Network-assisted resource sharing

CSE 561, Winter 2021

Ratul Mahajan

What we read

3 different switch mechanisms to reduce congestion, improve fairness
* Fair queueing
* Credit-based flow control
* Random early drop

Problem: Network congestion

A “traffic jam” in the network

What’s the hold up?]

Congestion Collapse in the 1980s

Early TCP used fixed size window (e.g., 8 packets)
* Initially fine for reliability

But something happened as the network grew

* Links stayed busy but transfer rates fell by orders of
magnitude!

Nature of Congestion

Routers/switches have internal buffering

A4

_— > y
f— —=/
g g

\\4

Input

’ 7 T N T — =

—
Fabric éhnputBuﬁbr

/
Input Buffer

Nature of Congestion (2)

Simplified view of per port output queues

Router

\ 4

Router >

_:’ = > >

N
7

\\Queued

Notes on congestion

Buffers help absorb bursts when input > output rate
* Buffer sizes need to be carefully picked

But if input > output rate persists, queue will overflow
—> This is congestion

Congestion is a function of the traffic patterns
* Can occur even if every link has the same capacity

Effects of Congestion

Performance as we increase load

A A

o | GCapacity

E; %
I 2

D @)

- &)

o D

© wn

Q_ S
- >
2 g
O ()

O

O

Q)

-

Offered load (packets/sec) Offered load (packets/sec)

Effects of Congestion

Performance as we increase load

Goodput (packets/sec)

_...Capacity

Desired
response

A
/A
/
/4 \
/, \
\
\
\
’

Congestion
collapse

P
Offered load (packets/sec)

Delay (seconds)

Onset of
congestion

Offered load (packets/sec)

Effects of Congestion (2)

Offered load rises =2 congestion as queues fill
* Delay and loss rise sharply with load
* Throughput < load (packet loss)
e Goodput << throughput (spurious retransmissions)

None of the above is good!
* Want network performance just before congestion

Goals of resource allocation

1. Efficient use of network resources
* Low latency

2. Fairness
* Protection from bad actors
e Max-min fairness

Efficiency vs. Fairness

Cannot always have both!
* Example network with traffic: A>B, B>Cand A>C
* How much traffic can we carry?

Efficiency vs. Fairness (2)

If we care about fairness:

* Equal per flow: A>B: % unit, B2>C: %, and A=>C, ¥
e Total traffic carried is 1 72 units

Efficiency vs. Fairness (3)

If we care about efficiency:

* Maximize traffic: A2 B: 1 unit, B=>C: 1, and A=>C, 0
e Total traffic rises to 2 units!

The Slippery Notion of Fairness

Why is “equal per flow” fair anyway?
 A—>C uses more network resources than A2>B or B>C
* Host A sends two flows, B sends one

Often not productive to seek exact fairness

* More important to avoid starvation
* A node that cannot use any bandwidth

» “Equal per flow” is good enough

Generalizing “Equal per Flow”

Bottleneck for a flow is the limiting link

* Where congestion occurs for the flow
* For A=>C, link A-B is the bottleneck

A B C
1 10

Bottleneck

Generalizing “Equal per Flow” (2)

Flows may have different bottlenecks

* For A=>C, link A-B is the bottleneck
* For B=>C, link B—C is the bottleneck
* Can no longer divide links equally ...

A B C

Max-Min Fairness

Intuitively, flows bottlenecked on a link get an equal
share of that link

Max-min fair allocation:

* Increasing the rate of one flow will decrease the rate of a
smaller flow

* This “maximizes the minimum” flow

Max-Min Fairness (2)

To find it, imagine “pouring water into the network”

1. Start with all flows at rate O

2. Increase the flows until there is a new bottleneck in
the network

3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

Max-Min Example

e Example: network with 4 flows, link bandwidth =1
* What is the max-min fair allocation?

L N —
Ae——7

Max-Min Example (2)

When rate=1/3, flows B, C, and D bottleneck R4—R5

* Fix B, C, and D, continue to increase A

A
Ac = — "
C o ~——
R1 R R3 ' B
Bottleneck
B ¢ \
— ~ L L p— V-

Do R4 ~ R5 R6e D

Max-Min Example (3)

When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
A« T | —/|
N u..f
R1
B ¢ Bottlenec\lf
S a\ —
Ce | = ()

~—

o R4 ~ RS5 'R6

Max-Min Example (4)

End with A=2/3, B, C, D=1/3, and R2—R3, R4—RS5 full

e Other links have extra capacity that can’t be used

- , 2/3
Ae o - 213 —
Zm 1/3
N2 1/3
1/3 1/3

Adapting over Time

Bandwidth allocation

0.5

0

Flow 1
£===-===H==-1------------------F‘
— Flow 2 stops

M L P
: Flow 2 starts '|

', v Flow 3 starts !

| i
1 4 o) Time

Adapting over Time

Bandwidth allocation

A Flow 1 slows when Flow 1 speeds up
Flow 2 starts when Flow 2 stops
Flow 1 Flow 3 limit
is elsewhere
____________ ._._..............Fi__, Flow 2 stops

