
New Challenges in Network Diagnosis

Minlan Yu
Harvard University

Joint Work with Yuliang Li, Jiaqi Gao, Rui Miao, Mohammad Alizadeh, Nofel Yaseen,
Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu, Ricardo Bianchini,

Ramaswamy Aditya, Xiaohang Wang, Henry Lee, David Maltz, Behnaz Arzani

Diagnosing Network Applications

• Many networked applications in large production networks

• Require high Availability and SLO (Service-level Objectives)

• Need to quickly locate problems when things go wrong

2

New Challenges for Diagnosis

3

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many components and

layers in cloud-scale services)

At Scale
(~100K servers/VMs/processes)

Challenge 1: Ultra Low Latency

• The killer microseconds

4

GPU, TPU
O(10us)

flash O(10us),
NVM O(1us)

RDMA O(1us)

Ultra low latency Applications
(real-time reinforcement learning, large-scale distributed

systems, packet-level traffic analysis)

Many Fine-time scale Events

5

• Performance is sensitive to many fine-time scale events
o More intermittent events
o Many events happen at the same time
o Small events have cascading impact
across components and over time

Link failure

DDoS

Tr
af

fic
 su

rg
e

Packet delay

Lost packet

Pa
ck

et
 b

ur
st

Th
re

ad
 b

ur
st

s

Incast
Gabage collection

Interrupts

Congestion

Cache misses

Loop

Context switching

Burst Loss

How to collect these fine-grained events at scale?
How to correlate them with performance problems?

Challenge 1: Ultra Low Latency at Scale

• Overall latency ≥ latency of slowest component (Tail latency!!!)
– small blips on individual flows cause delays
– touching more machines increases likelihood of delays

6

Bing query workflow (SIGCOMM’13)

Challenge 2: Growing Complexity

• Developers have to master growing complexity

7

Networking
Storage
Databases
Load balancing
Security
ISPs

Optical links
Switches
Servers
NICs
Accelerators

Packet losses
Long delay
Burst
Throughput drops
Transient stalls
Connectivity issues

Topology
Routing
Device configs
OS stack
Transport
…

Find needles in the haystack

Challenge 2: Growing Complexity

• Developers have to master growing complexity
• The blame game
– “There must be something wrong on the component that I don’t control or

understand”
– “Things work fine at my component before and nothing changed”

• Network is often the target for blames
– Interconnected with many components
– Less visible to other upper layer applications

8

Automatically identify the right team/component

Challenge 2: Growing Complexity

• Developers have to master growing complexity
• The blame game
– “There must be something wrong on the component that I don’t control or

understand”
– “Things work fine at my component before and nothing changed”

• Network is often the target for blames
– Interconnected with many components
– Less visible to other upper layer applications

9

Automatically identify the right team/component

New Challenges for Diagnosis

10

Ultra low latency
(The killer microseconds)

Growing complexity
(Involves many teams and

layers in cloud-scale services)

At Scale
(~100K servers/VMs/processes)

Fine-grained data collection
at scale

Automatic analysis to identify
the responsible components

This talk

• DETER: Record-and-Replay for TCP
– Collect detailed yet lightweight packet information at scale

• Scouts: Domain-customized incident routing
– Automatically direct incident tickets to the right team

11

Detailed packet-level information
for TCP diagnosis

12

TCP performance diagnosis is important
• Highly distributed applications in large production networks
– These apps rely on high throughput, low latency of all the TCP connections

• Yet, TCP problems happen all the time
– Tail latency matters
– A single flow with long latency can slow down the entire job

13

Why is diagnosing TCP hard?

• TCP in the text book:

14

Slow
start

Cong.
Avoid.

Fast
recoverySender

Receiver

Send
ACK

TCP is complex!

• Reality…

15

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

Sender

Receiver

TCP is complex!

• Unexpected interactions between diff components

16

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window managerRecv window manager

Loss recovery

Sender

No fast recovery

Receiver

TCP is complex!

