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What we read

Techniques to get more out of your network
 SWAN: Centrally controlling your backbone traffic
e Edge Fabric: Centrally controlling egress traffic
* VLB: Optimal load balancing
* Network coding: Optimal throughput



Journey for optimizing network use (practice)

 SPF with load-based cost
e SPF with static cost
e CSPF (used in MPLS)

e Centralized control



Limitations of static-cost SPF




CSPF

Each ingress router measure traffic that it is sending to other routers

Ingress router finds paths that can accommodate its traffic
» Shortest path that meets the capacity constraint (CSPF)

Ingress router asks other routers if they can use the path
* Necessary because all ingress routers are operating independently



Same example with CSPF




But CSPF has issues too

Local, greedy allocation Globally optimal allocation
(Distributed CSPF) (Centralized)



SWAN



Inter-DC WAN: A critical, expensive resource
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But it is highly inefficient and inflexible!




Inefficiency of the inter-DC WAN
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Normalized traffic on a busy link between data centers



Root cause: Service-level allocations

Operators configure individual services with maximum sending rate
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Inefficient: The combined maximum is uncommon
Unreliable: Load can exceed capacity when failures occur
Slow to change: Must change all allocations to add services or network links



Centralized control can increase ef'ficiency
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Centralized control presents new challenges
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Scalably computing allocation

Prefer higher-priority traffic and max-min fair within a class
Network-wide fairness requires many MCFs

Bounded max-min fairness (fixed number of MCFs)



Bounded max-min fairness
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Geometrically partition the demand space with parameters a and U



Bounded max-min fairness
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Maximize throughput while limiting all allocations below aU



Bounded max-min fairness
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Maximize throughput while limiting all allocations below aU



Bounded max-min fairness
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Fix the allocation for smaller flows



Bounded max-min fairness
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Bounded max-min fairness
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Fairness bound: Each flow is within E, a] of its fair rate

max(di)

Number of MCFs: log,,



SWAN computes fair allocations
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Flows sorted by demand

In practice, only 4% of the flows deviate more than 5%



Centralized control presents new challenges
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Challenge: Congestion during network updates

Link capacity: 10
Flow size: 6.6




Solution: Congestion-free update plans
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Computing congestion-free update plans

Leave scratch capacity s on each link '

: 1
" Guarantees a plan with at most H — 1 steps ||

Find a plan with minimum number of steps using an LP
= Search for a feasible plan with 1, 2, .... max steps

Use scratch capacity for background traffic
" Bound its experienced congestion



Centralized control presents new challenges
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Approximation algorithm
with provable bounds
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[ Limited switch memory } ﬂ[

Maintain the “working set”
In memory




How tunnels work

Src: 1.2.3.0/24  [T1,0.3]
Dst: 5.6.7.0/24 [T2,0.7]
DSCP: 3



Working with limited switch memory




Working with limited switch memory

Install only the “working set” of paths
Use scratch capacity to enable disruption-free updates to the set



Efficiency improvement with SWAN

Throughput
(relative to optimal)
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Deploying SWAN
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Centralized vs distributed control

Centralized
* More efficient, flexible allocation policies

Distributed

* More fault tolerant
* Easy to get started?

Both can have poor transients
* But centralized offers a way to carefully manage them



VLB



SWAN is doing a lot of work to be efficient

Estimate traffic matrix
Carefully plan traffic paths
Rate limit services

What if all this were not possible?



Borrowing from VLB
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Good idea? Bad idea”?

Simple operation High latency

Can work with any valid matrix =~ Sub-optimal for any matrix

Where does it make sense?



Network coding



Routing vs coding

Where does coding make sense?



Next lecture

Today: How can routing help with resource allocation in the network

Next: How can forwarding-time logic help?