™ L P
|' Flow 2 starts "
: v Flow 3 starts !
! '|
1 4 9 Time

Three ways to allocate network resources

1. Pick paths intelligently

* Routing and traffic engineering

2. Get hosts to be smart about how much they send =2 later
* End-host congestion control (TCP)

3. Get routers involved - today
 Send feedback to end hosts
* Protect some flows from others

Case for router-assist

Definitive view of congestion
* Loss: End hosts cannot distinguish between congestion and corruption
e Delay: End hosts cannot distinguish between congestion and long paths

Only way to protect some sources from others

Traffic discrimination

Space of router assisted resource allocation

Per-flow

Selective
(Traffic class,
heavy hitters)

None

A
Fair CBR, XCP
queuing
Packet handling
PFC, e Buffer management
RED-PD Router Pushback « DropTail, RED, ..
overhead Scheduling
* FIFO, RR, ...
RED ECN
(Internet) (DCs)
-
Implicit Explicit coarse Explicit precise
(drop, delay) (I'm congested) (rate, credits, stop)

Nature of feedback

RED: Random Early Detection

Random Early Detection (RED)

Buffer management: Drop early and probabilistically

Scheduling: FIFO

RED buffer management

Router buffer Random-drop zone:
Packets might be dropped Packet
Always dropped p A N Never dropped currently

in service
To

network

v »

;

Arriving
packets

(a) R

‘L Server
Thresholduax Thresholdwin Head of

the queue
(Drop start location)

A Rypnyfcrop)

1.0 [~
(b) Pmax
! AverageQLen
| | >

[Source: lvan Marsic] ThresholdMin ThresholdMax Full

ECN version:
Mark instead
of dropping

RED notes

Avoids “boom and bust” cycles
Controls queue lengths to avoid getting into high-delay territory

No protection from misbehaving sources

RED retrospective

Implemented widely in routers

But rarely turned on

 Parameters were hard to tune
e Optimal is a complex function of number of flows, RTTs, connection sizes, ..

Early feedback ideas are seeing a resurgence in DCs now

Falr queueling

[Some slides from Dave Andersen]

Falr queueing

Buffer management:
* Per-flow queues and drop flow with the longest queue

Scheduling

e Round robin

FQ Illustration

\4
Flow n

Variation: Weighted Fair Queuing (WFQ)

Bit-by-bit RR

Multiple flows: clock ticks when a bit from all active flows is
transmitted =2 a “round”

» dR/dt (the rate at which the round #increases) is variable = u / N

e W = #bits/sec router can send
* N =# active flow

* Why count this way? # of rounds to send a packet is independent of number
of active flows. Useful way of viewing things...

Bit-by-bit RR

Packet arrives in queue Q:

* It’s the ith packet in the queue

* |It's p_i*q bits long

* When does it start being transmitted?
* If g empty, immediately: R(t)
* Else, just after prior pkt finishes: F_{i-1}*q
* S i*g=max(R(t), F {i-1}*q)

* When does it complete?
e S irg+p_i*"g (p_i"grounds later...)

e Can compute the finish round of every packet in the queue. (Even at the

point when the packet is enqueued).

* Note that we don’t know the finish time, just the round #.

Packet-based Fair Queueing

Simple: Send the packet with the smallest finishing round #.

Approximates bit-by-bit RR

* Why isn’t it exact? Preemption!

Bit-by-bit RR Example

Flow 1 Flow 2 Output

F=10

Cannot preempt packet

F=8

F=5 Flow 1

(arriving)

F=10

Flow 2
transmitting

currently being transmitted
F=2 [.

Output

FQ notes

A lighter-weight version DRR (deficit RR) implemented in some switches
but many switches don’t implement it

Use is rare (even rarer that RED)

* Flow definition is a challenge
* Considered too expensive

One idea for reducing cost: CSFQ (core stateless FQ)

Does FQ prevent congestion collapse?

10 Mbps

128 Kbps

Non-cc flow

Example from Floyd and Fall, 1999

No. Still need end-to-end congestion control

Credit-based flow control

Credit-based flow control

Buffer management
e Per flow (VC)

Scheduling

e Round robin

Same decisions as FQ but a very different mechanism

CBFCvs FQ

CBFC sends explicit, detailed feedback upstream
 Number of packets (“cells”) upstream can send

Other possible feedbacks
* Rate
* Pause

CBFC

Receivers

* Tell senders how many packets they can send based on buffer allocation
e Called credits

Senders
* Transmit only when they have non-zero credits
e Decrement credit with each transmission

Most complexity hidden inside managing buffer allocation

Flow control vs. congestion control

Flow control
e Match transmission rate of the sender to what the receiver can bear
* Can be hop-by-hop or end-to-end

Congestion control
* Prevent congestion in the middle of the network
* A worry for packet-switched networks

Backpressure to source helps avoid
congestion collapse

10 Mbps

128 Kbps

Credit-based flow control notes

Not implement in a network anywhere (to my knowledge)

PFC is the closest deployed mechanism
* Ask a class of traffic to stop when they run the risk of overflowing buffers

Your thoughts

Can CBFC handle bursty traffic?

Why are timers the Bermuda triangle?

Next class

First guest lecture!

Kurtis Heimerl on Cellular Networks

