The Forwarding Plane:
An Old New Frontier of
Networking

Changhoon Kim

Stanford CS / Barefoot Networks, an Intel company

K&

D‘ N— ABOUT PROJECTS SOLUTIONS SOFTWARE DEFINED STANDARDS ~ GET INVOLVED

NEW

SDN OVERVIEW PRODUCT CERTIFICATION SKILLS CERTIFICATION CORD LEARNING LABS

Software-Defined Networking (SDN)
Definition

from the forwarding plane, and where a control plane controls
several devices.

What is SDN in plain English?

* |deally at the level for college freshmen

“Making programming networks as easy as
programming computers.”

Natural questions that follow

“Making programming networks as easy as
programming computers.”

* Why would / should we program a network?
— To realize some “beautiful ideas” easily, preferably on our own

 What are those “beautiful ideas”?
— Any impactful or intriguing apps in particular?
 Why couldn’t we do this easily early on?
— Any fundamental shifts happening?

Pre-SDN state of the network industry

Engineering
Feature Feature Division
%—/N—e—’ A

Network Ne_twork Software

Equipment Team
Owner Vendor

ASIC
Years Years feam

Compared to other industries,

this is very unnatural

* Because we all know how to realize our own ideas by
programming CPUs, GPUs, TPUs, etc.

— Programs used in every phase
(implement, verify, test, deploy, and maintain)

— Extremely fast iteration and differentiation

— We own our own ideas
— A sustainable ecosystem where all participants benefit

Can we replicate this healthy, sustainable
ecosystem for networking?

What SDN pioneers had realized ...

®

Software
Feature Team
%—’ a
Network Ne.twork
Equipment
Owner Vendor

Years

And, SDN started to unfold ...

Network
Owner

e

Feature
Network
Control-plane Software
Vendor Team
Weeks to
Months
Feature

Network W —
Forwarding-plane ASIC
Vendor Team

Years

And, SDN started to unfold ...

Feature n
28 Q-
@ — Various Innovation-rich,
Days to Weeks to Control-plane programmable layer
Weeks .
Software Months Projects
Network Team
Owner
G
& e Feature
Network ’ —
Yo Forwarding-plane ASIC
s Vendor Team

Innovation-deprived,
ossified layer Years

Reality: Packet forwarding speeds

100000 6.4Tb/s
10000 j

=o=Switch Chip

1000 -

(per chip) 10 ;

.

0.1 -

1990 1995 2000 2005 2010 2015 2020

10

Reality: Packet forwarding speeds

100000

Unaccommodating,

performance-dominated zone?

10000

=o=Switch Chip

1000 80X - -m-crU
[]

(per chip) 10

1

[WA [NI Ll Lol o1

O. 1 L I I I I I I]
1990 1995 2000 2005 2010 2015 2020

11

" . | ©
Prograr- Not frue anymore 100x slower

than fixe 0 as pTSA) 7 cost more

(RMT(”O /knd will sTay- "

Two Production Systems from a Well-known Switch Vendor

Barefoot Tofino Fixed Function Silicon
L2/L3 Throughput 6.4Tb/s 6.4Tb/s
Number of 100G Ports 64 64
Availability Yes Yes
Otherwise, both systems
are identical:
* # of Ports
* CPU

* Power Supplies

Domain-specific processors

_ Signal Machine .
Computers Graphics Processing Learning Networking
Java OpenCL Matlab TensorFlow Language
Compiler Compiler Compiler Compiler Compiler
?

