New Challenges in Network Diagnhosis

Minlan Yu
Harvard University

Joint Work with Yuliang Li, Jiagi Gao, Rui Miao, Mohammad Alizadeh, Nofel Yaseen,
Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu, Ricardo Bianchini,
Ramaswamy Aditya, Xiaohang Wang, Henry Lee, David Maltz, Behnaz Arzani

Diagnosing Network Applications

 Many networked applications in large production networks

‘GRPC: + <= \ SEEKs

Tensor redis

e Require high Availability and SLO (Service-level Objectives) /;\

* Need to quickly locate problems when things go wronvé\/

g

2

New Challenges for Diagnosis

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many components and
layers in cloud-scale services)

At Scale

(~100K servers/VMs/processes)

Challenge 1: Ultra Low Latency

* The killer microseconds

Ultra low latency Applications
(real-time reinforcement learning, large-scale distributed
systems, packet-level traffic analysis)

GPU, TPU flash O(10us), RDMA O(1us)
O(10us) NVM O(1us)

Many Fine-time scale Events

Performance is sensitive to many fine-time scale events

o More intermittent events

Link failure Loop +
o Many events happen at the same time o 5
— Context switching o
o Small events have cascading impact -
_ & DDoS Packet del 3]
across components and over time s _ Packet delay 5
» Congestion IS
O
& Burst Loss Lost packet
L 2
= % Interrupts
Incast 3
T Gabage collection

How to collect these fine-grained events at scale?
How to correlate them with performance problems?

Challenge 1: Ultra Low Latency at Scale

e Overall latency > latency of slowest component (Tail latency!!!)
— small blips on individual flows cause delays

— touching more machines increases likelihood of delays

M), e N =
| ' il q
PR AR L AR \ i
! \ = NN [M,
i) e AN AR TN
L 0 T T
G T o et
0 TR i l S | A
i i DN i) e
(i ' Y U Y DALV
i ikl [A SLIBSHL A
{ | (O | ' m o
A AN A\

Bing query workflow (SIGCOMM’13)

Challenge 2: Growing Complexity

e Developers have to master growing complexity

Packet losses

Long delay

Burst

Throughput drops
Transient stalls
Connectivity issues

Networking
Storage
Databases
Load balancing
Security

ISPs

Optical links
Switches
Servers

NICs
Accelerators

Find needles in the haystack

Topology
Routing
Device configs
OS stack
Transport

Challenge 2: Growing Complexity

e Developers have to master growing complexity
* The blame game

— “There must be something wrong on the component that | don’t control or
understand”

— “Things work fine at my component before and nothing changed”

* Network is often the target for blames

— Interconnected with many components

— Less visible to other upper layer applications

Automatically identify the right team/component

Challenge 2: Growing Complexity

e Developers have to master growing complexity
* The blame game

— “There must be something wrong on the component that | don’t control or
understand”

— “Things work fine at my component before and nothing changed”

* Network is often the target for blames

— Interconnected with many components

— Less visible to other upper layer applications

Automatically identify the right team/component

New Challenges for Diagnosis

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many teams and
layers in cloud-scale services)

At Scale

(~100K servers/VMs/processes)

Fine-grained data collection
at scale

Automatic analysis to identify
the responsible components

10

This talk

 DETER: Record-and-Replay for TCP

— Collect detailed yet lightweight packet information at scale

* Scouts: Domain-customized incident routing

— Automatically direct incident tickets to the right team

11

DETER

Detailed packet-level information
for TCP diagnosis

TCP performance diagnosis is important
e Highly distributed applications in large production networks

— These apps rely on high throughput, low latency of all the TCP connections

* Yet, TCP problems happen all the time

— Tail latency matters
— A single flow with long latency can slow down the entire job

‘6RPGs ‘) = ™ SEEk

Tensor redis

13

Why is diaghosing TCP hard?

e TCP in the text book:

Slow Cong.

start JIll Avoid. Send
ACK

Fast Receiver

Sender [f=ee)=ls

14

e Reality...

TCP is complex!

Sender

Receiver

15

TCP is complex!

* Unexpected interactions between diff components

Loss recovery

Sender

No fast recovery

Receiver

Recv window manager

TCP is complex!

* Unexpected interactions between diff components

Send window manager

Sender

No response

Receiver

Attack mitigation

Ignore some packets

TCP is complex!