• Unexpected interactions between diff components

17

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

Sender

Receiver

Ignore some packets

No response

Send window manager

Attack mitigation

TCP is complex!

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

• Unexpected interactions between diff components
• 63 parameters in Linux 4.4 TCP that tune the behaviors of diff

components
• Continuous error-prone development:
– 18 bugs found in July & Aug of 2018 in Linux TCP

18

How do we diagnose TCP today?

19

Tcpdump

Detailed diagnosis is not scalable

20

1990 2000 2010 2019

Tcpdump Tcpdump Tcpdump Tcpdump

• Bandwidth: 10Mbps to 100Gbps
• #hosts: 10s to 100,000s

• Too much overhead!

Tension between more details and low overhead
• Existing tools cannot achieve both
• DETERministic Record and Replay

21Details for diagnosis

Overhead

Tcpdump

Tcp probe

Tcp counters

DETERebpf

Lots of details,
but high overhead

Low overhead,
but miss lots of details

All details,
low overhead

Runtime record = Data for diagnosis

Runtime record < Data for diagnosis

DETER overview

22

DETER
Recorder

Runtime Replay

10.0.0.1:80->20.0.0.1:1234
has long latency

10.0.0.1:80 -> 20.0.0.1:1234
DETER

Replayer

Lightweight record
Run continuously
On all hosts

Deterministic replay
Capture packets/counters
Trace executions
Iterative diagnosis

Tcpdump

TCP Probe

20.0.0.1:1234 -> 10.0.0.1:80

× N

23

Lightweight record Deterministic replay

Intuition for being lightweight

24

TCPsock
call TCP sock

call

Lightweight record Deterministic replayFAIL!

Record socket calls Automatically generate packets

Non-deterministic interactions w/ many parties

25

TCPsock
call TCP sock

call

Non-deterministic interactions w/ many parties

26

kernel
TCPsock

call
kernel

TCP sock
call

kernel
TCPsock

call
kernel

TCP sock
call

kernel
TCPsock

call
kernel

TCP sock
call

Key contribution:
• Identifying the minimum set of data that enables deterministic replay

Two challenges:
• Network wide: non-deterministic interactions across switches and TCP
• On host: non-determinisms within the kernel

Butterfly effect

Challenge 1: butterfly effect

• The closed loop between TCP and switches amplifies small noises

2727

kernel
TCPsock

call
kernel

TCP sock
call

kernel
TCPsock

call
kernel

TCP sock
call

kernel
TCPsock

call
kernel

TCP sock
call

TCP TCP

TCP TCP

TCP TCP

Challenge 1: butterfly effect

28

enqueue

drop

drop

enqueue
Cong_win/=2

Cong_win++ Cong_win/=2

Cong_win++

Sending time variation Switch action variation

TCP behavior variation
Runtime Replay

1 us late

µs-level:
Clock drift, context switching,
kernel scheduling, cache state

TCPsock
call

TCPsock
call

TCPsock
call

TCPsock
call

Challenge 1: butterfly effect

29

drop enqueue

Sending time variation Switch action variation

TCP behavior variation
Runtime

TCPsock
call

TCPsock
call

TCPsock
call

Cong_win/=2

Cong_win++

Replay

Cong_win/=2

Cong_win++

TCPsock
call

TCPsock
call

TCPsock
call

Butterfly effect

Reduce Butterfly Effect

30

Sending time variation Switch action variation

TCP behavior variation
Butterfly effect

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record&replay
Record&replay

Butterfly effect

Challenge 1: butterfly effect

31

• Record all the packets into TCP?

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record&replay
Record&replay

High overhead

Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations

32

Runtime

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Replay

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record
mutations

Record
mutations

Drops, ECN, reordering, etc. Drops, ECN, reordering, etc.

Replay
mutations

Replay
mutations

Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations

33

Runtime

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Replay

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record
mutations

Record
mutations

Drops, ECN, reordering, etc. Drops, ECN, reordering, etc.