CPU GPU DSP TPU

Domain-specific processors

_ Signal Machine .
Computers Graphics Processing Learning Networking
Java OpenCL Matlab TensorFlow P4
Compiler Compiler Compiler Compiler Compiler

v

>

CPU GPU DSP TPU PISA
(Protocol-Independent
Switch Architecture)

PISA: An architecture for high-speed
programmable packet forwarding
(its paper name was RMT)

PISA: Protocol Independent Switch Architecture

Match Action
Memory ALU

%

e

W

18

Egress

Buffer

Ingress

PISA: Protocol Independent Switch Architecture

M

AAAAA

-J--

AAAAAA

-J--

AAAAAA

-J--

AAAAAA

T
alilil

AAAAA

-J--

AAAAAA

HEAEED

AAAAAN

-J--

AAAAAA

-J—-—

19sied
a|qewwesbouid

MM

19

PISA: Protocol Independent Switch Architecture

Match Logic

Programmable counters, meters, generic hash tables)

Packet Generator

e

Action Logic

(Mix of SRAM and TCAM for lookup tables, (ALUs for standard boolean and arithmetic operations,
header modification operations, hashing operations, etc.)

N

Programmable

Parser
III1III

-

) [Buffer
D B >
: EIEE ©
[Il CIEE 8
> — 9] I3 b

Ingress match-action stages (pre-switching)

Egress match-action stages (post-switching)

Recirculation

Generalization of RMT [sigcomm’13]

=]

CPU (Control plane)

20

Why we call it
protocol-independent packet
processing

Device does not understand any protocols
until it gets programmed

Logical Data-plane View
(your P4 program)

Switch Pipeline

W - o Q@ @ o o Queues
A < [3 3 = 3 =
Sis = < = =< = < —11
S @ S [S S (5 S [-
o © IE © © | © I3

& = < = l_ | <C ﬁ = | <C

CLK

22

Mapping logical data-plane design to
physical resources

Logical Data-plane View
(your P4 program)

Switch Pipeline

o) o 2 e S
% x S O | ko) g L ke Queues
e o o
= N = ol = | = ol | = 1]
S - |E < oI oI
o O < > | =l © | < __1T]
(@) a al < < il |
= N —_— 3 = © @)
o b = L= <
C

I—
A

23

Re-program in the field

Logical Data-plane View
(your P4 program)

Switch Pipeline

\ \O\
o) o 5
Q q 2 oM & Queues
© § ol =
= ®
©

O Al 3} sl < —1T]
(@) <
S N < |k

M|

CLK

24

P4 language components

State-machine;
S st bl Field extraction

Match Tables +
Actions

Table lookup and update;
Field manipulation;
Control Flow Control flow

Deparser Field assembly
Program

No: memory (pointers), loops, recursion, floating point

25

What exactly does a compiler do?

PHV
(Packet Header Vector)
llllllll H
' . Hash
: Gen
W
J Cross
Bar

'V

Match Table

(SRAM or TCAM)
k
~ [T T 1

L

Action & Instr

uuP Mem

Programmable

Parser

uuuuuuuuu

o [AN

Queues

—11
—1T11

27

How is P4 programmability used?

1. Reducing complexity

IPv4 and IPv6 routing
- Unicast Routing
- Routed Ports & SVI
- VRF
- Unicast RPF
- Strict and Loose
= raracase—
Bl=S i B-RrP BT

Ethernet switching
e e
- MAC Learning & Aging
- STP state
AN TrarseteT

Load balancing

LAC

- ECMP & WCMP
- Resilient Hashing

=Flowlot Guitebine

Fast Failover
— LAG & ECMP

Reducing complexity

. L]
switch.p4 Switch OS
7 ~N
Tunneling =NAT=gn T D e aIeTE
- IPv4 and IPv6 Routing & Switching
R Gl Security Features
- VXLAN, NVGRE, GENEVE & GRE -
Segrent-RoutingHle
Monitoring & Telemetry
PTS |nﬁ' LV PP = o tgr IWH
=—EERGTe e - Negative Mirroring
—t PO O TS TR G fhepp—
B] -INT
N ESover oot
Counters
ACL - Route Table Entry Counters
- MAC ACL, IPv4/v6 ACL, RACL i ;
=0oCACl_Cuctar ACL DB - Port/Interface Counters
- Port Range lookups in ACLs
Protocol Offload
QOs - BFD, OAM
- QoS Classification & marking
Deop=suefilecMOLD Multi-chip Fabric Support

=——ReEEv2=-CrFEoE
- CoPP (Control plane policing)

EA'IARD‘A;V\ laYald
(=24

Reducing complexity

T Switch OS
Driver

P4
Lab Compiler

:

PISA Switch

Switch.p4 vs Existing 3.2T device

Thousands

of Table Entries

1,400

1,200

1,000

800

600

400

200

IPv4 LPM CLPM

IPv6/64 CLPM IPv6/128 CLPM

B Tofino

W Existing 3.2T Device

-~
El
IPv4 Host
Routes*

4

(e}
[|
IPv6 Host
Routes*

X
X~
o0

ACLs

31

How is P4 programmability used?