* Unexpected interactions between diff components

e 63 parameters in Linux 4.4 TCP that tune the behaviors of diff
components

e Continuous error-prone development:
— 18 bugs found in July & Aug of 2018 in Linux TCP

18

How do we diagnose TCP today?

Tcpdump

Detailed diagnosis is not scalable

T 1990 T 2000 T 2010 T2019
Tcpdump Tcpdump Tcpdump Tcpdump

* Bandwidth: 10Mbps to 100Gbps
e #thosts: 10s to 100,000s

e Too much overhead!

20

Tension between more details and low overhead

* Existing tools cannot achieve both Rruntime record = Data for diagnosis
* DETERministic Record and Replay Runtime record < Data for diagnosis

O\ierhead Lots of details,
Tep probe « but high overhead

Tcpdump

All details,

ebpf DETER
® ® low overhead
® Tcp counters

> Details for diagnosis 21

Low overhead,
but miss lots of details

DETER overview

(10.0.0.1:80->20.0.0.1:1234
has long latency

|

Runtime

DETER 10.0.0.1:80 -> 20.0.0.1:1234
Recorder

Replay

Tcpdump

TCP Probe

20.0.0.1:1234 -> 10.0.0.1:80

Lightweight record

Run continuously
On all hosts

DETER
Replayer

G

Deterministic replay
Capture packets/counters
Trace executions
Iterative diagnosis

22

Lightweight record Deterministic replay

Intuition for being lightweight

\0 °
Lightweight record Dtlc replay

Record socket calls Automatically generate packets

‘EEREEEREEEERERE
sock}-» > «-4sock

call| |TCPl, TCP| | call

24

Non-deterministic interactions w/ many parties

call

sockl-

TCP

TCP

-Jsock

call

25

Non-deterministic interactions w/ many parties

Key contribution:
* Identifying the minimum set of data that enables deterministic replay

Two challenges: fly offect
» . Network wide: nd B, stic interactions across switches and TCP

e On host: non-determinisms within the kernel

Challenge 1: butterfly effect

* The closed loop between TCP and switches amplifies small noises

sockk- ~{sock
call E: —lTCP call
sock}- -{sock
call call
sock}- ~{sock
call call

Challenge 1: butterfly effect

Sending time variation

Switch action variation>

us-level:
Clock drift, context switching, TCP behavior variation
. kernel scheduling, cache state
Runtime Replay
Cong_win/=2 Cong_win++
i e [Py e [
OOOOOOb,] 2

“drop

sock] .. . sock|_
call queu call

Cong_win++ Cong_win/=2 1‘us late

28

Challenge 1: butterfly effect

Butterfly effect

TCP behavior variation
Runtime Replay

Cong_win/=2 Cong_win++
sock g sock g

Sending time variation (Switch action variation)

call call W q
sock sock 1
call call
Cong_win++ Cong_win/=2
sock enqueue

call

sock] ..
call

29

Reduce Butterfly Effect

(Switch action variation\

TCP behavior variation

Sending time variation

u call 4 1 _»\/\-/\ m call

Record&replay

Record&replay

Challenge 1: butterfly effect

e Record all theackets into TCP?

.1
sock__ TCP
call

Z AN
[]

<

1

Record&replay

__sock:
call

~—

Record&replay

31

Challenge 1: butterfly effect

* Solution: record&replay packet stream mutations

Runti

me

u call

.1 .

sock

Z AN
[]

B

Record
mutations

—a s —

Replay

Drops, ECN, reordering, etc.

N\
/

J]
1

u call

| — |

/

{ I R d » =
ecor ~
mutations Il Top MRS
\ call

\

Drops, ECN, reordering, etc.

/

sock

E-

/

Z AN
()

Replay

[J
{ Vi . I— "
Repla s
mut:?tioyns TCP --S°C|:<
ca

— s —

32

Challenge 1: butterfly effect

e Solution: record&renlav nacket stream mutations
+ Low overhead:

Drop rate < 10%;
ECN: 1 bit/packet;
Reordering is rare
+ Replaying each TCP connection is independent

Connections interact via drops and ECN, which we replay. | Resource-efficient replay:
- Just need two hosts

{ : ll . — -
Repla s
mutgtioyns TCP --SOCI:(
ca

+ Need no switches for replay

- l-—|] I I
sock

u = TCP Replay
call mutations

.\\

33

Implementation

* DETER in Linux 4.4

* Just need 139 lines of changes to Linux TCP
* Lightweight recording

e Storage: 2.1%~3.1% compared to compressed packet header traces.
e CPU: < 1.5%

34

Case study in Spark

* Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections
* Replay and collect trace for flows with 99.9 percentile latency

