
The Forwarding Plane:
An Old New Frontier of

Networking

Changhoon Kim

Stanford CS / Barefoot Networks, an Intel company

2

What is SDN in plain English?
• Ideally at the level for college freshmen

3

“Making programming networks as easy as
programming computers.”

Natural questions that follow

• Why would / should we program a network?
– To realize some “beautiful ideas” easily, preferably on our own

• What are those “beautiful ideas”?
– Any impactful or intriguing apps in particular?

• Why couldn’t we do this easily early on?
– Any fundamental shifts happening?

4

“Making programming networks as easy as
programming computers.”

Pre-SDN state of the network industry

5

Network
Equipment

Vendor

Network
Owner

Software
Team

Engineering
DivisionFeature

Years
ASIC
Team

Feature

Years

Compared to other industries,
this is very unnatural

• Because we all know how to realize our own ideas by
programming CPUs, GPUs, TPUs, etc.
– Programs used in every phase

(implement, verify, test, deploy, and maintain)
– Extremely fast iteration and differentiation
– We own our own ideas
– A sustainable ecosystem where all participants benefit

6

Can we replicate this healthy, sustainable
ecosystem for networking?

7

Network
Equipment

Vendor

Network
Owner

ASIC
Team

Software
Team

Feature

Weeks to

Months

YearsYears

Feature

Feature

What SDN pioneers had realized …

8

Network
Forwarding-plane

Vendor

Network
Owner

ASIC
Team

Software
Team

Feature

Weeks to
Months

Years

Years

Feature

Feature

And, SDN started to unfold …

Network
Control-plane

VendorFeature

Weeks to

Months

9

Network
Forwarding-plane

Vendor

Network
Owner

ASIC
Team

Feature

Years

Years

Feature

And, SDN started to unfold …

Various
Control-plane

Projects

Feature

Weeks to
MonthsSoftware

Team

Days to
Weeks

Innovation-deprived,
ossified layer

Innovation-rich,
programmable layer

Reality: Packet forwarding speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU

10

Gb/s
(per chip)

6.4Tb/s

Reality: Packet forwarding speeds

0.1

1

10

100

1000

10000

100000

1990 1995 2000 2005 2010 2015 2020

Switch Chip
CPU

11

80x
Gb/s
(per chip)

6.4Tb/sUnaccommodating,
performance-dominated zone?

“Programmable switches are 10 -100x slower
than fixed-function switches. They cost more

and consume more power.”
Conventional wisdom in networking

Not true anymore! J

RMT (now known as PISA)

is real and will stay.

Two Production Systems from a Well-known Switch Vendor
Barefoot Tofino Fixed Function Silicon

L2/L3 Throughput 6.4Tb/s 6.4Tb/s

Number of 100G Ports 64 64

Availability Yes Yes

Max Forwarding Rate 5.1B packets per sec 4.2B packets per sec

Max 25G/10G Ports 256/258 128/130

Programmability Yes (P4) No

Typical System Power draw 4.2W per port 5.3W per port

Large Scale NAT Yes (100k) No

Large scale stateful ACL Yes (100k) No

Large Scale Tunnels Yes (192k) No

Packet Buffer Unified Segmented

Segment Rtg/Bare Metal Yes/Yes No/No

LAG/ECMP Hash Algorithm Full entropy, programmable Hash seed, reduced entropy

ECMP 256 way 128 way

Telemetry and Analytics Line-rate per flow stats Sflow (Sampled)

Latency Under 400 ns 450 ns

Otherwise, both systems
are identical:

• # of Ports
• CPU
• Power Supplies

Domain-specific processors

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

Networking

?

Language
Compiler>>>

Networking

P4

Compiler>>>

Domain-specific processors

CPU

Computers

Java
Compiler

GPU

Graphics

OpenCL
Compiler

DSP

Signal
Processing

Matlab
Compiler

Machine
Learning

?