2. Introducing new features rapidly

What we have seen so far:
Adding new networking features

New encapsulations and tunnels: e.g., PPP over Eth, load-balancing
GTP tunnels or initiating/terminating them

New ways to tag packets for special treatment

New approaches to routing: e.g., source routing in data-center
networks

New approaches to congestion control

New ways to manipulate and forward packets: e.g. splitting ticker
symbols for high-frequency trading

NFV acceleration
Network slicing and packet-gateway acceleration for 5G

World’s fastest middle boxes

1. Layer-4 load connection balancing at Tb/s
— Replace 100s of servers or 10s of dedicated appliances with one PISA switch
— Track and maintain mappings for 5~ 10 million HTTP connections
— Developed and deployed in production by a large cloud-service provider

2. Firewall or DDoS detector

— Add/delete and track 100s of thousands of new connections per second

— Include other stateless line-rate functions
(e.g., TCP SYN authentication, sketches, or Bloomfilter-based whitelisting)

Extending PISA with external memory

e (Can attach external DRAM to PISA
— Via RDMA (e.g., TEA, GEM) or FPGA

* Significantly increase feature scale of PISA

— Maintain O(100M) connection-state entries
— Increase the buffer size by three orders of magnitude

* P4 and compiler technologies allow us to abstract this kind of
hybrid system into a “virtual chip”

https://www.youtube.com/watch?v=eqa2ir7XVQI&ab_channel=DaehyeokKim
https://www.youtube.com/watch?v=A0aHVyvKWqw

How is P4 programmability used?

3. Network telemetry

“I visited Switch 1 @780ns,
o “Which path did my packet take?” Switch 9 @1.3us, Switch 12 @2.4us”

N

; &

2 “In Switch 1, | followed rules 75 and

3 250. In Switch 9, | followed rules 3 and
80.”

75 192.168.0/24 @ “Which rules did my packet follow?”

9 “How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

A
Queue
@ “Who did my packet share the queue with?”

Time

9 “How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

Aggressor flow!

Queue

@ “Who did my packet share the queue with?”

The network should answer these questions

0 “Which path did my packet take?”

© “Which rules did my packet follow?”

€ “How long did it queue at each switch?”
O “Who did it share the queues with?”

PISA + P4 can answer all four questions for the first time.
At full line rate. Without generating any additional packets!

One example: In-band Network Telemetry (INT)

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, ...

Original Packet

o

“Monitor every packet,
and report only what’s worth
- Generate reports upon detecting changes
* Flow initiation & termination
* Path or latency changes
* Special field values

- Change detectors are reset periodically
(e.g., once every 500ms)

, ”

Log, Analyze Visualize

Replay

Flexibility matters

Add: SwitchID, Arrival Time,
Queue Delay, Matched Rules, ...

/* INT: add switch id */
action int set header 0() {
add_head;r(i;t_switgh_id_header);
modify field(int_ switch id header.switch id,
- global config metadata.switch_id) ;
}

/* INT: add ingress timestamp */
action int set header 1() {
add_head;r(i;t_ingrgss_tstamp_header);
modify field(int_ingress tstamp header.ingress_tstamp,
i2e metadata.ingress_tstamp) ;
}

/* INT: add egress timestamp */
action int set header 2() {
add header (int_egress_tstamp header) ;
modIfy_field(i;t_egress_tstamp_header.egress_tstamp,
eg_intr md from parser aux.egress global tstamp) ;