Flow size (MB)[<0.1[[0.1, 1][[1, 10][>10
RTO 8 3 4 [0

FR 74 0 0 |0
Delayed ACK | 0 0 0
Rwnd=0 0 0 T |1
Slow start 0 0 1 0

35

Case study in Spark

* [teratively debug individual flows
* E.g., delayed ACK

* Packet traces
* Burst-40ms-ACK pattern

* Trace TCP executions
* The receiver explicitly delays the ACK,
* because the recv buffer is shrinking
* Caused by the slow receiver

4x| O6 — L
3.5x10° [-Burst_ 40ms -, .
6 [~ Iy
3X | 0 gt ¢ 9
6 &*
2.5x10° \
2x| 06 ¥ ACK for the burst
|.5xI O6
IxI10 Seq
500000 Ack °
0 ' ! I |
0 200 400 600 800
Time (ms)

Seq/Ack #

36

Other use cases

e RTO caused by different reasons
— Delayed ACK, Exponential backoff,

— small messages, misconfiguration of receiver buffer size

* We can also diagnose problems in the switches

— Because we have traces, we can push packets into the network
— In simulation (requires modeling switch data plane accurately)

— Case study: A temporary blackhole caused by switch buffer sharing

37

Conclusion

* Performance diagnosis in large networks is challenging
* Many problems in the TCP stack

* DETER enables light weight recording and deterministic TCP replay
» Key challenge: butterfly effect between TCP and switches
* Record & replay packet stream mutations to break the closed loop

* Deter is opensourced
* https://github.com/harvard-cns/deter

38

https://github.com/harvard-cns/deter

Scouts

Automatic diagnosis
using domain-customized incident routing

Incidents can and do happen

a A

Number of public incidents

between February to July 2020 o9 2!
Maximum resolution time 14h12m 19h49m
Average resolution time 4h40m 5 h 28 min

40

Life cycle of an incident

REPORT
INCIDENT

FIND THE FAILING
COMPONENT

DIAGNOSE AND FIX
PROBLEM

Monitoring system
- &OE
| — o
| Y, OO0
- BB

INNNNN]
TTTTTT

oL

5
P

Customer reports —

q o
OFmd right team

= |

Check monitoring
systems

Find problematic

() device
(el

[S

Understand

e

| the cause

CDF

Finding the right team is time consuming

0.8

0.6

0.4 r

0.2 +

0

1
——Multiple teams investigate |
1

—Single team investigates

FIND THE FAILING
COMPONENT

monitoring
systems

MW

L

1E-8

1E-7

1E-6

1E5 1E4! (163 1E2 Caffle 1E*O
Time (normailized) ﬁ fix it?

42

Example incident: storage problem

Can't write to storage!

Must be storage issue OI.VT_
Storage is good, network must be slow (\(QI

vy

@
o

No congested links
Need more information from customer ® @
Connection fail to init, SLB failing ©) ®
SLB is good, network must be dropping
Packet is reaching to SLB @) XX ©
Customer opens too many connections and O—0 «— = N
exhaust SNAT pool, behavior is expected —>0 —&— ®
SLB Network Storage

© © N o vk W N =

43

Why multiple teams get involved?

Studied 200 misrouted incidents in Azure

1. Lack of domain knowledge

> Storage team doesn’t know network is functioning or not

> Team level dependencies are hard to reason about

</>

=

/&

45

2. No cloud teams are responsible, more misrouting

> ISP or customer outside the cloud is experiencing issues

i ig:gAT&T _
B of @ %,—%91; xfinity (Q(IBE
i - ZRCN
____________ Q____________ L___________°____________

3. Concurrent incidents

One failure causes multiple incidents in multiple teams

—>[]

59, T ‘@ /o= L\

How to reduce misrouting?

Existing solutions

Application specific Natural language
diagnosis system processing
= -
[] é[—l,g st
</
o/ [‘Ll::
NetPoirot DeepView Sherlock NetSieve
[SIGCOMM-16] [NSDI-18] [SIGCOMM-07] [NSDI-13]
Too many applications in the data center Ignores essential domain knowledge

49

Incident routing problem revisit

LN g

Q Incident f> SLB
</> .) ° LN]
— —_— Machine learning? jp=====-= > !
oulade Network
knowledge @ @
Monitor
data Storage

50

Solve the whole problem at once?

