenge 1: butterfly effect

Challenge 1: butterfly effect

Runtime

Replay

Reduce Butterfly Effect

Challenge 1: butterfly effect

- Record all the packets into TCP?

High overhead

Challenge 1: butterfly effect

- Solution: record&replay **packet stream mutations**

Challenge 1: butterfly effect

- Solution: record&replay **packet stream mutations**

+ Low overhead:

Drop rate $< 10^{-4}$;

ECN: 1 bit/packet;

Reordering is rare

+ Replaying each TCP connection is independent

Connections interact via drops and ECN, which we replay.

+ Need no switches for replay

Replay

Implementation

- DETER in Linux 4.4
 - Just need 139 lines of changes to Linux TCP
- Lightweight recording
 - Storage: 2.1%~3.1% compared to compressed packet header traces.
 - CPU: < 1.5%

Case study in Spark

- Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections
- Replay and collect trace for flows with 99.9 percentile latency

Flow size (MB)	<0.1	[0.1, 1]	[1, 10]	>10
RTO	8	3	4	0
FR	74	0	0	0
Delayed ACK	0	0	18	0
Rwnd=0	0	0	1	1
Slow start	0	0	1	0

Case study in Spark

- Iteratively debug individual flows
 - E.g., delayed ACK
- Packet traces
 - Burst-40ms-ACK pattern
- Trace TCP executions
 - The receiver explicitly delays the ACK,
 - because the recv buffer is shrinking
 - Caused by the slow receiver

Other use cases

- RTO caused by different reasons
 - Delayed ACK, Exponential backoff,
 - small messages, misconfiguration of receiver buffer size
- We can also diagnose problems in the switches
 - Because we have traces, we can push packets into the network
 - In simulation (requires modeling switch data plane accurately)
 - Case study: A temporary blackhole caused by switch buffer sharing

Conclusion

- Performance diagnosis in large networks is challenging
 - Many problems in the TCP stack
- DETER enables light weight recording and deterministic TCP replay
 - Key challenge: butterfly effect between TCP and switches
 - Record & replay packet stream mutations to break the closed loop
- Deter is opensourced
 - <https://github.com/harvard-cns/deter>

Scouts

Automatic diagnosis
using domain-customized incident routing

Incidents can and do happen

Number of public incidents
between February to July 2020

69

21

Maximum resolution time

14 h 12 m

19 h 49 m

Average resolution time

4 h 40 m

5 h 28 min

40

Life cycle of an incident

Finding the right team is time consuming

Example incident: storage problem

1. Can't write to storage!
2. Must be storage issue
3. Storage is good, network must be slow
4. No congested links
5. Need more information from customer
6. Connection fail to init, SLB failing
7. SLB is good, network must be dropping
8. Packet is reaching to SLB
9. Customer opens too many connections and exhaust SNAT pool, behavior is **expected**

Why multiple teams get involved?

Studied 200 misrouted incidents in Azure

1. Lack of domain knowledge

- ▷ Storage team doesn't know network is functioning or not
- ▷ Team level dependencies are hard to reason about

2. No cloud teams are responsible, more misrouting

- ▷ ISP or customer outside the cloud is experiencing issues

3. Concurrent incidents

- ▷ One failure causes multiple incidents in multiple teams

How to reduce misrouting?

Existing solutions

Application specific
diagnosis system

NetPoirot
[SIGCOMM-16]

DeepView
[NSDI-18]

Sherlock
[SIGCOMM-07]

Natural language
processing

NetSieve
[NSDI-13]

Too many applications in the data center

Ignores essential domain knowledge

Incident routing problem revisit

Solve the whole problem at once?

- ▷ Hard to build a single, monolithic incident routing system

Curse of dimensionality

Huge feature vector with no enough training examples

Uneven instrumentation

A subset of teams will always have gaps in monitoring

Constantly changing

Stale components and monitors

Limited visibility

Hard to understand appropriate feature set for each team

Scout: team-specialized ML-assisted gatekeeper

- ▷ “Is my team responsible for the incident?”

One team, one scout

Leverage domain knowledge

Evolve independently

Scout design

Physical networking team

Scope

Every switch & router in DC

11 Monitor systems

PingMesh, Everflow,
NetBouncer, etc.

Statistics

58% incidents investigated by PhyNet went through multiple teams

97.6 hours per day wasted on unnecessary investigations

CHALLENGE 1

- ▷ *How to process huge amount of monitoring data?*

Millions of devices in the Cloud

Incident guided investigation

CHALLENGE 2

- ▷ *How to create a feature vector out of the monitoring data?*

Different incidents have
variable number of devices

Mixed types of monitoring data
(event-driven vs time series)

How to build a fixed width feature vector?

- ▷ Per-component feature
 - Event: count number of events during the incident period
 - Time-series: normalize and calculate statistics (percentiles, average, etc.)
- ▷ Multiple components
 - Compute statistics across multiple components (percentiles, average, etc.)

CHALLENGE 3

- ▷ *Which computation engine?*

Supervised learning : random forest

Learns based on history incidents, high accuracy

Low accuracy on new incidents

Interpretable, able to provide more insights

Change point detection for new incidents

Change point detection for new incidents

Easy to compute

Higher accuracy on new incidents

Low accuracy on old incidents

Model selector

Incident itself tells whether it is new or not

Use meta-learning to identify new incidents

The anatomy of a Scout

Evaluation

Evaluation setup

DATASET

9 months of incidents in Azure
Randomly split into training
and testing set

LABEL

Whether incident is
resolved by PhyNet

BASELINE

Current incident routing
system without Scout
Runbooks, past-experience,
NLP based routing system

Overall performance

	Precision	Recall	F1-Score
Baseline	87.2%	91.9%	0.89
PhyNet Scout	97.5%	97.7%	0.98
Delta	10.3%	5.8%	0.09

10% improvement in accuracy means significant reduction in investigation time

Benefit of the PhyNet Scout

Gain in
Send incident to PhyNet directly

Save more than **20%** of the total investigation time in **40%** of incidents

Benefit of the PhyNet Scout

Gain out
Reject incident to PhyNet

Close to the best possible gain

Conclusion

- ▷ Incident misrouting is the main challenge for maintaining service level objectives in the cloud
- ▷ Scout: a distributed team-specialized gate-keeper can reduce investigation time.

This talk

- ▷ DETER: Record-and-Replay for TCP
 - Collect detailed yet lightweight packet information at scale
- ▷ Scouts: Domain-customized incident routing
 - Automatically direct incident tickets to the right team

Future Directions in Diagnosis

- New application trends
 - Ultra low latency: the killer microseconds
 - Complex structure, especially with cross-layer design
 - Diagnosis is increasingly important for performance optimization
- Open questions
 - How to collect fine-time scale events at large scale?
 - How to tear apart causal relations across layers, across components, across applications?
 - Data driven approaches for diagnosis
 - Customized diagnosis tools for new applications