}

P4 code snippet: switch ID, ingress and egress timestamp

Programmable
Telemetry

Original Packet

Log, Analyze
Replay

Visualize

Viewing Microbursts (to the nanosecond

Anomaly Records BAREFCO:T Deep Insight

Timestamp Switch Id Queue

|

July 25,2017 -18:17:51.513UTC

Queue Occupancy Over Time (bytes)

200,000_]
- n
100 wa‘ ll
Il |||| |||m|||||"||||||h-||||||||1 1]
40 1 rm
Time fiom congeetion anomaly record
17 Affected Flows
Flow kBin Queue % of Queue Buildup Packet Drops
10.32.2.2:46380-> 10.36.1.2:5101 TCP 3282 29 0
k
10.32.2.2:46374-> 10.36.1.2:5101 TCP 30735 27 25
10.32.2.2:46386 -> 10.36.1.2:5101 TCP 20925 18 27
10.32.2.2:46388-> 10.36.1.2:5101 TCP 1456.5 13 (0]
10.32.2.2:463%90-> 10.36.1.2:5101 TCP 1227 11 36
10.32.2.2:46372 -> 10.36.1.2:5101 TCP 45 0 0
10.32.2.2:46392 -> 10.36.1.2:5101 TCP 375 Copynght 20 180_ Ba refoot Networks 39 43

10.35.1.2:34256 -> 10.36.1.2:5102 TCP 345 0 0

How is P4 programmability used?

4. Beyond packet forwarding

PISA: An architecture for high-speed
programmable-packet-forwarding-

event processing

Beautiful ideas: What if you could ...

Realize a small, but super-fast DNS cache
Perform TCP SYN authentication for billions of SYNs per sec

[Jagen — Usenix Security’21]

Build a replicated key-value store ensuring RW ops in a few usecs
[NetChain — NSDI'18]

Improve your consensus service performance by ~100x
[P4xos — CCR’16, Eris — SOSP’17]

Boost your Memcached cluster’s throughput by ~10x
[NetCache - SOSP’17]

Speed up your DNN training dramatically by realizing parameter

servers [SwitchML - NSDI'21] .
... using Tofino servers?

46

NetCache: Accelerating KV caching

Suppose a KV cluster coping with
a highly-skewed & rapidly-changing workload

V gets and puts

ToR

Load == .
=

Server == S

m B] B =

Suppose a KV cluster coping with
a highly-skewed & rapidly-changing workload

V gets and puts

ToR

I E S A E
s PO s s e

Load == . . E
i | —

Server == S

Q: How can you ensure a high throughput and bound tail latency?

Here comes the problem

N
o

—_
&)

o
o

Throughput (BQPS)
>

—

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

O
o

What if we had a very fast front-end server?

gets and puts

.

Front-end Server

A read-only cache handling
hot keys directly!

= B HEEl BENEN
KV Servers == S S S S S S S S

Q: How big and fast the front-end cache should be?

51

For a front-end cache to be effective

* How big should it be?

— Keep O(N*logN) hot keys where NV is the number of KV servers

— Theory proves that such a front-end cache bounds the variance of KV
server utilization irrespective of the total number of keys

* How fast should it be?
— At least as large as the aggregated throughput of all KV servers (V*C)

A front-end KV cache built with PISA

) =
Cache
Management S
! Run-time API : 8
Key-Value Query :
Clients l Cache Statistics S
) =
Front-end KV Cache KYV Servers

 Data plane
— Key-value store to serve queries for cached keys
— Query statistics to enable efficient cache updates

e Control plane

— Insert hot items into the cache and evict less popular items
— Manage memory allocation for on-chip key-value store

Line-rate query handling in the data plane

4
1
Read Query — Hit| Cache | Update| Stats i
(hit) =\ s -
Client Server
g
1 2
Read Query —_— ' Miss Cache | Update Stats » i
(miss)) \ 3
Client Server
— —2
Write Query — ' Invalidate Cache Stats <_i
Client] 3