TPU

TensorFlow

Compiler

PISA
(Protocol-Independent

Switch Architecture)

PISA: An architecture for high-speed
programmable packet forwarding

(its paper name was RMT)

17

18

Pr
og

ra
m

m
ab

le
Pa

rs
er

Match
Memory

Action
ALU

PISA: Protocol Independent Switch Architecture

19

Pr
og
ra
m
m
ab
le

Pa
rs
er

PISA: Protocol Independent Switch Architecture

Ingress EgressBuffer

Buffer
M M

20

Pr
og

ra
m

m
ab

le
Pa

rs
er

PISA: Protocol Independent Switch Architecture
Match Logic
(Mix of SRAM and TCAM for lookup tables,
counters, meters, generic hash tables)

Action Logic
(ALUs for standard boolean and arithmetic operations,
header modification operations, hashing operations, etc.)

Recirculation

Programmable
Packet Generator

CPU (Control plane)

A

…

A

…

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

Generalization of RMT [sigcomm’13]

Why we call it
protocol-independent packet

processing

21

Logical Data-plane View
(your P4 program)
Switch Pipeline

Device does not understand any protocols
until it gets programmed

Queues

Pr
og

ra
m

m
ab

le
Pa

rs
er

Fi
xe

d
Ac

tio
n

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
IPv4

IPv6
ACL

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
spacketpacket packetpacket

CLK
22

M
at

ch
 T

ab
le

Ac
tio

n
AL

U
s

Mapping logical data-plane design to
physical resources

Queues

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

M
at

ch
 T

ab
le

L2
 T

ab
le

IP
v4

 T
ab

le

IP
v6

 T
ab

le

AC
L

Ta
bl

e

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

Ac
tio

n
AL

U
s

L2
IPv4

IPv6
ACL

Logical Data-plane View
(your P4 program)
Switch Pipeline

L2
IPv6

ACL
IPv4

L2
 A

ct
io

n
M

ac
ro

v4
 A

ct
io

n
M

ac
ro

v6
 A

ct
io

n
M

ac
ro

AC
L

Ac
tio

n
M

ac
ro

Pr
og

ra
m

m
ab

le
Pa

rs
er

CLK
23

Re-program in the field

L2
 T

ab
le

IP
v4

 T
ab

le

AC
L

Ta
bl

e

IP
v6

 T
ab

le

M
y

En
ca

p

L2
IPv4

IPv6
ACLMyEncap

L2
 A

ct
io

n
M

ac
ro

v4
 A

ct
io

n
M

ac
ro

AC
L

Ac
tio

n
M

ac
ro

Ac
tio

n

MyEncap

v6
 A

ct
io

n
M

ac
ro

IP
v4

Ac
tio

n

IP
v4

Ac
tio

n

IP
v6

Ac
tio

n

IPv6

Pr
og

ra
m

m
ab

le
Pa

rs
er

CLK

Logical Data-plane View
(your P4 program)
Switch Pipeline

Queues

24

P4 language components

Parser Program

Control Flow

State-machine;
Field extraction

Table lookup and update;
Field manipulation;
Control flow

Field assembly

No: memory (pointers), loops, recursion, floating point

Match Tables +
Actions

Deparser
Program

25

What exactly does a compiler do?

Queues

Pr
og

ra
m

m
ab

le
Pa

rs
er

CLK

… … … …

Match Table
(SRAM or TCAM)

Cross
Bar

Hash
Gen

PHV
(Packet Header Vector)

Action & Instr
Mem

PHV’

key

params

action
constant

ALUs

27

How is P4 programmability used?