Replay
mutations

Replay
mutations

+ Low overhead:
Drop rate < 10-4;
ECN: 1 bit/packet;
Reordering is rare

+ Replaying each TCP connection is independent
Connections interact via drops and ECN, which we replay.

+ Need no switches for replay

Resource-efficient replay:
- Just need two hosts

Implementation

• DETER in Linux 4.4
• Just need 139 lines of changes to Linux TCP

• Lightweight recording
• Storage: 2.1%~3.1% compared to compressed packet header traces.
• CPU: < 1.5%

34

Case study in Spark

• Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections
• Replay and collect trace for flows with 99.9 percentile latency

35

Case study in Spark

• Iteratively debug individual flows
• E.g., delayed ACK

• Packet traces
• Burst-40ms-ACK pattern

• Trace TCP executions
• The receiver explicitly delays the ACK,
• because the recv buffer is shrinking
• Caused by the slow receiver

36

Other use cases

• RTO caused by different reasons
– Delayed ACK, Exponential backoff,
– small messages, misconfiguration of receiver buffer size

• We can also diagnose problems in the switches
– Because we have traces, we can push packets into the network
– In simulation (requires modeling switch data plane accurately)
– Case study: A temporary blackhole caused by switch buffer sharing

37

Conclusion

• Performance diagnosis in large networks is challenging
• Many problems in the TCP stack

• DETER enables light weight recording and deterministic TCP replay
• Key challenge: butterfly effect between TCP and switches
• Record & replay packet stream mutations to break the closed loop

• Deter is opensourced
• https://github.com/harvard-cns/deter

38

https://github.com/harvard-cns/deter

Scouts

39

Automatic diagnosis
using domain-customized incident routing

40

Number of public incidents
between February to July 2020 2169

Maximum resolution time

Average resolution time

14 h 12 m 19 h 49 m

4 h 40 m 5 h 28 min

Incidents can and do happen

Life cycle of an incident

41

REPORT
INCIDENT

Monitoring system

Customer reports

DIAGNOSE AND FIX
PROBLEM

Fix

FIND THE FAILING
COMPONENT

Find right team

Check monitoring
systems

Can we
fix it?

Find problematic
device

Understand
the cause

0

0.2

0.4

0.6

0.8

1

1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

CD
F

Time (normalized)

Multiple teams investigate

Single team investigates

Finding the right team is time consuming

42

10x

FIND THE FAILING
COMPONENT

Find right team

Check monitoring
systems

Can we
fix it?

Example incident: storage problem

43

�

�

�

�

�

�

�

�

�

�

1. Can’t write to storage!
2. Must be storage issue
3. Storage is good, network must be slow
4. No congested links
5. Need more information from customer
6. Connection fail to init, SLB failing
7. SLB is good, network must be dropping
8. Packet is reaching to SLB
9. Customer opens too many connections and

exhaust SNAT pool, behavior is expected
SLB Network Storage

44

Studied 200 misrouted incidents in Azure

Why multiple teams get involved?

1. Lack of domain knowledge

45

?

▷ Storage team doesn’t know network is functioning or not
▷ Team level dependencies are hard to reason about

2. No cloud teams are responsible, more misrouting

46

▷ ISP or customer outside the cloud is experiencing issues

3. Concurrent incidents

47

▷ One failure causes multiple incidents in multiple teams

48

How to reduce misrouting?

Existing solutions

Application specific
diagnosis system

Natural language
processing

49

NetPoirot
[SIGCOMM-16]

DeepView
[NSDI-18]

Too many applications in the data center

NetSieve
[NSDI-13]

Ignores essential domain knowledge

Sherlock
[SIGCOMM-07]

Incident routing problem revisit

50

Incident routing system

Incident

Domain
knowledge

Monitor
data

SLB

Network

Storage

Well-defined algorithm?
Hard!Machine learning?

Solve the whole problem at once?