Cache insertion and eviction

0 Challenge: Keeping the hottest O(/N logN) items in the cache
0 Goal: React quickly and effectively to workload changes with minimal updates

o Data plane reports hot keys
Cache Management e}i

A A Control plane compares loads of

1 T Q e i e new hot and sampled cached keys
Control plane fetches values for
A 4 o A 4 i e keys to be inserted to the cache
, Key-Value Query
: 4 .
Carele SRS i o Control plane inserts and evicts keys

Front-end KV KYV Servers
Cache

The “boring life” of a NetCache switch

25 25
) o—eo ® @ ® Y i ® ® ® ®
220 & 2.0 ¢
s}) e 11}
215 Yes, it’s Billion =157
S0l Queries Per Sec, S0}
=2 2
© 05| not a typo © °05}
= =
0.0 J J J J 0.0 ‘ ‘ ‘ |
0 32 64 96 128 0 16K 32K 48K 64K
Value Size (Byte) Cache Size

One can further increase the value sizes with more stages,
recirculation, or mirroring.

And its “not so boring” benefits

Throughput of a key-value storage rack with

one Tofino switch and 128 storage servers.
[_1 NoCache Il NetCache(servers) llll NetCache(cache)
520}

RN
(6

o
o

Throughput (BQP
=

—

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

o
o

NetCache provides 3-10x throughput improvements.

Summing it up ...

Why data-plane programming?

New features: Realize your beautiful ideas very quickly

Reduce complexity: Remove unnecessary features and tables

Efficient use of H/W resources: Achieve biggest bang for buck

Greater visibility: New diagnostics, telemetry, OAM, etc.

Modularity: Compose forwarding behavior from libraries

Portability: Specify forwarding behavior once; compile to many devices

N O ks WDNRE

Own your own ideas: No need to share your ideas with others

“Protocols are being lifted off chips and into software”

— Ben Horowitz

61

Some observations

PISA and P4: The first attempt to define a machine
architecture and programming models for networking in a
disciplined way

We'll see a lot more P4-programmable devices, especially
NICs and software targets

Inherently multi-disciplinary; we need more expertise
across various fields in computer science

It’s super fun to figure out the best workloads for this new
machine architecture

Some questions and comments

| wonder if it would be reasonably easy to verify the RMT programs?

“A physical stage could also accommodate multiple logical stages”. How come? They should
be using different actions, but 1 physical stage could only execute 1 instruction per cycle.

Scaling such arch by adding pipeline stages seems to be a bad idea. The paper uses a 28nm
process (probably TSMC) which is a pretty old one. 10nm and 7nm have improved PPA
(Power, Performance, Area) so much, and it would be able to increase clock freq. The
problem is SerDes on such an advanced node because the analog part in SerDes does not

scale very well than digital logic.

More questions and comments

Limited capabilities and primitives of programmable switches. Because programmable
switches need to catch extremely high line-rate (Tb/s), operations switches support are not
very complex. Also, the memory RMT pipelines need to be very fast (SRAM level). Due to its
expensive cost, its size is limited. Under these constraints, we struggle to shoehorn
application functionalities into RMT switches.

Cost-effective. High-end programmable switches are more expensive in terms of price and
energy cost. Should we migrate some applications like load-balancer from x86 servers to RMT
switches? There is a tradeoff between cost and perf.

Complexity on developing and maintaining apps for RMT switches. At least until now, RMT
switches require developers to use domain-specific languages like P4 to build apps. Also,
developers need to know more about RMT switch architecture. These will increase burdens
for network operators to migrate fancy application functionalities to RMT switches.

ANY MORE?

Want to find more resources or follow up?

Visit http://p4.org and http://github.com/p4lang
— P4 language spec
— P4 dev tools and sample programs
— P4 tutorials
— List of papers regarding PISA, PISA Apps, and P4

Join P4 workshops and P4 developers’ days
Participate in P4 working group activities
— Language, target architecture, runtime API, applications

Need more expertise across various fields in computer science

— To enhance PISA, P4, dev tools (e.g., for formal verification, equivalence check,
automated test generation, and many more ...)

http://p4.org/
http://github.com/p4lang