28

1. Reducing complexity

Reducing complexity

PISA Switch

Driver

Switch OS

P4
Compiler

switch.p4

IPv4 and IPv6 routing
- Unicast Routing

- Routed Ports & SVI
- VRF

- Unicast RPF
- Strict and Loose

- Multicast
- PIM-SM/DM & PIM-Bidir

Ethernet switching
- VLAN Flooding
- MAC Learning & Aging
- STP state
- VLAN Translation

Load balancing
- LAG
- ECMP & WCMP
- Resilient Hashing
- Flowlet Switching

Fast Failover
– LAG & ECMP

Tunneling
- IPv4 and IPv6 Routing & Switching

- IP-in-IP (6in4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS
- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL
- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS
- QoS Classification & marking
- Drop profiles/WRED
- RoCE v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features
- Storm Control, IP Source Guard

Monitoring & Telemetry
- Ingress Mirroring and Egress Mirroring
- Negative Mirroring
- Sflow
- INT

Counters
- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload
- BFD, OAM

Multi-chip Fabric Support
- Forwarding, QOS

PISA Switch

Driver

Switch OS

P4
Compiler

Reducing complexity
My

switch.p4

Switch.p4 vs Existing 3.2T device

31

51
2k

90
4k

52
0k

24
0k

1,
24

0k

29
6k

12
0k

13
6k

12
8k

86
k

1k 10
4k

56
k

8k

0

200

400

600

800

1,000

1,200

1,400

MAC IPv4 LPM CLPM IPv6 /64 CLPM IPv6 /128 CLPM IPv4 Host
Routes*

IPv6 Host
Routes*

ACLs

of

 T
ab

le
 E

nt
rie

s
Th

ou
sa

nd
s

Tofino Existing 3.2T Device

3.8x 6x

120x

5.3x
15x

Up to
240x

Up to
7x

How is P4 programmability used?

32

2. Introducing new features rapidly

What we have seen so far:
Adding new networking features

1. New encapsulations and tunnels: e.g., PPP over Eth, load-balancing
GTP tunnels or initiating/terminating them

2. New ways to tag packets for special treatment
3. New approaches to routing: e.g., source routing in data-center

networks
4. New approaches to congestion control
5. New ways to manipulate and forward packets: e.g. splitting ticker

symbols for high-frequency trading
6. NFV acceleration
7. Network slicing and packet-gateway acceleration for 5G

33

World’s fastest middle boxes
1. Layer-4 load connection balancing at Tb/s
– Replace 100s of servers or 10s of dedicated appliances with one PISA switch
– Track and maintain mappings for 5 ~ 10 million HTTP connections
– Developed and deployed in production by a large cloud-service provider

2. Firewall or DDoS detector
– Add/delete and track 100s of thousands of new connections per second
– Include other stateless line-rate functions

(e.g., TCP SYN authentication, sketches, or Bloomfilter-based whitelisting)

34

Extending PISA with external memory
• Can attach external DRAM to PISA

– Via RDMA (e.g., TEA, GEM) or FPGA

• Significantly increase feature scale of PISA
– Maintain O(100M) connection-state entries
– Increase the buffer size by three orders of magnitude

• P4 and compiler technologies allow us to abstract this kind of
hybrid system into a “virtual chip”

35

https://www.youtube.com/watch?v=eqa2ir7XVQI&ab_channel=DaehyeokKim
https://www.youtube.com/watch?v=A0aHVyvKWqw

How is P4 programmability used?

36

3. Network telemetry

“Which path did my packet take?”1
“I visited Switch 1 @780ns,

Switch 9 @1.3µs, Switch 12 @2.4µs”

“Which rules did my packet follow?”2

“In Switch 1, I followed rules 75 and
250. In Switch 9, I followed rules 3 and

80. ”

Rule

1

2

3

…

75 192.168.0/24

…

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

Aggressor flow!

The network should answer these questions

1. “Which path did my packet take?”
2. “Which rules did my packet follow?”
3. “How long did it queue at each switch?”
4. “Who did it share the queues with?”

PISA + P4 can answer all four questions for the first time.
At full line rate. Without generating any additional packets!