51

Uneven instrumentation Limited visibilityCurse of dimensionality

▷ Hard to build a single, monolithic incident routing system

Constantly changing
Huge feature vector with no
enough training examples

A subset of teams will always
have gaps in monitoring

Stale components and
monitors

Hard to understand appropriate
feature set for each team

Scout: team-specialized ML-assisted gatekeeper

▷ “Is my team responsible for the incident?”

52

One team, one scout

Leverage domain knowledge

Evolve independently

Scout design

53

Incident Monitor
data

Classification resultDomain
Knowledge

Computation
engines

Physical networking team

54

Scope
Every switch & router in DC

11 Monitor systems
PingMesh, Everflow,
NetBouncer, etc.

Statistics

58% incidents investigated by
PhyNet went through multiple
teams

97.6 hours per day wasted on
unnecessary investigations

▷ How to process huge amount of monitoring data?

55

CHALLENGE 1

Millions of devices in the Cloud

Incident guided investigation

56

Incident Description

Regular Expression

Devices Monitor data

“Server X.c10.dc3 is
experiencing problem
connecting to storage
cluster c4.dc1”

Server: X.c10.dc3
Cluster: c4.dc1

CPU Usage
Link loss rate
Ping latency

▷ How to create a feature vector out of the monitoring data?

57

CHALLENGE 2

Different incidents have
variable number of devices

Mixed types of monitoring data
(event-driven vs time series)

How to build a fixed width feature vector?

▷ Per-component feature

○ Event: count number of events during the incident period

○ Time-series: normalize and calculate statistics (percentiles, average, etc.)

▷ Multiple components

○ Compute statistics across multiple components (percentiles, average, etc.)

58

▷ Which computation engine?

59

CHALLENGE 3

Low accuracy on new incidents

Interpretable, able to provide more insights

Learns based on history incidents, high accuracy

Supervised learning

60

: random forest

Change point detection for new incidents

61

Low accuracy on old incidents

Higher accuracy on new incidents

Easy to compute

Change point detection for new incidents

62

Model selector

63

Use meta-learning to identify new incidents

Incident itself tells whether it is new or not

The anatomy of a Scout

64

Configuration file

Incident

Monitor
data

Model
Selector

Classification result

Computation
engines

Random
Forest

Change
point

detection

65

Evaluation

Evaluation setup

DATASET
9 months of incidents in Azure
Randomly split into training
and testing set

LABEL
Whether incident is
resolved by PhyNet

BASELINE
Current incident routing
system without Scout
Runbooks, past-experience,
NLP based routing system

66

Overall performance

67

Precision Recall F1-Score

PhyNet Scout 97.5% 97.7% 0.98

Baseline 87.2% 91.9% 0.89

Delta 10.3% 5.8% 0.09

10% improvement in accuracy means significant reduction in investigation time

Benefit of the PhyNet Scout

68

Gain in
Send incident to PhyNet directly

SLB

PhyNet

Storage
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

CD
F

Fraction of investigation time (%)

Gain-in

Best possible gain

Save more than 20% of the total
investigation time in 40% of incidents

Benefit of the PhyNet Scout

69

Gain out
Reject incident to PhyNet

Storage

SLB

PhyNet
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

CD
F

Fraction of investigation time (%)

Gain-out

Best possible gain

Close to the best possible gain

Conclusion

▷ Incident misrouting is the main challenge for maintaining
service level objectives in the cloud

▷ Scout: a distributed team-specialized gate-keeper can
reduce investigation time.

71

This talk

▷ DETER: Record-and-Replay for TCP
○ Collect detailed yet lightweight packet information at

scale

▷ Scouts: Domain-customized incident routing
○ Automatically direct incident tickets to the right team

72

Future Directions in Diagnosis

• New application trends
– Ultra low latency: the killer microseconds
– Complex structure, especially with cross-layer design
– Diagnosis is increasingly important for performance optimization

• Open questions
– How to collect fine-time scale events at large scale?
– How to tear apart causal relations across layers, across components, across

applications?
– Data driven approaches for diagnosis
– Customized diagnosis tools for new applications

73