> Hard to build a single, monolithic incident routing system

Curse of dimensionality =~ Uneven instrumentation Constantly changing Limited visibility
Huge feature vector with no A subset of teams will always Stale components and Hard to understand appropriate
enough training examples have gaps in monitoring monitors feature set for each team

51

Scout: team-specialized ML-assisted gatekeeper

> “ls my team responsible for the incident?”

One team, one scout

Leverage domain knowledge

C .‘I@

Evolve independently

52

Scout design

D 2 — 2

Incident

Domain
Knowledge

Monitor
data

Computation
engines

Classification result

53

Physical networking team

O - &

Scope 11 Monitor systems Statistics
Every switch & router in DC PingMesh, Everflow, 58% incidents investigated by
NetBouncer, etc. PhyNet went through multiple
teams

97.6 hours per day wasted on
unnecessary investigations

54

CHALLENGE 1

> How to process huge amount of monitoring data?

Millions of devices in the Cloud

55

Incident guided investigation

R [— D) AN~

® oo o0o
Incident Description Devices Monitor data
“Server X.c10.dc3 is Server: X.c10.dc3 CPU Usage
experiencing problem Cluster: c4.dc1 Link loss rate

connecting to storage Ping latency

cluster c4.dc1”

56

CHALLENGE 2

> How to create a feature vector out of the monitoring data?

Different incidents have J\/\/— Mixed types of monitoring data
variable number of devices (event-driven vs time series)

57

How to build a fixed width feature vector?

> Per-component feature

O Event: count number of events during the incident period

O Time-series: normalize and calculate statistics (percentiles, average, etc.)

> Multiple components

O Compute statistics across multiple components (percentiles, average, etc.)

58

CHALLENGE 3

> Which computation engine?

59

Supervised learning : random forest

@ Learns based on history incidents, high accuracy

@ Low accuracy on new incidents

@ Interpretable, able to provide more insights

60

Change point detection for new incidents

61

Change point detection for new incidents

@ Easy to compute
@ Higher accuracy on new incidents
@ Low accuracy on old incidents

62

Model selector

@ Incident itself tells whether it is new or not

@ Use meta-learning to identify new incidents

63

The anatomy of a Scout

Incident

»

<

Model
Selector

— o |

Random Change
Forest point

~gHe—®—

Monitor

Confi tion fil
onfiguration file data

detection

Computation
engines

2

Classification result

64

Evaluation

Evaluation setup

DATASET
9 months of incidents in Azure

Randomly split into training
and testing set

LABEL

Whether incident is
resolved by PhyNet

BASELINE

Current incident routing
system without Scout

Runbooks, past-experience,
NLP based routing system

66

Overall performance

Precision Recall F1-Score
Baseline 87.2% 91.9% 0.89
PhyNet Scout 97.5% 97.7% 0.98
Delta 10.3% 5.8% 0.09

10% improvement in accuracy means significant reduction in investigation time

67

Benefit of the PhyNet Scout

0.8
PhyNet §
O /,Y “ 04l
b D‘ED ------ > - —G@Gain-in
= 0.2 + —Best possible gain
SLB Storage
0 1 1 1 J
0 20 40 60 80 100
Fraction of investigation time (%)
Gain in Save more than 20% of the total
Send incident to PhyNet directly investigation time in 40% of incidents

68

Benefit of the PhyNet Scout

="
0.8
0.6 +
a
@)
0.4 +
—@Gain-out
0.2 1 —Best possible gain
O 1 1 1 J
0 20 40 60 80 100
Fraction of investigation time (%)
Gain out
Reject incident to PhyNet Close to the best possible gain

69

Conclusion

> Incident misrouting is the main challenge for maintaining
service level objectives in the cloud

> Scout: a distributed team-specialized gate-keeper can
reduce investigation time.

71

This talk

> DETER: Record-and-Replay for TCP
O Collect detailed yet lightweight packet information at
scale

> Scouts: Domain-customized incident routing
O Automatically direct incident tickets to the right team

72

Future Directions in Diagnosis

* New application trends
— Ultra low latency: the killer microseconds
— Complex structure, especially with cross-layer design

— Diagnosis is increasingly important for performance optimization

* Open questions
— How to collect fine-time scale events at large scale?

— How to tear apart causal relations across layers, across components, across
applications?
— Data driven approaches for diagnosis

— Customized diagnosis tools for new applications