1
2
3
4

Log, Analyze
Replay

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, …

Original Packet

Visualize

One example: In-band Network Telemetry (INT)

“Monitor every packet,
and report only what’s worth!”

- Generate reports upon detecting changes
• Flow initiation & termination
• Path or latency changes
• Special field values

- Change detectors are reset periodically
(e.g., once every 500ms)

Log, Analyze
Replay

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, …

Original Packet

Visualize

Flexibility matters

/* INT: add switch id */
action int_set_header_0() {
add_header(int_switch_id_header);
modify_field(int_switch_id_header.switch_id,

global_config_metadata.switch_id);
}

/* INT: add ingress timestamp */
action int_set_header_1() {
add_header(int_ingress_tstamp_header);
modify_field(int_ingress_tstamp_header.ingress_tstamp,

i2e_metadata.ingress_tstamp);
}

/* INT: add egress timestamp */
action int_set_header_2() {
add_header(int_egress_tstamp_header);
modify_field(int_egress_tstamp_header.egress_tstamp,

eg_intr_md_from_parser_aux.egress_global_tstamp);
}

P4 code snippet: switch ID, ingress and egress timestamp

Programmable
Telemetry

Viewing Microbursts (to the nanosecond)

Copyright 2018 - Barefoot Networks 43

How is P4 programmability used?

44

4. Beyond packet forwarding

45

PISA: An architecture for high-speed
programmable packet forwarding

event processing

Beautiful ideas: What if you could …
• Realize a small, but super-fast DNS cache
• Perform TCP SYN authentication for billions of SYNs per sec

[Jaqen – Usenix Security’21]

• Build a replicated key-value store ensuring RW ops in a few usecs
[NetChain – NSDI’18]

• Improve your consensus service performance by ~100x
[P4xos – CCR’16, Eris – SOSP’17]

• Boost your Memcached cluster’s throughput by ~10x
[NetCache - SOSP’17]

• Speed up your DNN training dramatically by realizing parameter
servers [SwitchML – NSDI’21]

46

… using Tofino servers?

NetCache: Accelerating KV caching

47

Server

Load

ToR

gets and puts

Suppose a KV cluster coping with
a highly-skewed & rapidly-changing workload

Q: How can you ensure a high throughput and bound tail latency?

Server

Load

Suppose a KV cluster coping with
a highly-skewed & rapidly-changing workload

ToR

gets and puts

Here comes the problem

uQiforP zipf-0.9 zipf-0.95 zipf-0.99
WorNloDd DistributioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (B

Q
P

S
)

1oCDche 1etCDche(servers) 1etCDche(cDche)

51

KV Servers

Load

ToR

gets and puts

Front-end Server
A read-only cache handling

hot keys directly!

Q: How big and fast the front-end cache should be?

What if we had a very fast front-end server?

• How big should it be?
– Keep O(N*logN) hot keys where N is the number of KV servers
– Theory proves that such a front-end cache bounds the variance of KV

server utilization irrespective of the total number of keys

• How fast should it be?
– At least as large as the aggregated throughput of all KV servers (N*C)

52

For a front-end cache to be effective

A front-end KV cache built with PISA

KV ServersFront-end KV Cache

Clients

• Data plane
– Key-value store to serve queries for cached keys
– Query statistics to enable efficient cache updates

• Control plane
– Insert hot items into the cache and evict less popular items
– Manage memory allocation for on-chip key-value store

Key-Value
Cache

Query
Statistics

Cache
Management

Run-time API

P
C
Ie

Line-rate query handling in the data plane

Cache

Client

1

2 Server

Read Query
(hit)

Hit StatsUpdate

Client Server

1

4 3

2
Write Query Invalidate Cache Stats

Client

1

4
Server

3

2Read Query
(miss)

CacheMiss StatsUpdate

Cache insertion and eviction
q Challenge: Keeping the hottest O(N logN) items in the cache

q Goal: React quickly and effectively to workload changes with minimal updates

Key-Value
Cache

Query
Statistics

Cache Management

PC
Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of
new hot and sampled cached keys

3 Control plane fetches values for
keys to be inserted to the cache

4 Control plane inserts and evicts keys

KV ServersFront-end KV
Cache

The “boring life” of a NetCache switch

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

0 32 64 96 128
9alue 6ize (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hS

ut
 (B

4
3

6
)

(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

(a) Throughput vs. value size.

0 16. 32. 48. 64.
Cache Size

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (B

Q
3

S
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

One can further increase the value sizes with more stages,
recirculation, or mirroring.

Yes, it’s Billion
Queries Per Sec,

not a typo J

And its “not so boring” benefits

NetCache provides 3-10x throughput improvements.

Throughput of a key-value storage rack with
one Tofino switch and 128 storage servers.

uQiforP zipf-0.9 zipf-0.95 zipf-0.99
WorNloDd DistributioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (B

Q
P

S
)

1oCDche 1etCDche(servers) 1etCDche(cDche)

Summing it up …

60

Why data-plane programming?
1. New features: Realize your beautiful ideas very quickly
2. Reduce complexity: Remove unnecessary features and tables
3. Efficient use of H/W resources: Achieve biggest bang for buck
4. Greater visibility: New diagnostics, telemetry, OAM, etc.
5. Modularity: Compose forwarding behavior from libraries
6. Portability: Specify forwarding behavior once; compile to many devices
7. Own your own ideas: No need to share your ideas with others

“Protocols are being lifted off chips and into software”
– Ben Horowitz

61

• PISA and P4: The first attempt to define a machine
architecture and programming models for networking in a
disciplined way

• We’ll see a lot more P4-programmable devices, especially
NICs and software targets

• Inherently multi-disciplinary; we need more expertise
across various fields in computer science

• It’s super fun to figure out the best workloads for this new
machine architecture

62

Some observations

Some questions and comments
• I wonder if it would be reasonably easy to verify the RMT programs?

• “A physical stage could also accommodate multiple logical stages”. How come? They should
be using different actions, but 1 physical stage could only execute 1 instruction per cycle.

• Scaling such arch by adding pipeline stages seems to be a bad idea. The paper uses a 28nm
process (probably TSMC) which is a pretty old one. 10nm and 7nm have improved PPA
(Power, Performance, Area) so much, and it would be able to increase clock freq. The
problem is SerDes on such an advanced node because the analog part in SerDes does not
scale very well than digital logic.

63

More questions and comments
• Limited capabilities and primitives of programmable switches. Because programmable

switches need to catch extremely high line-rate (Tb/s), operations switches support are not
very complex. Also, the memory RMT pipelines need to be very fast (SRAM level). Due to its
expensive cost, its size is limited. Under these constraints, we struggle to shoehorn
application functionalities into RMT switches.

• Cost-effective. High-end programmable switches are more expensive in terms of price and
energy cost. Should we migrate some applications like load-balancer from x86 servers to RMT
switches? There is a tradeoff between cost and perf.

• Complexity on developing and maintaining apps for RMT switches. At least until now, RMT
switches require developers to use domain-specific languages like P4 to build apps. Also,
developers need to know more about RMT switch architecture. These will increase burdens
for network operators to migrate fancy application functionalities to RMT switches.

64

ANY MORE?

65

Want to find more resources or follow up?
• Visit http://p4.org and http://github.com/p4lang

– P4 language spec
– P4 dev tools and sample programs
– P4 tutorials
– List of papers regarding PISA, PISA Apps, and P4

• Join P4 workshops and P4 developers’ days
• Participate in P4 working group activities

– Language, target architecture, runtime API, applications
• Need more expertise across various fields in computer science

– To enhance PISA, P4, dev tools (e.g., for formal verification, equivalence check,
automated test generation, and many more …)

66

http://p4.org/
http://github.com/p4lang

